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Abstract: Investigation of pulsed electric field (PEF) treatment of yeast at 20 kV/cm using chambers
with BaTiO3 dielectric layers was conducted in this study. The sterile rate as well as concentrations
of metallic ions and hydroxyl radicals were measured to assess the PEF performance. The results
indicated that generation of metallic ions could be reduced by 90%. However, a much higher field
strength would be required for satisfactory sterilization due to the Maxwell-Wagner field relaxation,
and reactions between the dielectric barriers and liquid could also occur. It was also proven that the
continuous presence of a sufficient electric field is the main factor that inactivates the microorganism.
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1. Introduction

High voltage impulses, which create an intensive pulsed electric field, can generate
electrical potential across microbiological membranes [1]. Due to this trans-membrane
potential and the induced electromechanical stress, pores can be formed on the membrane.
This electroporation process can become irreversible once a critical trans-membrane po-
tential, ~1 V, is reached [2]. As a result, functions of the membrane are disrupted and the
microbial cells are inactivated. The inactivation of microorganisms is a non-thermal process,
which makes pulsed electric field (PEF) treatment a promising technology in liquid food
sterilization. Various studies have been made in recent decades to investigate the effects of
PEF treatment on microorganisms and their products [3–7].

Normally, metallic materials, stainless steel for example, are selected as the electrodes
of the treatment chamber in traditional PEF systems. In such systems, the liquid food
inside the PEF chamber contacts the electrodes directly, which can bring some undesired
drawbacks. Electrochemical reactions can occur between the liquid and the metallic ma-
terial when high voltage is applied, which produces metallic ions or even toxic chemical
species [8]. In addition, these electrochemical reactions between the metallic electrodes
and the liquid normally generates gaseous byproducts, which form bubbles in the liquid
sample [9]. The appearance of gaseous bubbles increases the probability of undesired
dielectric breakdown in the PEF treatment chamber. Furthermore, high conduction current
flowing through the liquid being treated generates significant Joule heating during the PEF
process [10,11]. In some cases, an additional cooling system may be required to keep the
liquid temperature within a satisfactory range [11,12].

In order to eliminate these drawbacks, researchers have attempted to use different
materials and PEF chamber layouts to avoid direct contact between the metallic electrodes
and the liquid. Lubicki et al. used a glass tube to separate the liquid sample and the
electrodes [13]. However, the space between the glass tube and the electrodes needed
to be filled with conductive fluid of similar permittivity as the liquid sample in order to
achieve sterilization in this design. Qin et al. coated copper electrodes with thin TiO2
film to a thickness of 2 µm, and used these to construct a PEF treatment chamber [14].
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Successful inactivation of Saccharomyces cerevisiae was reported, and the conduction current
was reduced by 23% compared with an un-coated PEF chamber with identical topology.
Tanino et al. also covered the electrodes with carbon cloths and successful inactivation of
E. coli and L. homohiochii was reported [15]. However, strong conduction current, up to
~55 A, could still be observed during the PEF treatment using this design. A conceptual PEF
chamber design was proposed and discussed in [16,17], in which the metallic electrodes
and the liquid would be separated by a layer of dielectric material. Figure 1 demonstrates
the basic layout of this design. Ceramic was selected as the dielectric layer in [17] and
inactivation of microorganisms was observed. However, the electric field strength required
for successful sterilization was greater than 130 kV/cm, which was much higher than the
field strength used in normal PEF treatment. The reason for using such high field strength
was not mentioned in [17] and PEF inactivation of microorganisms using such a design
with relatively low electric field strength has not been reported.
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Figure 1. Concept of a PEF chamber with dielectric layers.

The design proposed by [16,17] demonstrated great potential, as such a design could
theoretically eliminate both conduction current and electrochemical reactions completely.
Since using high electric fields could bring extra difficulties in practical applications, it is
necessary to investigate the performance of PEF inactivation of microorganisms using such
design at normal field strength levels (<30 kV/cm). In the present study, two PEF chambers
with different geometries were designed and constructed using BaTiO3 ceramic layers.
The chambers were used to PEF-process a yeast Saccharomyces cerevisiae suspension using
20 kV/cm electric field strength. The sterile rate of the yeast suspension was measured
in order to assess the PEF performance of the ceramic chambers. In addition, the con-
centrations of metallic ions and hydroxyl radicals (·OH) were also measured in order to
investigate the effect of limiting electrochemical reactions in the designed chambers.

