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Abstract: An excellent e-commerce logistic cycle is based on reducing the delivery time to satisfy 

customers, accelerating the distribution chain activities at each delivery station, increasing the trans-

ported stowage objects for mobilization parallelograms containers to ingest most orders, and reduc-

ing the unused area. Because the stowage steps are considered an NP-complexity, the authors in-

troduce the Oriented Stowage Map (OSM) using one of the heuristic methods (i.e., the camel algo-

rithm) that are programmed by the C-sharp software to be easily managed via the Internet of Things 

(IoT), which is embedded in the distribution chain. The authors called it Oriented Stowage’s Map 

by Camel algorithm “OSM-CA”. This methodology is considered one of the mat-heuristic ap-

proaches (i.e., decomposition metaheuristics) because we resorted to using mathematical steps 

(branch-and-bound). The OSM-CA reduces transport costs by 7% and delivery time by 14%. Addi-

tionally, it shows superiority over the solo Ant-colony for stowage less than 50 boxes by 10% and 

over the solo camel algorithm by 27%, while for more than 50 boxes, the OSM-CA superiority by 

30% over the ant colony, and 17% over the camel algorithm. Creating the map in the proposed way 

takes 70% less time than using mathematical models, especially for a large number of orders, more 

than 200. 

Keywords: 2D-packing/stowage; I 4.0; meta-heuristic methods; numerical model; internet of things 

 

1. Introduction 

E-commerce aims to fulfill customer requests in the shortest delivery time, without 

misdelivery. E-commerce is a central store and fleet of moving containers on specific trip 

paths that serve a sequence of stations (i.e., customers). Every customer receives some 

products with different dimensions and may return other products as needed. The main 

challenge is how to stow maximum boxes (i.e., customer requirements) to satisfy the cus-

tomers by Capital turnover acceleration (i.e., Circular economy). The stowage is a contin-

uous process repeated at every station during the vehicle trip on their transition path by 

unloading and loading different rectangular boxes with different dimensions. The stow-

age aims to increase the capacity of the container by increasing the ingested transported 

boxes at the source station and the ability to receive returned boxes from customers dur-

ing the trip. The problem may be identified as customizing some boxes in specific best-fit 

spaces to achieve maximum transported items. 
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The stowage process achieves mutual interest when transported items increase. The 

first reduces the transportation cost, and the second is meeting more customer requests, 

which partially reflects positively on reducing the delivery time. These objectives are the 

main core of the success of the e-commerce logistic system. Therefore, the stowage issue 

must be improved. The authors have suggested showing the container floor layout solu-

tion in a visual map to simplify the stowage activities during the trip. The first question 

is, what suitable methodologies help in suggesting the stowage map quickly because the 

transportation time span between the stations is short? 

The authors have resorted to using metaheuristic techniques and chose the camel 

algorithm to be modified to achieve the main objective (i.e., customize the boxes in best-

fit spaces that reduce the unused area of the container layout). The modification is under-

taken by supporting the camel algorithm with some mathematical equations to help in 

precise the best-fit place with the minimum unused area and programming the whole 

statements of the proposed methodology by c-sharp software, version 2019, structure to 

create the map visually as will appear in the context and Appendix A. 

The second question is: How will the customer-requested products and their re-

turned products (i.e., boxes) deal with the data during the trip? Bearing in mind that e-

commerce data are big and rapidly changing. Therefore, the programming of the pro-

posed methodology is important to manipulate all activities through the trip via the cloud 

and IoT enabling system [1]. The proposed methodology studies the relation of logistic 

systems, which consists of four elements, e.g., source, products, distribution, and cus-

tomer satisfaction, as illustrated in (Figure 1), through two sequential stages; the first in-

terested in classifying the objects according to the geometry rules and the second study 

the transportation cost to measure the efficiency of logistic stowage methodology accord-

ing to visual lean which help in extract stow map. Therefore, the first half of the proposed 

methodology is named the oriented stowage map “OSM”. 

 

Figure 1. The main relationships in the distribution chain need stowage. 

The first stage of the proposed methodology has been explained in the next pseudo-

code, ‘stage-1: Algorithm 1’, which describes the main rules and geometrical specifications 

such as different vertices, centroid, width, length, edges, and fixed container size ..., which 

are required for the stowage process and will be discussed in Section 2. 
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Algorithm 1 Stage-1: Stowage Steps Geometrically 

Begin stage-1 do 

Step 1: Input a list of objects required to transport to specific customers at a specific 

station. 

Step 1.1: Record the initial specification data of the listed objects (x, y, rotate/not). 

Step 1.2: Set all objects where the width (parallel to the x-axis) is greater than their 

height which is parallel to the (y-axis). 

Step 1.3: Rank all objects in descending order according to their width (�⃗ 

direction). 

Step 2: Choose the geometric shape (Rectangular, Irregular, Circular, Polygon); 

Step 3: Determine the isometric (1D, 2D, 3D). 

Step 4: Identify the stowage orthogonality relation (Yes, or No). 

Step 4.1: Determine the degree of freedom df (Rotation, Orientation). 

Step 5: Determine the stowage technique (Guillotine, Non-guillotine). 

Step 6: Determine the container size ���(40 ft, 60 ft, customize). 

Step 7: Manage the GUI interface illustrate in the appendix. 

Step 8: Extract the stowage map according to: 

Step 8.1: Station Info. 

# of served stations in bypass path; 

# of served stations in backtrack path to collect the (re)turned objects (market 

policy). 

Step 8.2: Object Info. 

Step 8.2.1: if there a safety boundary around each object (Yes, No) 

 Vertices coordinates 

Step 8.2.2: Choose the first object that have long width in ���⃗  to stow if possible 

Elseif 

According to step 4.1 (can Rotate) 

Rotate and stow it if poosible 

Else 

Draw horizontal skyline (guilltine line) Stow the next object over the sky 

line: 

Step 8.2.2.1: Determine their vertices (four vertices for each stowed 

object). 

Step 8.2.2.2: Identify the BLC bottom left placement. 

 Identify the Edges 

Step 8.2.3: Use Eculidian distance between the verticies in same direction ���⃗  or ���⃗  

to choose the object that create minimum edge (height difference between two 

adjacent objects). 

Step 9: Implement a branch and bound technique aided by the camel algorithm, which 

searches for a specific target that is the best fit or has the lowest waste area (empty 

spaces under the horizontal guillotine line). 
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The logistic party focuses on distribution activities, planning, execution, han-

dling/communication, storage, and delivery efficiency. One of the challenges of logistics 

is the stowage of objects in as little space as possible at the warehouse and/or vehicle con-

tainer (β), forcing us to predict accurately consuming products (β’) areas [2]. The e-com-

merce system has data characterized by rapid change and bigness. Therefore, the meth-

odology recommends IoT manage this system online after digitizing e-commerce activi-

ties and all transported objects and the distribution points (i.e., stations) [3,4]. The IoT is 

nominated to verify and track the container’s objects during loading and unloading until 

the delivery destination and substitute that every delivered item is offset by a new one 

requested from the supplier or previous point on the distribution chain [5]. This article 

addresses many objectives for the proposed methodology, which have been discussed in 

the stowage problem. The most important of them is to ingest the total stowage trans-

ported boxes (i.e., objects) to reduce their cost. They are then reducing the partial delivery 

time, particularly for objects with time-sensitive freight delivery and in emergency crises 

when prompt delivery is critical. Additionally, it receives the returned objects during the 

distribution chain easily [6]. The proposed methodology consists of overlapping steps. 

The preliminary steps are based on the heuristic technique that helps obtain a semi-opti-

mal solution for ranked objects at a temporary stowage map, while the late steps tackle 

numerically for enhancing the picked solution from the afore phase and dividing them 

into the group with the same guillotine boundary [2,6], then trying to replace and switch 

places between them to ingest all available transported objects. The underlying theory of 

e-commerce is that the data on all transactions within the warehouse or logistics stock 

system are digitally tracked through a unified and efficient structure. The IoT provides 

proactive data during distribution trips to calculate the best utilization for the space 

caused by unloading objects to be ready for (re)stowing by returned ones, as shown in 

(Figure 2). 
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Figure 2. The e-commerce framework. 

This article’s primary objective is to maximize the stowage utilization spaces in the 

minimum volumetric area to reduce its total transportation cost. The work was triggered 

by improving the camel algorithm movements over Dana Marsetiya et al. (2022) [7] via 

supporting the meta-heuristic method by the mathematical procedures that can be pro-

grammed by the C-sharp software to enhance the searching process. The authors compare 

the results with those of Hong J. et al. (2018) and Dana et al. (2022), who studied the effect 

of the ant colony and camel algorithms on the acceleration of the transportation cycle [7,8]. 

The article is divided into seven sections, where it tackles the stowage problem geo-

metrically in Section 2 to introduce how the first oriented stowage map aims to exploit all 

spaces. Section 3 discusses how to verify stowage free of overlapping or any geometric 

sketch defect by presenting how to measure the space utilization. Section 4 explains the 
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proposed methodology that will be easily managed via IoT and formulated in Section 5, 

the results are discussed in section 6. Additionally, it presents an implementation example 

for transporting bathtubs of different sizes and discusses the results in Section 6. Finally 

the work expounds the highlight results and their analysis in section 7. The article uses 

case study data for ceramic tile companies transporting different sizes as appeared in Ap-

pendix-A. We finally reviewed the conclusions to show the superiority of the proposed 

algorithm over the other two optimization algorithms. 

2. The Stowage Problem Geometrically (Stage-1) 

The stowage problem is an open arrangement with a deep and orthogonal axis [5]. 

This problem relied primarily on the container’s floor’s geometric dimensions and other 

characteristics. The fundamental geometric restrictions dominated the stowage problems 

(i.e., combinatorial optimization problems), where no overlapping of objects in the same 

layer is allowed [9, 10]. The review reveals that the researchers attempted to develop some 

methodologies similar to the rank-order stowage problem, where all stowage objects and 

containers’ floors are rectangles. Figure 2 illustrates the structure flowchart (e.g., the con-

structive heuristic), which is considered the Origin of many modern heuristics. These 

methods are compared with exact solutions (e.g., LINGO results) [7, 11, 12] by creating 

the most suitable oriented stowage map for different rectangular-sized products by im-

plementing the camel algorithm. The heuristic steps are supported by mathematical equa-

tions [13, 14] to enhance their solutions (i.e., increasing the storage capacity) by following 

the stowage map created in minimum time. This Guide Map existence must fit, as dis-

cussed by Imahori [15], inversely with the speed of the container movement progress and 

be proportional to the change in demands and/or returns that affect the container’s 

planned spaces and transportation costs. Therefore, the authors propose a methodology 

called OSM-CA, “Oriented Stowage Map by Camel algorithm” Methodology. 

There is an urgent need to create a stowage map for transportation objects during 

many sequential stations, marine logistics, warehouse capacity, massive stowage of 

shelves, aiming at loading acceleration, and multidimensional [16,17] resource schedul-

ing. However, compared to the vast benchmarking examples of NP-hard combinatory 

problems, they are defined by quickly finding appropriate solutions. The “OSM-CA” cre-

ates n-branches of solutions to direct the driver to the final minimum stow depth and 

unused space at any station of their distribution trip. It begins with the ACO that is im-

proved via the OSM-CA heuristic steps, supported by a mathematical model. The OSM-

CA has been implemented and managed via an IoT platform to control vehicles, drawers, 

customers, and warehousing. The camels are responsible for placing boxes in container 

space under consideration of placing their boxes where their area is proportional to the 

pungent pheromone scent (i.e., the large box side ‘x’ | ‘y’ covers an extensive length of a 

container). The camels move in descending order on condition, placing their boxes to 

achieve the best-fit or minimum wasted area case at every guillotine skyline, except that 

the camels will not find the food and die. The heuristic steps guide the ant movements 

into multi-stowing branches. The first uses a succession of a horizontal pattern (or vertical) 

fills only that called “one-step guillotinable layout’s floor”. While the camels’ plan move-

ment that does not have this property is called the “non-guillotine layout’s floor” [18–20]. 

Otherwise, there is permission to orthogonally rotate (i.e., replace the width instead of 

length and vice versa via rotation 90°) the product that is ordered to stow from the first 

step and apply the second series [21,22] of guillotine steps (e.g., V or H), as illustrated in 

(Figure 3). The number of phases necessary to completely cut the pattern provides another 

way to describe guillotinable designs. The pattern is referred to be “one-stage guillotina-

ble” if all objects may be stowed in the container using only a series of horizontal (or ver-

tical) cuts. The pattern is known as a “two-stage guillotinable pattern” [15] if the orthog-

onal rotation of the pieces produced by the first stage cuts is required before applying the 

second set of guillotine cuts (now vertical or horizontal). The same logic also dictates that 

a third change in cutting direction is necessary for a three-stage guillotinable pattern and 
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so on to reach no limit of stowage called n phases [23]. In that case, the floor is designated 

as a “two-step guillotine layout’s floor” stowage with no limit on the number of guillotine 

lines is called n-level guillotinable layouts’ floor, where (n-1) is the number of stowage 

direction changes between �����⃗  and �����⃗ . Where �� denotes the width of the rectangular ob-

ject needed to be stowed, while �� denotes their length (or height in 2D). 

 

Figure 3. The ant plan stowing layout methods. 

Definition 1. The dynamic stowage map (e-commerce policy) regularly evaluates the specific ob-

jects to be stored in the next period (i.e., the station on the journey path) and produces a potential 

bespoke container for those demanded and/or returned objects [23]. 

3. The Problem Scope and Specification 

The authors solved 120 benchmarking examples classified in four scales ranging from 

10 to 500 transported objects through 2 to 10 available branches for the camel to evaluate 

the effectiveness of the suggested mat-heuristic “OSM-CA”. Suppose the example has 

more than 200 transported objects. In that case, the authors find that the LINGO solver 

(native mathematical solution) surpasses the time limit (8–24 running hours) without see-

ing the best-suggested stowage map in most situations [24]. Table 1 shows the selected 

size characteristics: The boxes and the capacity of every camel to receive boxes from dif-

ferent branches to place in exact position according to a lagoon surface area (i.e., food 

acquisition), which is generated by the U (50 and 500) distribution; The same boxes, 

branches, layout dimensions, and available positions for each problem size [4,25]. The 

[10,000, 20,000] interval is used to create the range of repositioning cost saving for �� that 

pass the test. All of the benchmarking examples of the mathematical model and the other 

three metaheuristic methodologies ACO [13], CA, and OSM-CA are solved and imple-

mented by laptop core I5 twelve generation via processor 2.46. 

Table 1. Instances the sizes generated randomly. 

Problem 

Sets 

No. of 

Instances 

No. of 

Branches 

No. of 

Camel Capacity 

No. of 

Available Positions/Boxes 

���, 30 2 5 10 

���, 30 4 8 50 

���, 30 6 10 100 

���, 30 10 20 500 

4. The Proposed Methodology OSM-CA 

The dynamic stowage problem is introduced in this section. This debate concerns a 

group of objects that must be transported along a specific path by a particular vehicle. The 

camel metaheuristics algorithm resorts to looking for lagoons’ positions in the container 

over four well-known strategies such as “positioning”, “fitness”, “level-plane”, and 
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“profile”. While the numerical (i.e., exact) algorithm guarantees optimal solution, it may 

consume much time, generate exponential iterations of multi-branches [21, 26], and be 

very hard if programmed. Whereas the heuristic steps, such as the greedy method [27], 

local search algorithms as constructive steps [28], or metaheuristic, as ACO and CA [4, 29] 

find a most favorable,i. e. , �� , solution quickly, its accuracy is not substantively. The 

prominent exact algorithms are the cutting plane [30], branch-and-bound, branch-and-cut 

[31, 32] and dynamic programming methods [33]. The proposed methodology, “OSM-

CA”, is based on a modified branch and bound heuristic steps to support the CA to obtain 

a local �� solution and then enhance it by mathematical procedures to guarantee effi-

ciency. Additionally, the authors exclude the cutting plane method despite being fast be-

cause of unreliability, while the branch/bound way is steadfast but consumes a long time 

to extract the solution. 

Accordingly, the authors enhance the CA and branch-and-bound technique, espe-

cially after mathematical procedures. The pre-step of the first phase aims to prepare the 

problem by classifying objects �� (i.e., boxes/orders) according to the ratio (ri) among their 

xi and yi, which assumes that all boxes with r < 0.2 aside are roomed in the potential con-

tainer side. The first aims to place boxes, which is achieved using a multilevel linked data 

structure (i.e., matrix of all boxes bi (xi, yi)). At the same time, the container’s width is 

constant at the beginning of the proposed methodology and is called “����”. Available 

length is the key to selecting an appropriate box bi and permits the camel to place its bi. 

The fitness value, in this case, is not only based on the minimum Euclidean distance be-

tween adjacent boxes on both sides with the centroid of the grouped boxes to reduce the 

number of edges by measuring an angle that occurs when a correlation triangle appears, 

as discussed in (Figure 4) above. However, also try to make the skyline close to horizontal 

as acute as possible. 

 

Figure 4. Enclosing some of boxes interspersed with unused space as a one block Bi. 

5. Problem Formulation 

The objective is to ingest all e-requested orders (i.e., the boxes), which can be de-

scribed as follows: a set of camels (n) responsible for moving the selected boxes via a spe-

cific camel ����, � =  {1, 2, . . . , �, … , ����}, a set of generated branches S for every reposi-

tioning under condition (fitness: Is wasted space reduced?), � =  {1, 2, … , �, . . . , ��}, and a 

set of p suitable replacement positions, � = {1, 2, … , �, . . . , ��}. The model assumptions 

modified for that which is cited in (Hong et al., 2018) [7] when interested with costs. Any 

placement layouts’ floor of boxes considered a set of boxes devoted to each box’s corners 

(four vertices and centroid) and the container and concerning the following assumption 

in tackling the stowage problem [33]. A set of objects will be transported on an available 

vehicle container for a given time, passing through Clients’ stations. These objects form � 

disjoint groups,���, ��� … , ���. The objects in a group require the same client and trans-

portation means (i.e., drawer). Because the stowing of one group does not affect the stow-

ing of another, the problem may be broken down into sub-problems for each group. As a 

result, the remainder of this essay will focus on one group’s issue. The authors tend to 

discuss the stowage problem as some objects seek the best-fit location to place via an ac-

tuator (camel, ant, etc.) that is proposed to be a camel according to the camel algorithm. 