2. Experimental Procedures
2.1. PEF Chambers with BaTiO3 Layers

As shown in Figure 1, the dielectric layers and the metallic electrodes are connected
ideally. In this case, the static electric field strength inside the treatment region can be
calculated using the following equation:

E0 = U0

(
zl + 2

εl
εd

zd

)−1
(1)

where E0 is the static electric field strength inside the treatment region; U0 is the applied
voltage across the chamber; zl and zd are the width of the liquid sample and the dielectric
layers, respectively; εl and εd are the relative dielectric constant of the liquid sample and
the dielectric layers, respectively.
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According to Equation (1), the thickness and permittivity of the dielectric layer would
affect the static field strength inside the treatment region. Dielectric material with higher
permittivity or thinner thickness should be selected in order to achieve satisfactory field
strength in the treatment region. Therefore, BaTiO3 ceramic plates, which have a dielectric
constant above 2000 and relatively good machinability, were selected as the material for the
dielectric layer. As a result, the effective static field strength could be approximated using
the following equation:

E0 ≈ U0/zl (2)

In practice, it was not possible to achieve ideal contact between the BaTiO3 plates and
the electrodes, which created a gap between the two materials. The existence of these gaps
formed a very thin layer of air, which triggered the occurrence of dielectric barrier discharge
(DBD) between the BaTiO3 layer and the electrodes when external high voltage was applied.
Once the DBD started, the actual electric field in the treatment region collapsed. In order to
avoid this situation, two approaches were adopted in the present study, as demonstrated in
Figure 2.
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Figure 2. Schematic of the PEF chamber designs. (a) Chamber with BaTiO3 plates and elec-
trodes joined together using silver paste; (b) Chamber with extended gaps between BaTiO3 plates
and electrodes.

(a) The BaTiO3 ceramic plates and the stainless-steel plates were joined together using
silver paste, which is a good conducting material. The air gaps between the plates were
eliminated by doing so. The width of the treatment region was set to 5 mm.

(b) The gaps between the plates were extended intentionally and would be filled
with the same liquid sample. Therefore, three treatment regions were created, namely G
(between the ground electrode and a BaTiO3 plate), M (between the two BaTiO3 plates),
and H (between the HV electrode and a BaTiO3 plate). The three regions shared the same
static electric field strength, which can be approximated as:

E0 ≈ U0/(zG + zM + zH) (3)

where zG, zM and zH are the width of the three regions, respectively, and which were all set
to 3 mm in the present study. Other supporting and spacing structures of the PEF chambers
were made out of Polytetrafluoroethylene (PTFE). Additional PEF chambers with identical
geometry were assembled, with BaTiO3 plates replaced by stainless-steel plates in order
to provide reference results for the BaTiO3 ceramic chambers. Figure 3 shows the actual
assembled chambers.
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Figure 3. Assembled PEF chambers. (A) Chambers with BaTiO3 plates and electrodes joined together
by silver paste. (a1): with BaTiO3 plates; (a2): BaTiO3 plates replaced by stainless steel plates;
(B) Chambers with extended gaps between BaTiO3 plates and electrodes. (b1): with BaTiO3 plates;
(b2): BaTiO3 plates replaced by stainless steel.

2.2. PEF System Setups

An exponential decay pulse-generating system was constructed to supply HV im-
pulses for the present study. This RC-based pulse-generating system, as shown in Figure 4,
consisted of a DC-positive high voltage supply (TRC2020, Dalian Teslaman Technology
Co. Ltd., Dalian, China), a 24 MΩ protective resistor, a self-breakdown spark-gap switch
and a 40 nF HV charging capacitor. The DC power supply had a 50 W rated power with
a maximum output voltage of 50 kV and maximum current output of 1 mA. The break-
down voltage of the switch was controlled by adjusting the distance of the inter-electrodes
gap, which consequently controlled the voltage across the PEF chamber. The pulse repeti-
tion rate was regulated by adjusting the current output of the DC supply. A monitoring
system, which consisted of a voltage probe (P6015A, Tektronix, Beaverton, OR, USA), a
current probe (Pearson 6585), and a digital oscilloscope (TDS2024C, Tektronix, Beaverton,
OR, USA), was used to monitor and record the voltage and current signals during the
PEF treatment.
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2.3. Preparation of Yeast Suspension

Yeast Saccharomyces cerevisiae was used in the present study. A total of 0.5 g of
S. cerevisiae was cultured in 100 mL sterilized Yeast Extract Peptone Dextrose Medium
(YEPD) solution at 30 ◦C in a shaking incubator, which rotated at 120 rpm. After incubating
for 24 h, the yeast suspension was diluted into 500 mL using sterilized deionized water
which reduced the conductivity of the suspension to around 86 µS/cm. The resulting yeast
suspension was used for the PEF treatment at a population density of ~106 colony forming
units per milliliter (CFU/mL). Triplicate tests were conducted for each experiment.