The goal of the task is to maximize the overall profit from the box assignment, which is 
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inversely related to the transportation expenses (e.g., involves the cost of health exhaus-

tion, which implicates time consumption in front of the lagoon). Even though it does not 

follow the time windows, the OSM is regarded as a soft time window depending on the 

container receiving the box (best-fit case). The mathematical model for the matheuristic 

OSM approach was developed based on Ali et al., 2022 [34]’s implementation of the camel 

algorithm ‘CA.’ This approach improves the stowage outputs map that has been created. 

Accordingly, the article is based on (Hong et al., 2018)[6] for testing the cost indicator 

while based on Dana Marsetiya Utama et al., 2022 [7] Ali et al., 2019 [34] for testing the 

area indicator, which is hands are proportional directly together and considered the basis 

of the proposed algorithm. Table 2 indicates the parameters, variables, and decision vari-

ables used in the following procedures. 

Table 2. The Parameters of OSM-CA algorithm constraints. 

Indices 

i, j  Index for lagoon location at a specific branch  

�� Boxes � capacity 

��� Branches for different � Storage capacity 

�� New Position � new demand 

Variables 

K Total Camels 

L Total lagoons location 

��� Distance from lagoon i to lagoon j (i.e., the distance between centers of two adjacent objects) 

LCT The cost of poorly choosing a branch of the path when searching about lagoons (cost/time) 

�� Fuel prices; the cost of health exhaustion 

LPK Rate of exhaustion consumption per distance 

�� Load time of camel k, which is directly proportional to the box area (object area) 

�� Arrival time of the camel to suitable lagoon j 

�� Arrival time of the camel to suitable lagoon i 

�� Waiting time of the camels at the lagoon to place their box 

����
 Camel the fitness effort from lagoon i to lagoon j 

���� Eating time of lagoon grass i by camel k, which is also directly proportional to the box area. 

��� Permitted time of moving the camel to lagoon j 

��� Closing time at lagoon j 

�� The capacity of camel k, which is directly proportional to the box area 

�� The demand requires from lagoon i according to available place at the container 

TTC Total assigning profit of boxes, which is inversely proportional to transportation costs 

��:  
The adjacent box that will be stowed aside in the one of a degree of freedom (right, left, above, bottom, 

front, behind)  

��:  Some of the adjacent boxed boxes are ready to be replaced set, � =  1,2, . . . , � 

� # of Branches set, � =  1,2, . . . , � 

C��: 
Potential container => min (Space (��,���) − [Space (�����) + Space (�������)]) = The Hype about the 

pheromone scent 

�     Another New Position set, � =  1,2, . . . , � 

��(��. ��): The box dimension according to container space coordinates 

Ω�: The aggregated boxes interspersed with unused area 

��  =
��

��
�  The ratio between the width wi = ��, while the length Li = �� of ��(��. ��) ≤ 0.2 

��(��. ��): 
The primary container dimension, where �� is constant, and �� = ���������� (�) at the first Stowage 

step. While �� Is extended with Stowage operation and unlimited. 

w�: The potential container matrix chain (fleet of camels) is based on the ri classification. 

�������(0.0) The origin (0, 0) is at the bottom left corner (BLC) of the stowage container. 
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��� 

(0.5 ��. 0.5��): 
The centroid of the box �� to calculate the Euclidian distance between �� and neighbor ���� |���� 

���
�  (��. ��): The vertex coordinates of stowed boxes �� to determine the skyline polygon,  

��
� ≅ ��

�|��
�: 

Is the width of the selected box preferred to be assigned, with freely rotating the item if it will serve 

the solution? 

Decision variables 

���� A binary variable that controls the movement from lagoon ith to lagoon jth by the Camel k 

��� A binary variable describes the Camel k drinking from lagoon i or discover it mirage. 

��� Formulates the location for camel � in their vector, where � = 1, 2, …, �, and � =  1, 2, …, �. 

Table 2 shows the parameters used in the proposed methodology ‘OSM-CA’. The 

geometric attributes of boxes include dimensions, physical, weight, volume, color, direc-

tion, etc.: 

Assumption 1. The container contains multi-reciprocity potential containers called drawers. 

Assumption 2. Any two objects loaded cannot overlay in the container. 

Assumption 3. The boxes’ assignment must be orthogonal, i.e., the sides or edges must be parallel 

to the container side as discussed in (Figure 5). 

Assumption 4. Any box in the container may be easily rotated by 90 degrees [33]. 

Assumption 5. As seen in the diagram illustrated in (Figure 6), boxes can be stacked on top of 

each other with some constraints (durability factor). 

The time it takes to prepare a vehicle for non-stowing and stowing objects is �� and 

��, respectively. Let �� represent the direct labor cost (USD/h) for the preparation and 

packing time. When a client order �� requires �� an item type, ��. Each type of item’s �� 

occupied area, ��
�(��), which contains the essential inter-object spacing ≅ 0 in this study 

(as shown in Appendix A).  Let �� = ����(��) be the total occupied area for a client’s order 

�� (objects/client). (We presume that all areas in some unit of measurement may be written 

as integers). All objects must be stowed if possible. Therefore, every camel seeks the best 

fit area along time t to customize the selected object �� elected from the matrix ��, which 

ranked objects in descending order. If customizing is impossible, the object is stowed tem-

porarily in a potential container ��� and reselect in the final customization stage in time 

��
�. (i.e., demand distributed during trip path). The expense of delivering each packing 

order to its designated drawer is ��
�. Let �� = ��

����
� + ��

��� + ��� be the total of a pack-

ing order and prep cost of not stowing an order �� , at one drawer or not completely 

stowed (the cost of holding no orders or fail the Camel to find the suitable lagoon). Now 

think about group stowing, ��. Let �� = 1 if order �� is in the specific drawer/client, and 

�� = 0 otherwise. While in the case of stowing objects, let � = ����∈�����. , i. e., tends to 

achieve the object � = 1 , otherwise � = 0.  Let � = ���  be the vehicle prep cost to 

transport particular objects in the same drawer. Let �(�) be the positions area required 

according to the stowing decision, where the total area of the stowed objects and the 

empty, serviceable area is � (i.e., whole container area). �(�) = �
∑ �����∈�

�
�, where[�] (the 

order’s number of pieces divided by the drawer’s number of parts). While the time re-

quired to load returned objects (backing orders) is �� and the cost of it is, ��. Let � =

�� + ��� be the total cost of loading returned orders. Formerly, for an agreed stowing 

decision,�, the full prep and packing drawer cost for the group is the following sum: 
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�(�) = � ���1 − ��� + �
∑ �����∈�

�
� � + ��

�∈�

∀� ∈ �� (1)

The non-negative integer, �� ; ∑ �����  ≤ �� < ∑ �(����) . Then, the wasted area value, 

��, �� = ∑ �� + ∑ ����� , and 0 ≤ �� < �. Where the �� is the number of whole returned or-

ders �� that requires �� (i.e., the extra spaces that the returned order, ��, requires trans-

ported). Formerly, the authors can write the dynamic fitness function of searching the best 

stowage orders, as shown in Equation (2). At the same time, the challenge is to stow most 

boxes carried to reduce the total transportation cost (TTC), which is expressed in Equation 

(3). It is divided into two sections: the first discusses exhaustion consumption per distance, 

which is a cost of the searching process, and the second discusses the most expensive 

branch selection costs. 

� ∝ �(�) = � �� + �(��� − ��)��

�∈�

+ �
∑ �����∈�

�
� � + ��

�∈�

 (2)

� ∝ ��� = � � � ��. ���. ���. ���� + �(���(0, (��

�

���

�

���

�

���

�

���

− ���))). ��� + �(�) (3)

Subject to: 

�� ≤ � ∀ � ∈ � (4)

�� ∈ {0,1} ∀ � ∈ � (5)

� ∈ {0,1} (6)

This problem is formulated as an NP-complexity problem, especially if all of the prep 

and extra drawer costs are zero. It is worth noting that, despite the extreme integer points, 

the linear programming relaxation does not yield an optimal solution because the goal 

function is nonlinear. 

� ��

�

���

. ��� ≤ ��, ∀� = 1,2, … , � (7)

� ���

�

���

= 1, ∀� = 1,2, … , � (8)

� ���

�

���

= � (9)

� ����

�

���

≤ ���, ∀� = 0,1,2, … , �; ∀� = 1, … , � (10)

� ����

�

���

≤ ���, ∀� = 0,1,2, … , �; ∀� = 1, … , � (11)

�� + ��� + �� + ���� +
���

����
� . ���� = ��, � = 0,1,2, … , �;  � = 0,1,2, … , �; ∀� = 1, … , � (12)

�� = ��� (0, ���� − ��, � = 0,1, … , �. (13)

���� ∈ [0,1], � = 0,1,2, … , �; � = 0,1,2, … , �; ∀� = 1, … , �  (14)
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��� ∈ [0,1], � = 0,1,2, … , �; ∀� = 1, … , � (15)

Equation (7) stipulates that transporting whole boxes must not surpass the camel’s 

carrying capability. According to Equations (8) and (9), each box must have a delivery 

service. As stipulated by Equations (10) and (11), each order’s service can only be fulfilled 

by a single camel: The time window limitations are defined by Equations (12) and (13). 

Finally, Equations (14) and (15) specify that the decision variables ���� and ��� are both 

binary amounts. Algorithm 1 contains the pseudo-code for the proposed OSM-CA meth-

odology. The first interests in identifying the procedures of the camel positions’ configu-

ration at the BLC (bottom left corner); the second conversion of the camel positions to the 

trip sequence using the Large Rank Value (LRV) technique to sort the ���� and ��� in 

descending order; and final, trying to modify their locations as discussed in Eqn. (16-34). 

��,�
� + ��,�

� + ��,�
� + ��,�

� + ��,�
� + ��,�

� ≥ Ω� + Ω� − 1, ∀� ≠ � ∈ �  (16)

�� + �� ≤ �� + � ∙ �1 − ��,�
� �, … . ∀� ≠ � ∈ �  (17)

�� + �� ≤ �� + � ∙ �1 − ��,�
� �, … . ∀� ≠ � ∈ �  (18)

�� + �� ≤ �� + � ∙ �1 − ��,�
� �, … . ∀� ≠ � ∈ � (19)

When the variables ��,�
� , ��,�

� , ��,�
� , ��,�

� , ��,�
� , �� ��,�

�  = 1, the two boxes surrounded by 

boxes b and Pk must not overlap with other boxes, as discussed in Section 2 of the article. 

To avoid the surrounded boxes occupying the same portion of space, it is adequate for no 

overlying along at least one relative stowage position. 

5.1. Step-1 (Stowage Boxes) Procedures 

Initially chosen, the stowage layouts of the orthogonal boxes in the containers; an 

arrangement representation map developed by the authors, addressed enhancing the 

stowage methodology map and managing it via IoT “OSM-CA”. The following part goes 

through a general description of the recommended technique and an example explaining 

its sequential steps (Figure 5) in a standard case. 

 

Figure 5. The OSM-CA flowchart. 

Create temporary 
Stowage Map 

4. Improve local solution via replace items with 
other selected group items to reduce waste spaces 

and create Stowage Map 

Min Cost / 
branch 

Extract a 
stowage Map 

NO 

YES 

IoT 
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∀{��
�, ��

� … } ∈ ��
� � ∈ {1. … … . �} (20)

∀{∀{��
�, ��

� … } ∈ ��
�} ∈ ��

� � ∈ {1 … … . �} (21)

The proposed procedures aim to find a suitable placement of all boxes that have been 

candidates into the fewest number of trials under the next circumstances of correct place-

ment acts: 

(1) All vertices of boxes’ ∈ potential container ���, and the main container are parallel, 

(2) All stowed boxes do not overlap with each other, i.e., 

∀� ∈ {1 … . �}. ∀� ∈ {1 … . �}. ∀�. � ∈ {1 … . �}. � ≠ � (22)

����
� ≥ ���

� + ��
�� ∪ ����

� ≥ ���
� + ��

�� (23)

(3) All stowed boxes are within the bounds of the containers, i.e., 

∀� ∈ {1 … . �}. ∀� ∈ {1 … . �}, ∀� ∈ {1 … . �} (24)

(���
� ≥ 0) ∩ (���

� + ��
� ≤ ��

�), and the ��
� ≥ ����������

�   

��������� ��⸦ ��������� ���������� ��⸦ ����� ��. 
(25)

Where the ���
�  is the selected coordinate of the assigned  vertex, whereas ��

� is the width 

of the selected box ��  to be assigned. 

�� = {��; ��; … ; ��}. �� ∈ [1; �]∀� ∈ {1 … . �} … … . …  (26)

All regular shape classifies according to (��.����.�� → �ℎ�� ���� (��. ��)���������. 

(4) If (��.����.�� ≤ 0.2 then �� reside sticking right or left of container edges around its 

perimeter rotate the �� 90° at the bottom of the container to make � = 0 on the hor-

izontal line. The ���� = Euclidean distance between two inner boxes in the same guil-

lotine layer. 

(5) Check all ����. This is different from the guillotine layer above, considering that the 

stowage space is the available inner free space in the main container. 

A random example of any dimensional stowage problem is represented by a location 

wk, which holds a sequence of boxes selected for placing into the container, this �� is a 

matrix that has some of the box’s attributes such as; width xi, length yi, centroid ci, and the 

ratio between the width and length (�� ��⁄ = ��
�
→) [35], heights and their weights to clas-

sify the boxes before being stuck with container sides. Generating these matrices results 

in many branches of the solutions, which must be followed to stop at one of two decisions; 

the first is to create a sub-matrix and continue finding the solution or reach an empty 

matrix if it has -ve or ∅ values. The sub-matrix considered a branch-and-bound behavior 

via adopting some of the potential containers (PC, such as drawer; ���) placed in a con-

tainer at a specific point but ignored the core relationship between the boxes’ dimensions 

and their boxes [36]. Additionally, it missed the skyline path (i.e., an imaginary polygon 

bounded by the upper vertices of placed boxes). Each PC; ���with a number, k is de-

scribed with an objected-vector containing dimensions of this box and adjacent to the BLC, 

which holding {��
�; ��

�; … ; ��
�}, {��

�; ��
�; … ; ��

� ≤ ����������
� }. 

In a container, all existing free orthogonal spaces are defined as a set of boxes. The 

steps of OSM-CA guarantee the correct placement of a box if this box overlays no borders 

of the potential place ��� in which it is positioned. In this case, a box is put at some point 

coordinates instead of inspecting the intersection, using a matrix test and stowing every-

thing in its place [37,38]. This test means compromising among the camels to choose the 
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most appropriate [33]. The rule of correct placement for box �� (��. ��) in a potential place 

k is expressed with the inefficient:���
� ≤ ��

�� ∀� ∈ {1 … . �}, as illustrated in (Figure 6). 

 

Figure 6. Load of potential orthogonal container (drawer). 

(6) A set of β boxes with the dimensions 

{��
�; ��

�; … ; ��
���; ��

� − ��
�; ��

���; … . ��
�} (27)

Additionally, located at an origin of coordinates of the original potential container k: 

���
�; ��

�; … ; ��
�; … ; ��

�� 
(28)

Which are generated under the following overlap constraints: 

��
� > ��

� ��� ��
� < ��

� + ��
� ∀� ∈ {1 … . �};. (29)

(7) A set of β boxes with the dimensions 

���
�; ��

�; … ; ��
���; ��

� + ��
� − ��

� − ��
�; ��

���; … . ��
�� (30)

Additionally, located at β points vertices with coordinates 

���
�; ��

�; … ��
���; … ; ��

� + ��
�; … ; ��

���; … ; ��
�� (31)

Which are produced under the following restrictions of overlap: 

{��
�; ��

� > ��
� and ��

� + ��
� < ��

� + ��
� ∀d ∈ {1 … . D} (32)

���(0.5 ��. 0.5��): The centroid of the box �� to calculate the Euclidian distance be-

tween �� and neighbor ���� |���� 

��
�: is the width of the selected box to be assigned 

Illustrative Example (The Positions’ Configuration) 

The camel’s location is determined by adjusting several parameters used in the 

camel’s configuration phase, such as the total camel caravan (N), traveling iterations (iter), 

maximum and lowest temperatures, and visibility value. The BLC defines the starting po-

sition at every trial (d) of the camel’s location in this study as determined by the number 

of problem nodes (lagoons). Equation (33) demonstrates how to pick the camel location’s 

configuration. The camel’s starting location is chosen randomly from some camel cara-

vans and nodes (D). The camel’s value’s upper and lower limits are computed. The camel 

caravan location’s highest maximum is called, ����. The camel caravan location’s bottom 

limit is called, ����. ���� is a uniformly distributed random number in the range [0,1]. 

The ��� is calculated as follows: 

��� = (���� − ����)���� + ���� … (33)

(b): Shelve in Inv. (c): Vehicle box (a): Marine Container 
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���������������� = �
1.21, 3.92 1.71 ⋯ 2.18

⋮ ⋱ ⋮
8.57, 2.99 7.56 ⋯ 7.94

� �������������. = ��
2.18,  3.92 1.18 ⋯ 1.18

⋮ ⋱ ⋮
8.57, 8.57 7.56 ⋯ 7.94

��…  
(34)

The vector position of 10 nodes and 10 camel caravans is shown in the detected pop-

ulation. At this point, the camel i ensures that each d does not repeat itself. The camel 

population can be approved if each camel does not have the same quantity in one popu-

lation (different lagoons and/or boxes). As a result of the application of LRV, the camels 

will be guided to sort their boxes according to the lagoon area, as illustrated in Table 3. 

LRV is a straightforward way for converting a pair of (centroid, area) into a Stowage 

method behavior combinatorial issue. As a result, the serial numbers of camel places must 

be converted into a traveling sequence; this method is well-known for this purpose. The 

LRV concept is to sort the d positions of each camel in ascending order. The IoT is a dy-

namic dataset that manages the generated OSM solutions, which is programmed by C# 

for all candidates’ boxes in the logistic cycle to cope with unloading action and returned 

objects online on a specific trip [4,39]. 

1. Create the main matrix wk of all boxes �� have permission to stow in the container 

according to the (Figure 7) structure. 

1.1. Classify w.r.to ��
��� = ��

�
→ & ��

��� = ��
�
→  and select the matrix ��

#�|#�
 that 

have # of ����|��� , and the average calculated via 
∑ ����(��

�
� )

����(���)�  

1.2. Stowage the perimeter boxes �� In CCW direction and ignore the container’s 

topside because of its set height assumption as agreed. 