2.4. Assessment of PEF Inactivation

The prepared yeast suspension was put into the PEF chambers and subjected to
2000 high voltage impulses at 20 kV/cm electric field strength and a pulse repetition rate
of 1 pulse per second (1 pps). As discussed in Section 2.1, the approximate static electric
field strength differed within treatment regions of different PEF chambers. The actual
voltage applied to the PEF chambers was calculated according to Equations (2) and (3).
The population density of yeast cells in the suspension was calculated before and after
the treatment to evaluate the sterile rate of the PEF treatment. The spread-plate method
was used to plate 0.1 mL of the sample onto YEPD agar plates. The agar plates were then
incubated at 30 ◦C for 24 h in a stationary incubator before the number of yeast colonies
were counted. The sterile rate can be calculated according to the following equation:

Sterile Rate =
NC − NT

NC
× 100% (4)

where NC is the number of yeast colonies from the control (untreated) group and NT is the
number of yeast colonies from the PEF-treated group.

2.5. Determination of Metallic Ions and (·OH) Concentrations

In the experiments conducted using type (b) PEF chambers, measurements of metallic
ions and (·OH) concentrations were taken. The concentrations of iron and Ba2+ ions in the
yeast suspension sample were measured using an ICP-MS (NexION 350X, PerkinElmer,
Waltham, MA, USA) following standard operation procedures.

As a short-lived, highly reactive substance, extra trapping agents were needed in
order to quantify the concentration of (·OH) hydroxyl radicals [18]. In the present study,
methylene blue (C16H18CIN3S) was selected as the trapping agent. This solution was put
into different PEF chambers before undergoing the same PEF treatment. The absorbance at
664 nm of the treated methylene blue solution was then measured using an UV-visible spec-
trophotometer (UVmini-1240, Shenzhen Lxyee Electronic Technology Co., Ltd., Shenzhen,
China). The concentration of the (·OH) in treated samples was evaluated by comparing
their respective absorbances with the standard absorbance curve.

3. Results and Discussion
3.1. Voltage and Current Waveforms

As mentioned in Section 2.2, the voltage and current waveforms were monitored and
recorded during PEF treatments using different chambers. As demonstrated in Figure 5,
the voltage waveforms had simple, exponentially decaying waveshapes as expected from
a RC-based pulse generator, despite some oscillations being observed in chambers with
BaTiO3 layers. However, the current waveforms indicate an interesting phenomenon: the
current waveforms generally followed the similar tendency as the voltage waveform in
the same PEF chamber. However, the peak current in chambers with BaTiO3 layers was
roughly half of that obtained in the traditional stainless-steel chambers.
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Figure 5. Actual voltage and current waveforms obtained during PEF treatment using different
PEF chambers.

As PEF chambers with/without the BaTiO3 layers shared the same topology and
geometry parameters, this result indicated that the voltage across the suspension in the
BaTiO3 chambers was around 50% of that in the stainless-steel chambers. Therefore, the
field strengths across the same amount of suspension should also have the same ratio for
the two types of chambers. As a result, an inferior sterile rate should be expected in the
PEF chambers with the dielectric layers.

This unusual phenomenon revealed that something different was happening in the
chamber with BaTiO3 layers during PEF treatment, which could be the Maxwell–Wagner
field relaxation process or some unknown chemical–electrical reaction. Such a phenomenon
was not reported in [17], where a similar indirect-contact PEF chamber was assembled
and used in practical experiments. Therefore, further investigation of the causes of this
phenomenon, together with the direct measurement of electric field strength inside the
PEF chamber, could be helpful for understanding the exact transient processes and PEF
mechanisms involved in indirect-contact PEF chambers.

3.2. Effects on Sterile Rate

The sterile rates of the yeast suspension in different PEF chambers and treatment
regions, and the statistical analyses of the results are shown in Figure 6 and Table 1,
respectively. As can be seen from the figure, literally no inactivation of yeast was observed
in PEF treatment using all the chambers with BaTiO3 plates. As a comparison, an average
of 63% sterile rate was achieved in the type a) chamber and all regions in the type b)
chamber when the BaTiO3 plates were replaced by stainless steel. The statistical analysis
also suggested that the sterile rate of the BaTiO3 groups was statistically no different
from the untreated sample, but was significantly different (with 99% confidence) from
the stainless-steel groups. The results conflicted with the experimental results reported
in [17], in which ceramic material was also used as the dielectric barriers. However, the
electric field strength used in [17] was more than six times the field strength used in the
present study.
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Table 1. Statistical analysis of the experimental results of yeast sterilization (%).