1.3. Calculate the ���� as aforementioned in Step 7 of a proposed methodology, for the 

illustrative example step shown in Table 3. 

 

Figure 7. The OSM-CA plan representation. 

Table 3. The main matrix of orders information at station i-1. 

 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 

 xi 70 50 70 40 90 40 30 25 25 15 80 12 10 

yi 20 30 5 20 5 35 15 5 10 10 3 10 10 

A 1400 1500  800  1400 450 125 250 15  120 100 6295 

ri 0.29 0.6 0.07 0.5 0.08 0.87 0.5 0.2 0.4 0.67 0.04 0.84 1  

������(�) �(�) �(�) ……
�(��) 

1.21 3.92 1.71 …… 2.18 

�(�) �(��) �(�) …… ������(�) 

By LRV, the sorting as follow for accepted pop. 

Camel caravan (N) ((N)=boxes Container layout area ≥ boxes’ area 

Container Capacity 
= 10 boxes 

1 Client’s stations 2 3 …… 10 

3/1 6/0 5/2 …… 10/2 Client’s requirements 

Returns Require

��� 
IoT 

monitoring 
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1.4. Stowage ∀ ��  that have ��<0.2 in a separate matrix ��
#�around the perimeter 

sides of the container and explained in Table 4. 

Table 4. Matrix of �� → ����.�. 

 b� b� b�� 
x� 70 90 80 
y� 5 5 3 

C�� (1.5,40) (2.5,45) (2.5,35) 
r� < 0.2 0.07 0.056 0.038 

2. Create a matrix of the potential container, ��
#�, which have all boxes �� ready to 

stowed. 

2.1. If any �� have many objects �, collect them besides to make a group as one box 

have maximum width = ���� and if there is some not collected to this box, create 

a new box till its width ∑ ��
�
����

≤ ���� (this constraint if all objects � belongs 

to one client). 

3. Set all ��(��. ��), where �� ≥ ��. 

4. Arrange all �� in descending order according to ��. 

5. Determine the origin of the main container �������(0.0), which is preferred at the bot-

tom left corner (BLC) [40]. 

6. Determine the ratio between the width and length of ��(��. ��) ≅ri = (xi / yi), and clas-

sify all �� that its ri less than in ��.����� ��������  ������. 

7. Determine all vertex coordinates ���
�  (��. ��) of the stowed boxes �� to determine the 

skyline polygon in CCW order for the free space side. Where; ���
� (0.0) means that 

vertex of box #1 at container #2 placed one of their vertices at (0, 0) and ���
��

(0. ��) 

determine the second vertex in the same horizontal edge; by this way, select the other 

vertex coordinates. 

8. Assume that ���������� (�) = ��  at the first stowage step. Otherwise, determine 

���(��) for these vertices and calculate the ���� (�) = ����
��

(0. ��) − ���
��

(��. ��)�. 

9. Create the �� , which represents a potential container matrix that contains all �� , 

ready to stowed/arrangement and consider this matrix a formed of chromosome 

chain, which is a key to generating a suitable layout’s floor. 

�� ���� ≥  ∀�� | ���� �� �� �� 

�ℎ�� �����ℎ ∃ ∀�� �� ������� ������� = ���� − �� ≤ 0. 

(���� ���� �� ���� ��� ����) 

������ �ℎ� max ������� ��� ��� �� �� ��� ����(���)  

�� ���� ���� − �� ≤ 0. (���� ���� �� ���� ��� ����) 

�� �ℎ��� �� ��� �� ���� ��������, ������ ��� �� 

9.1. The key goals in both searches are to cross the closest guillotine line (i.e., make 

the skyline horizontal) and reduce the fitness value by touching the nearest 

vertex. 

9.1.1. Allowing a box to cut the guillotine line is not permitted, and it is preferred 

to be in the far-right or far-left of the usable placement line, considering the 

previous step, 9.1, and explained in Table 5. 
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10. ��
#�. ������ (1): ���� = 90. 

Table 5. Sub-matrix after classification step. 

Old b1 b2 b4 b6 b7 b8 b9 b10 b12 b13 

New b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 

xi 70 50 40 40 30 25 25 15 12 10 

yi 20 30 20 35 15 5 10 10 10 10 

Cbi (35,10) (25,15) (20,10) (20,17.5) (15,7.5) (12.5,2.5) (12,5.5) (7.5,5) (6,5) (5,5) 

10.1. Reside �� at �������(0.0) matrix that belongs to one class divisible for stowing, 

as shown in (Figure 7). 

10.1.1. Assume ��is one class generated from a large one, if �� will subject to 

classify, then compute the average of ri and sort it into two classes, one has 

the objects that have ri greater than this average, and another has objects 

that have less than average ri. 

10.2. Extract ��vertices, ���
��

(0.0),  ���
��

(70.0), ���
��

(70.20), ���
��

(0.20). 

10.3. Select ��� �� and calculate the next ���� = 90 − ����
��

(70.0) − ���
��

(0.0)� = 20. 

10.4. Then, ����(���)=20 ∀�� ≤ 20 [search in ��]. 

10.4.1. Create a matrix �� (1-1) as shown in Table 6. 

Table 6. The selected boxes suited to be placed. 

Xi branch b� b� b�� 

x� ≤ 20 15 12 10 

y� 10 10 10 

C�� \ (85.6) (75.5) 

r� 1.5 1.2 1 

Waste in X 5 8 10 

Waste in Y 0 0 ----- 

10.4.1.1. New X���(���) = 10. there are no x� ≤ 10. then ∅. and ∃ in ∀y�. 

10.4.1.2. When zero appears, it means best-fit case and choose ���. ��. 

Then, the placement boxes are ��. ��� . �� and observe the ��� ≤ ��. 

10.5. Then, ����(���)=20 ∀��� ≤ 20 [search in ��]. 

10.5.1. Create a matrix �� (1-1) as shown in Table 7. 

10.5.1.1. New ����(���) = 5 . Where there are no �� ≤ 5 . Therefore, 

considered ∅. and stop to stow the first trial. 

Table 7. Sub-matrix excludes products according to Xavi. 

 b3 b5 b6 b7 b8 b9 b10 

xi 40 30 25 25 15 12 10 

�� ≤ 20 20 15 5 10 10 10 10 

Cbi (80,20) (82.5,15) (72.5,12.5)     

ri 2 2 5 2.5 1.5 1.2 1 

Unused area 0 5 15 10 10 10 10 

 -ve 0 ------ 5 5 5 5 
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10.5.1.2. Select zero waste to achieve the best fit condition. ��. �� �� ��. ��. �� 

Branch, then searching in �� to find two other branches to stow boxes, 

as shown in Table 8. �
��. ��…….(������#�→�)

��. ��. ��.(������#�→�)
 

10.6. Record the vertices of all free spaces to draw the skyline polygon, as shown in 

Table 8. 

Table 8. Select preferred Origin to the Camel or box bi. 

 b1 b10 b9 b1 b3 b1 b5 b6 

���
�� (0,20) (--,--) (80,10) (0,20) (70,40) (0,20) (70,25) (75,30) 

���
�� (--,--) (70,10) (--,--) (--,--) (70,20) (--,--) (70,20) (75,20) 

���
�� (70,10) (80,10) (--,--) (--,--) (--,--) (--,--) (--,--) (--,--) 

���
�� (70,20) (--,--) (80,12) (70,20) (--,--) (70,20) (--,--) (90,30) 

��� ��, �� (70, 10) (0,20) (0,20) 

10.6.1. The selected vortex for branch based on ∃ � is (70, 10) to be the next 

origin and determine Xavi. 

10.6.1.1. Determine ����(�) = (80.10) − (70.10) = 10. 

10.6.2. The selected vortex for branch based on ∃ � → 1 is (0, 20). 

10.6.2.1. Determine ����(�) = (70.20) − (0.20) = 70, as shown in Table 9. 

10.6.3. The selected vortex for branch based on ∃ � → 2 is (0, 20). 

10.6.3.1. Determine ����(�) = (70.20) − (0.20) = 70. 

10.6.3.1.1. Select the maximum ����(���) ≤ ��� = 70, as shown in Table 

7, and create the next submatrix ���� , after disposing of all 

stowed boxes in the selected case above. For this specific branch 

found ��, �� were stowed in a specific location as shown in Table 

9. 

Table 9. Branch and bound for bi at Xavi <70. 

Left bracnch b2 b4 b5 b6 b7 b8 b9 b10 

�� ≤ 70 50 40 30 25 25 15 12 10 

�� 30 35 15 5 10 10 10 10 

�� 1.67 1.1428 2 5 2.5 1.5 1.2 1 

Stowage (max), 

minimum waste 

area 

20 30 40 45 45 55 58 60 

10 20 30 35 35 45 48  

-ve 8 18 23 23 33   

-ve -ve 3 8 8    

-ve -ve -ve -ve  stop collecting boxes 

Right bracnch b2 b3 b4 b7 b8 b9 b10  

�� ≤ 70 50 40 40 25 15 12 10  

�� 30 20 35 10 10 10 10  

�� 1.67 2 1.1428 2.5 1.5 1.2 1  

Stowage (max), 

minimum waste 

area 

20 30 30 45 55 58 60  

10 20 20 35 45 48   

-ve 8 8 23 33    

-ve -ve -ve 8     

-ve -ve -ve 10 10 10 10  
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-ve -ve -ve 0 0 0 0  

-ve -ve -ve stop collecting boxes  

10.6.3.1.1.1. ��(�){��. ��}��� ��{���. ��. ��. ��}. 

10.6.3.2. Select the maximum ����(���) ≤ ��� = �� and create the next sub-

matrix ���� after disposing of all stowed boxes in the selected case. 

Stowed boxes were ��. ��. ��, as illustrated in (Figure 8). 

 

Figure 8. Two branches of stowing based on ���⃗  or ���⃗ . 

10.6.3.2.1. ����(�){��. ��. ��}��� ��{���. ��. ��. ��}. 

10.7. When searching about vertices and determine ���� ≤ 5 = ∅ , for ∀ ∃ ��|�� . 

Therefore, close this space and raise the vortex to the nearest upper vertex beside 

the box. 

10.7.1. Repeat the previous steps for testing ��. 

10.7.1.1. Select the maximum ����(���) ≤ ��� = 20, as illustrated in Table 10, 

and following the guillotine line at height 25 then 30 or only for 10 

unit-length, and create the next submatrix ����
#�  after disposal, all 

stowage/placement boxes were ��. ���. ��, as shown in Table 11. 

Table 10. Branch and bound for bi at Xavi < 20. 

 b2 b3 b4 b5 b6 b7 b8 

�� ≤ 20 50 40 40 30 25 25 15 

�� 30 20 35 15 5 10 10 

��� 20 30 30 40 45 45 55 

 --- Not meet a condition 9.1  

Place min wastage and then search about minimum fitness nearest guillotine line 

Table 11. Branch and bound for bi at Yavi < 10. 

 b6 b7 b8 

�� 25 25 15 

�� ≤ 10 5 10 10 

��� 5 2.5 1.5 

 5 0 0 

 --- Best fit 

10.7.1.2. When no �� ≤ 10 = ∅ found, and try to test the same ����(���) ≤

��� = 10, in this case, found �� ��� �� and preferred �� ������� �� <

��, as shown in (Figures 9 and 10). 
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10.7.2. Re-record the vertices of all accessible spaces to draw the skyline polygon, 

as shown in Table 12. 

10.7.2.1. Determine ����(�) = (90.12) − (80.12) =

10 ��� ∃∀ ��∅. �ℎ����� �ℎ�� ∃∀ �� ����� ��
#�, as illustrated in Table 

13. Then, choose ��. 

 

Figure 9. Branch of stowing vertically. 

Table 12. The vertices of all free space. 

 B� b� b� 

x��
��

 (0.20) (70.25) (80.25) 

x��
��

 (−. −) (70.20) (80.12) 

x��
��

 (−. −) (80.12) (−. −) 

x��
��

 (70.20) (80.25) (90.12) 

Min x�. y� (80, 12) 

Table 13. sub-matrix to determine the preferred box bi. 

 B� b� 

x� 25 25 

y� ≤ 10 5 10 

C�� 5 2.5 

r� 5 0 

 

Figure 10. Improve the shortest depth branch. 

At this level of solution, as illustrated in (Figure 11), the problem is divided into two 

independent branches, the first based on �� , and the second branch has two branches 

based on �� & ��, or allow rotation conditions. 

��
#�  = {��. ���. ��. ��.��}, and reach ���� = 37, remain {��. ��. ��. ��. ��} 

����
#� = {��. ��. ���. ��. ��. ��}, and reach ���� = 40, remain {��. ��. ��. ��} 

����
#� = {��. ��. ��. ���. ��. ��. ��}, and reach ���� = 30, remain {��. ��. ��} 
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Figure 11. Continuo restoring to reduce the waste in stowage area. 

All object centroids are considered a vertex of a triangle bound by three conjoined 

boxes of a replaced object with another that reduces the unused space (i.e., ff the angle <

� at the centroid vertex of the main item (which not replaced) must be minimum to move 

the centroid of another inserted object to a horizontal position and < � = 0. Otherwise, 

choose inserted objects that reduce < � angle. (Figure 4) illustrates the role, when inves-

tigating from �� < ��, then an arrangement of (Figure 12A) preferred than (Figure 12B) 

illustrates that the angle �� is ��� �� =
��������

���
 

When an item is replaced from its potential container ���it is required to reorder all 

boxes around this item. The advanced algorithm of replacing an orthogonal item i from 

container j includes the following steps. 

11. Create a new free orthogonal potential container ����������  that replaces objects 

with similar dimensions equal to the dimensions of the original replaced item, ��. 

Put into the container ��� a box ��� with the dimensions ���
� = ��

� ∀� ∈ {1 … . �}, at 

a point with the coordinates equal to the coordinates of the box ∑ ��
�
�  placed into 

another layer in the same container ��: ���
� = ��

� ∀� ∈ {1 … . �}. 

12. The replacement is subject to two restrictions as follows: The demand based on se-

quence (classify, select, stow, improve) and the solution effectiveness of the required 

order � =∝ ��� + ���
� for a long trip, and the customers’ requirements rate is vari-

able [33,41,42]. 

12.1 ∑ ��
�
��� ≅ ����. 

12.2 ���(������� �����| ����� �����ℎ ≅ 0. ��≅���). 

12.2.1 �� (������� �� ����ℎ �ℎ� ���������� ����). 

12.3 divide this matrix into some subsets considering the following rules: 

∑ ��
�
��� ≅ ����. (To achieve this rule, verify each item’s validity before combin-

ing it with others, {best-fit} case). 

12.4.  ���(������� �����| ����� �����ℎ ≅ 0. ��≅���). This means that a better selec-

tion category aligns the heights of the grouped objects with the tallest of them 

to lead the skyline to be horizontal. 

12.4.1 ��� (������� �� ����ℎ �ℎ� ���������� ����) , test ��  with all best-fit of 

others �� in matrix ��
#�. 

13. It is assumed that objects will permanently be assigned to a specific space and not 

disposed of, as the customer requirements for these objects always exist in the market 

in minimum lead-trip. Therefore, the management emphasizes triggering the tour to 

meet the end-user needs via sequential steps. As cited by M. Schuster et al. [2], au-

tonomation is willing to bear the carrying cost associated with the additional units 

transporting objects. 
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14. In point (12) of the OSM-CA, make a new free orthogonal potential container 

���������� that contains all of the products subject to the replacement act [38]. Prod-

ucts that are in the container but are not adjacent to the container’s edges will be 

replaced in this example; in other words, they will improve the positions of the ob-

jects that belong to the second-class matrix ��
#�, as illustrated in (Figure 12) and Ta-

ble 14, where Figure 12 illustrates the main two branches (A) and (B) of the final so-

lution deduced from stage 1 implementation. 

Table 14. The branches solutions obtained from stage-I. 

 X Y 

 

 X Y 

��
#� 90 77 ��→������_�

#�&#�  98 80 

��
#� 90 90 ��→������_�

#�&#�  98 93 

��
#� 90 80 ��→������_�

#�&#�  98 83 

Figure 12. Proposed solution for two branches. 

5.2. Calculate the Transportation Cost (Stage-2) 

This section discusses the OSM-CA to solve the stowing problem for each group. The 

orders (objects) in groups, 1, 2, … , �. Therefore, the total number of feasible solutions are, 

2�. The computational effort searching is proportional to, ��. Thus, as � increases, the 

computational effort does not increase exponentially [43, 44], unlike other enumeration 

techniques that could be used. The OSM-CA presented finding the optimal (least-cost and 

area) stowing decision as discussed in Algorithm 2. 

Algorithm 2. Stage-2: OSM-CA pseudo-codes. 

Begin 

���� �: Configuration: Set parameters, ����, ����Caravan size (N), the visibility 

threshold, and initialize each camel’s position from Equation (21). 

���� �: Sort the location of each camel using LRV; determine the fitness value of each 

camel using Equation (1b); 

Determine the current best location and fitness in the initial solution. 

���� �: While (���� < ������ �� trip ����) do 

Final Solution 

of Stage 1 
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do Number camel caravan size (N) 

Compute the temperature of camel (���, ����) using Equation (22). 

Compute the endurance of camel (���, ����) using Equation (23) 

If ��, ���� (���� → 0 to 1) < visibility edge, then 

Modify the camel position using Equation (24) 

Otherwise 

Modify the Camel position using Equation (21) 

End If 

While i=1: 

Convert position camel to travel sequence using LRV and determine the total 

distribution cost in each camel. If fitness, the new positions are preferred. The new best 

is the global best and saves the best solution (fitness and location) 

End If 

Assign new visibility for each camel 

���� �: End While 

���� �: Output the best solution 

End 

Let (�, �) be the lowest cost of any stowing decision considering the first � (objects) 

and required area � on the last unplanned drawer. 

Configuration: �(0;  0)  =  0. �(0; �) = �. �(0; �)  =  �������� if 0 < � < �. 

Recursion: If � = 0, then �(�, �) = �(� − 1, �) + �� , in this case, no orders are stowage. 

While if 0 < � ≤ ��  then �(�, �) = ��� {�(� − 1, �) + ��, ��� − 1, � + � − ��� + ��� + 1��} . 