Chamber Regions Mean SD SEM

Significant Difference
(From Control Group)

Significant Difference
(From Stainless Steel Group)

At 0.05 At 0.1 At 0.01

BaTiO3

Type a) 0.73 0.407 0.235 No Yes Yes
Type b) H 1.14 1.255 0.724 No No Yes
Type b) M 4.12 2.680 1.547 No No Yes
Type b) G 5.40 1.864 1.076 Yes Yes Yes

Stainless steel

Type a) 64.60 2.485 1.435 Yes Yes N/A
Type b) H 56.86 5.007 2.891 Yes Yes N/A
Type b) M 62.00 2.238 1.292 Yes Yes N/A
Type b) G 62.96 6.816 3.935 Yes Yes N/A

As reported in [16], the transient electric field strength in the treatment region could be
affected by the Maxwell–Wagner field relaxation process in PEF chambers with dielectric
barriers. According to an analytical transient model developed in [16], the electric field
strength inside the treatment region could collapse quickly due to the Maxwell–Wagner
surface-polarization mechanism. In addition, the peak field strength and the peak trans-
membrane potential could also be significantly lower than that in a traditional conducting
PEF chamber, which could explain why successful inactivation was achieved in [17] while
no inactivation was observed in the present study. Based on the analytical model in [16],
and the practical experimental results obtained in [17] and the present study, it could be
concluded that PEF inactivation of microorganisms using chambers with dielectric barriers
may be possible, but significantly higher nominal electric field strength would be required
due to the Maxwell–Wagner field relaxation process.

3.3. Effects on Concentrations of Metallic Ions

Figures 7 and 8 demonstrate the increase of iron and Ba2+ ion concentrations in the
yeast solution samples respectively. The statistical analyses of these results are shown
in Tables 2 and 3, respectively. It can be seen from Figure 6 that the presence of the
BaTiO3 plates limited the release of iron ions significantly. Statistically, the changes in
the concentration of iron ions in all regions were significantly different (with at least 90%
confidence) in the BaTiO3 groups compared with the respective regions in the stainless-steel
groups. The concentration of iron ions in the yeast suspension samples were significantly
lower in all the regions in the chambers with BaTiO3 layers compared with the traditional
stainless-steel chambers. In particular, no iron ions were produced in the samples in
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region M of the type b) chamber, which was formed by the two BaTiO3 plates. The results
confirmed that the application of dielectric layers could effectively restrict electrochemical
reactions between the metallic electrodes and the liquid samples and limit the generation
of resulting metallic ions.
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Table 2. Statistical analysis of the experimental results of iron ions concentration (mg/L).

Chamber Regions Mean SD SEM

Significant Difference
(From Control Group)

Significant Difference
(From Stainless Steel Group)

At 0.05 At 0.1 At 0.05 At 0.1

BaTiO3

Type a) 0.029 0.005 0.003 Yes Yes Yes Yes
Type b) H 0.018 0.011 0.007 No No No Yes
Type b) M 0.015 0.024 0.014 No No No Yes
Type b) G 0.100 0.044 0.026 No Yes No Yes

Stainless
steel

Type a) 0.292 0.014 0.008 Yes Yes N/A N/A
Type b) H 0.322 0.148 0.085 No Yes N/A N/A
Type b) M 0.177 0.069 0.040 Yes Yes N/A N/A
Type b) G 0.519 0.220 0.127 No Yes N/A N/A
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Table 3. Statistical analysis of the experimental results of Ba2+ ion concentration (mg/L).

Chamber Regions Mean SD SEM

Significant Difference
(From Control Group)

Significant Difference
(From Type a) Group)

At 0.05 At 0.1 At 0.01 At 0.05

BaTiO3

Type a) 0.005 0.003 0.002 No No N/A N/A
Type b) H 1.217 0.434 0.251 Yes Yes No Yes
Type b) M 1.101 0.248 0.143 Yes Yes No Yes
Type b) G 0.955 0.176 0.102 Yes Yes No Yes

It can also be noted that in region G of the type b) chambers, where the liquid samples
were in contact with the ground electrodes, more iron ions were produced during the
PEF process compared with other regions in both chambers with/without the dielectric
layer. This phenomenon suggested that the electrochemical reactions around the ground
electrodes were more intense in the present study. It is widely accepted that reactions on
the anode surface are more severe than those on the cathode surface when high voltage
impulses are applied [19–21]. In the present study, the pulse-generating system produced
negative impulses, as can be seen from Figure 4, which made the ground electrodes
effectively the anode. Therefore, the finding obtained in the present study is in line with
the experimental results reported in other studies.

However, as can be seen from Figure 8, significant amount of Ba2+ ions were detected
in the type b) chambers after the PEF treatment. On average, the concentration of Ba2+

ions increased by 1.1 mg/L in the 3 regions of the chambers with a BaTiO3 layer. However,
such changes in the Ba2+ ion concentration were not observed in the type a) chamber with
BaTiO3 layers, as can be seen from Figure 8 and Table 3. This result suggested that reactions
involving the BaTiO3 ceramic could have occurred during the PEF treatment, causing the
release of barium ions. The exact type of reaction is unclear and further investigation
would be required to identify its mechanisms. However, the possibility of such a reaction,
involving dielectric material, needs to be considered in future chamber designs and material
selection in order to avoid unnecessary contamination.

3.4. Effects on (·OH) Concentrations

As discussed in Section 1, the existence of hydroxyl radicals can reflect the occurrence
of electrochemical reactions during the PEF process. Studies also indicate that this substance
can play an important part in the inactivation of microorganisms in the liquid [22,23].
Therefore, an approach was adapted to measure the (·OH) concentration as described in
Section 2.4; the results and its statistical analysis are displayed in Figure 9 and Table 4,
respectively. The results show that the existence of (·OH) was observed in the yeast
suspension in both type b) chambers. The contents of the (·OH) were more notable in the
chamber with BaTiO3 barriers, but the difference between the stainless-steel groups and
BaTiO3 groups were not so significant statistically. This result provided another evidence
that some PEF-triggered reactions had taken place, in which BaTiO3 plates were involved.

It has long been suggested that the PEF inactivation of microorganisms could be the
combined effect of the electric field and PEF-induced by-products, such as metallic ions
and free radicals [8,24]. The experimental results from the present study indicated that
while both metallic ions and hydroxyl radicals appeared in both BaTiO3 and stainless-steel
chambers after PEF treatment, inactivation of yeast was only achieved in the stainless-steel
chamber. Considering that the actual transient electric field strength inside the chamber
with BaTiO3 layer could be much lower, as discussed in Section 3.1, it can be concluded
that the dominant PEF inactivation mechanism was the application of intensive electric
field in the present study.
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Table 4. Statistical analysis of the experimental results of hydroxyl radical concentration (mol/L).

Chamber Regions Mean SD SEM

Significant Difference
(From Control Group)

Significant Difference
(From Stainless Steel Group)

At 0.05 At 0.1 At 0.05 At 0.1

BaTiO3

Type b) H 0.010 0.022 0.012 Yes Yes No No
Type b) M 0.067 0.030 0.017 No Yes No No
Type b) G 0.108 0.020 0.011 Yes Yes No Yes

Stainless
steel

Type b) H 0.106 0.023 0.013 Yes Yes N/A N/A
Type b) M 0.125 0.038 0.022 Yes Yes N/A N/A
Type b) G 0.184 0.041 0.024 Yes Yes N/A N/A

4. Conclusions

In the present study, indirect-contact PEF chambers with dielectric layers made of
BaTiO3 ceramic were designed and constructed. PEF inactivation of yeast S. cerevisiae using
these chambers, and its effects on the metallic ions and hydroxyl radical concentration
in the liquid samples, were investigated. The results obtained in the present study show
that the inactivation of yeast in the indirect-contact chambers was unsatisfactory when a
20 kV/cm static electric field strength was applied. Based on the modeling analysis and
experimental results of other studies, a much higher external static electric field would
be required when this type of chamber structure is adopted due to the Maxwell–Wagner
field relaxation process. The unusual current pattern observed in the PEF chamber with
BaTiO3 ceramic plates also suggested that this field relaxation process could have taken
place. Direct measurement of the transient electric field strength inside the chamber would
be helpful in confirming this phenomenon in future research.

It was confirmed in the present study that the presence of the dielectric barriers could
limit the occurrence of electrochemical reactions between the liquid and the metallic elec-
trodes during the PEF process. However, evidence suggests that other reactions involving
the ceramic layers also took place during the PEF treatment in the present study, and that
barium ions and hydroxyl radical were produced as a result. Further studies are required
to identify the exact type of reaction observed in the present study.

The experimental results from the present study also indicates that the main factor
that inactivates the microorganisms during the PEF process is the intensive external electric
field. Free radicals and metallic ions, without the continuous presence of sufficient electric
field strength, cannot cause the death of microbial cells in the liquid suspension.
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