In this situation, also order � had not been stowed, or order � added its �� (returns) to 

the drawer and needs an extra area �� for order � that fit onto the last returns to the stow-

age. In this case, the portion of order � on the new area of the returns drawer has an area 

�, and the portion on the last returns drawer that has an area �� − �. Therefore, the area 

on the last assigning drawer for these returns describes as � − ��� − �� = � + � − �� be-

fore adding order � to the stowage map. If �� < � ≤ �, then �(�, �) = ��� {�(� − 1, �) +

��, ��� − 1, � + � − ��� + �����}. In this case, either order � was not stowed, or order � 

added its ��, but the extra area of order � fits onto the last unplanned area for the returns 

objects. This step means {�(�, �)}�����
��� , the complexity of tackling this problem is �(��). 

This preparation allows for identifying a case that can be solved immediately. Note that 

��� + 1�� is an upper bound for the cost of stowing order, �. If ��� + 1�� ≤ ��, then the 

cost of adding the order to the nest is less than or equal to the cost of excluding it. If 

��� + 1�� ≤ �� ∀�, then stowing no orders is the only solution that could cost less than 

stowing every order. To decide, compare ∑ ���  (the cost of stowing no orders) to,� +

�∑ ��� /���, which means (the cost of stowing every order). If the first quantity is smaller, 

stowing no orders is the optimal solution. Otherwise, stowing every order is an optimal 

solution [45]. 

15. Linear Programming Reduction: We build and solve a linear programming relaxa-

tion of the dynamic stowing problem to construct an efficient heuristic. The variables 

have been changed to be continuous, and the objective function has been changed to 

be linear. 
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Minimize: 

��(�) = � ��

�∈�

+ �(��� +
��

�
� − ��

�∈�

)�� + �� + � � � ��. ���. ���. ���� + �(���(0, (��

�

���

�

���

�

���

�

���

− ���))). ��� (35)

Can define the ideal stowage according to: Let �� = (��� +
��

�
� − ��) be the whole 

cost of stowing orders, �� as expressed in Eq. (35). If �� < 0, indicate non-stowing case (all 

�� < 0 ��� � = 0). Otherwise, some �� < 0. Let �∅ = ��: �� < 0�. If ∑ (�� + �) ≥ 0�∈� , in-

dicates a non-stowing situation also. While if ∑ (�� + �) < 0�∈� , then the optimal solution 

is to stow order ��, when � ∈ �(�� = 1) and if � ∈ �(� = 1). 

1. Calculate the estimated total cost �� of stowing order �� for all � = 1, … , �, in group 

��: 

2. �� = (��� +
��

�
� − ��). 

3. ��� ������� = {�: �� < 0}. 

4. �� �  is empty =Ø or ∑ (�� + �) ≥ 0�∈� , then stow nothing. Otherwise, since 

∑ (�� + �) < 0�∈� , stow order ��(�� = 1) if and only if � ∈ �. 

If the �� is the stowage map that the heuristic creates and �∗is an optimal stowage 

for the OSM-CA, then �(��) − �(�∗) < �. While for any solution �, �(�) is the cost of 

the solution, where discussed by Eq. (36) 

�(�) ≥ ��(�) = � ��

�∈�

+ � ����

�∈�

+ �� (36)

Transportation managers must first arrange the orders needed during each timespan 

into clusters, relying on their form and size to use dynamic stowing OSM-CA, via the 

following indicators expressed in Eqs. (35, 36). 

 �� , indicates the whole prep and penalty cost of each order, �� , whether it is not 

stowed and/or transported. 

 ��, the whole required area to stow order, ��. 

 �, the serviceable area of a returns items. 

 �, the labor and drawer loading cost of returns objects. 

 �, the vehicle prep cost for a stowage. 

Aimed at any order, ��, calculating, ��, via determining the planned packing items; 

N(X), and calculate ��, multiple the parts inside the order by the needed area per part as 

expressed in Eq. (37), (including useless and/or interpreted spacing) [46, 47]. The data 

have been aggregated dynamically via IoT to feed the proposed algorithm. Therefore, 

�� = �
��

�
� − ��� (37)

6. Results and Discussion 

With the advancement of sophisticated and digital manufacturing technology, it is 

now possible to completely utilize circular resources. However, there is currently a dearth 

of study that examines how digital technology may affect the development of a circular 

economy in the context of supply chains [48, 49]. This study aims to evaluate the impact 

of technological innovation on CE practices and their connection to economic and envi-

ronmental performance, as discussed by Khan, S. et al. (2022) [50,51]. Only in China can 
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economic expansion and frequent travel play such a big role in pushing up crude oil im-

ports. Foreign direct investment and industrialization both play a significant influence 

[52]. As a result, the suggested methodology is based on maximizing the volume of items 

transported while simultaneously decreasing the number of transportation trips. Conse-

quently, cut back on fuel usage. There are three differences between the proposed meth-

odology and the classic placement approaches for strip packing or others. The first is the 

limited container size (width, length, and height), which represents the standard size. The 

search for customizing specific objects using a modified camel algorithm aided by the 

mathematical procedures interested in the parameters shown in Table 2 to fit best the in-

ner of the container. The modified metaheuristic can be programmed using C-Sharp soft-

ware to create the visual map for the stowage object inner in this fixed area, which is dis-

cussed in Section 5.2. Finally, track the map (loading and unloading and loading returned 

objects from different stations along the trip path), which form the main framework dis-

cussed in Figure 2. The branch-and-bound methodology [4, 47, 53, 54] may be classic in 

the implementation of small-size problems. At the same time, customizing many objects 

is considered to be an NP-hard problem and needs an innovative methodology to help 

achieve the e-commerce target discussed before. In 2020–2021, the sudden (COVID-19), 

the “black swan” outbreak, struck every country, sparking a global pandemic, which led 

to badly disrupted logistic activities for manufacturing companies, and retailer stores, 

consequently increasing the delivery lead time and customer grumbles [55]. Therefore, 

the proposed methodology interested in increasing the number of transported items to 

reduce the delivery lead time and partially satisfy customers. E-commerce data are char-

acterized by quick growth [56], which pushes the researchers to create modern analysis 

models to simplify the management of these data means using IoT and sustainable supply 

chain management (SSCM) [57], which refreshes the circular economy, also referred to as 

“Blockchain” technology, as a distributed digital ledger technology, guarantees security, 

visibility, traceability, and transparency and promises ease for environmental and global 

supply chain problems. Retailer distribution is an example of a circular economy that 

must be sustainable [58, 59]. This concept is compatible with the proposed, which works 

on accelerating the distribution cycling of e-commerce. Some researchers identified and 

faced some influential barriers to using the IoT and analyzed the causes of weak supply 

chain sustainability [60]. Therefore, the authors have interested in tackling the problem 

from its root by trying to increase transported items and accelerate the circular economy 

and enhance the e-commerce processes. Table 15 shows the tuned parameters for ACO, 

Camel algorithm, and dynamic OSM-CA. Both ACO, CA, and proposed heuristics that 

the numerical model supported are compared with LINGO exact output (Mathematical 

Model). Table 16 shows the ranges for the assumed cost of moving the actuators to their 

original location and the cost of replacement achieved. 

Table 15. Tuned algorithm parameters. 

ACO 
� � � �� � � �� 

1 1 5000 0.1 0.83 20 500 

 ���� ���� ------ visibility ------ Caravan size (N) IT 

CA 5 200 Ign. 0.05 0.80 20 500 

OSM-CA 2 200 Ign. 0.03 0.81 20 500 

Table 16. The range of transported costs per unit area. 

Range of back to the 

original location cost 

Scope of variable cost in 1st case 

(demand) 

Scope of variable cost in 2nd 

case (returns) 

All costs mentioned in the context 

(30–50) * Avg. 

replacing cost 
10–30 10–50 
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Figure 13 illustrates the percentage of deviation for the four data sets identified (Ta-

ble 1) about the optimal solution extracted by LINGO (mathematical model) and shows 

the superiority of the proposed methodology over the native camel and ant-colony algo-

rithms by 0.417% and 2.0528%. While if the problem size is over 500 objects, the LINGO 

consumes significant time, exceeds 24 h, and often fails to extract the solution, as illus-

trated in (Figure 14). The results deviations are represented and summarized in Tables 

17–19 in Relative Percentage Deviation (���). The total cost and related area are also shown 

in the same tables, where ��� is calculated as in Equation (38). 

����(���,��,����) =  
����� − �����

 LINGO
 × 100 ∀� = 1,2,3  (38)

The computational analysis shows that OSM-CA provides better results than ACO 

or CA solo. The proposed methodology provides significantly better solutions with a dif-

ference of about 3.045% for ACO, 1.75% for CA, and 1.47% for OSM-CA from the optimal 

solutions. The p-values are calculated for the average deviations between ACO and OSM-

CA to be 0.0056, which is <0.05. 

 

Figure 13. The deviation of proposed methodology OSM-CA and ACO, CA methods with Mathe-

matical equation effect result. 

 

Figure 14. The time required to create a stowage map for each drawer (potential container). 

Analysis of Results 

Excellent e-commerce needs a quick decision for loading the demands and/or the re-

turned objects during the transportation path, which may cause the arrival time among 
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the stations to be less than 20 min. As the number of instances and/or the boxes grow to 

more than 100 that must be stowed at the same time, the mathematical models cannot find 

an exact solution via LINGO software for running over 9 h to present a stowage solution 

in the available space that appears after unloading the requested objects at clients’ sta-

tions. Therefore, the authors developed one of the optimization algorithms (i.e., the camel 

algorithm) by embedding mathematical equations to make oriented stowage and pro-

gramming it with the C-sharp software to present a visual solution named alluded “stow-

age map”, which is named (OSM-CA) using a Laptop that has processor Core i5 and 16G 

Ram. This map helps increase the stowing capacity for the transported products, reducing 

the total transportation costs, the number of trips, and the waiting time at each station 

(i.e., Lean objectives). The Lean-IoT achieves many of the lean objectives and provides 

evidence of the effectiveness of the proposed OSM-CA methodology, as illustrated in Fig-

ures 13 and 14 and shown in Tables 17-19. On average, the proposed algorithm gives a 

much better solution than the precise solution, with a difference of roughly 1.47% for 

OSM-CA. The findings of the computational study demonstrate that OSM-CA is cumula-

tive superior to the ant-colony and CA solo by 12% and 5%, respectively, as shown in 

(Figure 13). Appendix-A explains the comparability between the proposed algorithm and 

the other two algorithms, such as the ant-colony and the camel algorithm. 
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Table 17. Results obtained using LINGO, ACO, CA, and OSM-CA for group 1 that distributed 10 different boxes area in a container dimension 80�⃗ × 90��⃗ =720,000 ���. 

Prob. 

Inst. 

Total Unused Area ��� Unused Area Deviation % 
Prob. Inst. 

Total Unused Area ��� Unused Area Deviation % 

LINGO ACO CA OSM-CA ACO CA OSM-CA LINGO ACO CA OSM-CA ACO CA OSM-CA 

1 5190 6900 6750 6295 0.32% 0.30% 0.21% 16 13322 13411 13407 13401 0.67% 0.64% 0.6% 

2 11497 11511 11499 11491 0.12% 0.02% −0.1% 17 15790 15816 15790 15790 0.16% 0.00% 0.0% 

3 15037 15090 15064 15061 0.35% 0.18% 0.2% 18 16894 16927 16894 16891 0.20% 0.00% 0.0% 

4 13097 13130 13099 13092 0.25% 0.02% 0.0% 19 15565 15582 15565 15561 0.11% 0.00% 0.0% 

5 11981 12199 12309 12303 1.82% 2.74% 2.7% 20 16971 17077 17028 17022 0.62% 0.34% 0.3% 

6 11477 11560 11500 11500 0.72% 0.20% 0.2% 21 14891 14982 14961 14961 0.61% 0.47% 0.5% 

7 15612 15887 15839 15832 1.76% 1.45% 1.4% 22 13728 13736 13728 13721 0.06% 0.00% −0.1% 

8 15573 15780 15843 15841 1.33% 1.73% 1.7% 23 14054 14068 14054 14052 0.10% 0.00% 0.0% 

9 14221 14249 14221 14220 0.20% 0.00% 0.0% 24 15784 16077 16035 16031 1.86% 1.59% 1.6% 

10 12785 12799 12785 12781 0.11% 0.00% 0.0% 25 13719 13775 13735 13731 0.41% 0.12% 0.1% 

11 12138 12281 12211 12210 1.18% 0.60% 0.6% 26 12897 12942 12904 12900 0.35% 0.05% 0.0% 

12 13769 13992 13961 13961 1.62% 1.39% 1.4% 27 13534 13578 13536 13531 0.33% 0.01% 0.0% 

13 13824 13843 13824 13821 0.14% 0.00% 0.0% 28 10117 10192 10125 10121 0.74% 0.08% 0.0% 

14 14934 15062 15008 15001 0.86% 0.50% 0.4% 29 14377 14438 14424 14421 0.42% 0.33% 0.3% 

15 11808 11879 11870 11870 0.60% 0.53% 0.5% 30 14253 14263 14253 14251 0.07% 0.00% 0.0% 

The average deviation 0.61% 0.45% 0.42% 
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Table 18. The comparison among different groups for an unused area ���. 

 LINGO 
Time 

Window 
ACO 

Time 
Window 

CA 
Time 

Window 
OSM-CA Time Window 

10 boxes 3 min 0.3888% 6 s 0.4449% 6 s 0.4449% 6 s 

50 boxes 67 min 2.070% 13.2 s 1.2676% 17 s 1.1599% 17 s 
100 boxes 490 min 3.2098% 75 s 1.5744% 38 s 1.5570% 38 s 

500 boxes 1440 min 6.5073% 108 s 3.8518% 90 s 3.8352% 60 s 

  3.045%  1.75%  1.47%  

Table 19. The expected transportation costs obtained using LINGO and OSM-CA [4]. 

 
The ���Instances 

Results 
 The ���Instances Results  

The ���Instances 

Results 
 The ���Instances Results 

Prob. 

Inst. 
LINGO 

OSM-

CA 
Dev.% 

Prob. 

Inst. 
LINGO OSM-CA Dev. 

Prob. 

Inst. 
LINGO 

OSM-

CA 
Dev. 

Prob. 

Inst. 
LINGO OSM-CA Dev. 

1 128040 128524 0.38% 1 177854 178112 0.15% 1 236721 237741 0.43% 1 314390 323986 3.05% 

2 114971 114997 0.02% 2 209060 209832 0.37% 2 228294 228752 0.20% 2 280884 284218 1.19% 

3 150375 150646 0.18% 3 167758 167990 0.14% 3 210147 211125 0.47% 3 335035 354308 5.75% 

4 130971 130997 0.02% 4 179626 179906 0.16% 4 228458 229740 0.56% 4 312855 325247 3.96% 

5 119819 123098 2.74% 5 202973 203677 0.35% 5 247414 248696 0.52% 5 286988 298794 4.11% 

6 114775 115001 0.20% 6 166785 168870 1.25% 6 219715 223004 1.50% 6 324858 332985 2.50% 

7 156127 158396 1.45% 7 182584 185930 1.83% 7 216806 220383 1.65% 7 315778 328988 4.18% 

8 155732 158438 1.74% 8 154217 154532 0.20% 8 230437 230437 0.00% 8 307531 317144 3.13% 

9 142211 142211 0.00% 9 179461 180010 0.31% 9 225189 225857 0.30% 9 342149 355502 3.90% 

10 127857 127857 0.00% 10 173401 175910 1.45% 10 238507 239051 0.23% 10 355439 365249 2.76% 

11 121383 122113 0.60% 11 195559 197057 0.77% 11 227820 229522 0.75% 11 321067 338172 5.33% 

12 137696 139617 1.40% 12 185327 185890 0.30% 12 212515 214867 1.11% 12 356106 368258 3.41% 

13 138248 138248 0.00% 13 171036 174245 1.88% 13 242507 246847 1.79% 13 326465 344397 5.49% 

14 149346 150085 0.49% 14 203715 204715 0.49% 14 276236 280983 1.72% 14 345003 354941 2.88% 

15 118089 118701 0.52% 15 156007 161107 3.27% 15 245646 248857 1.31% 15 303481 308457 1.64% 

16 133229 134079 0.64% 16 193382 193690 0.16% 16 231457 232862 0.61% 16 326392 332121 1.76% 

17 157904 157904 0.00% 17 206042 206837 0.39% 17 238796 238930 0.06% 17 350396 359350 2.56% 

18 168949 168949 0.00% 18 214247 215589 0.63% 18 258653 258975 0.12% 18 314917 342152 8.65% 

19 155656 155656 0.00% 19 224956 228345 1.51% 19 229847 235665 2.53% 19 284996 300637 5.49% 

20 169718 170284 0.33% 20 178472 178702 0.13% 20 278730 281972 1.16% 20 305625 317187 3.78% 

21 148915 149618 0.47% 21 197683 200418 1.38% 21 258885 259288 0.16% 21 338830 348824 2.95% 

22 137285 137285 0.00% 22 186321 186753 0.23% 22 224956 236313 5.05% 22 319456 339354 6.23% 

23 140544 140544 0.00% 23 211361 215005 1.72% 23 214213 217430 1.50% 23 288152 301301 4.56% 

24 157845 160355 1.59% 24 166220 166220 0.00% 24 244412 251303 2.82% 24 322640 336138 4.18% 

25 137194 137353 0.12% 25 191598 191976 0.20% 25 227719 230432 1.19% 25 342406 365571 6.77% 

26 128974 129044 0.05% 26 232565 233243 0.29% 26 250476 261000 4.20% 26 335441 340769 1.59% 

27 135349 135362 0.01% 27 161654 162481 0.51% 27 227589 228077 0.21% 27 333252 341876 2.59% 

28 101177 101255 0.08% 28 191584 193258 0.87% 28 240589 242381 0.74% 28 310810 322600 3.79% 

29 143779 144241 0.32% 29 156107 158644 1.63% 29 202918 205225 1.14% 29 324880 331498 2.04% 

30 142535 142535 0.00% 30 161654 181459 12.25% 30 229604 231205 0.70% 30 328657 344555 4.84% 

The average deviation 0.67% The average deviation 2.23% The average deviation 1.19% The average deviation 1.7% 

Table 19 indicates the efficiency of the proposed OSM-CA for cost indicators. The au-

thors observe that the deviation for Group 2 is unpredictable, where the expected was 

lower than Group 3, but have no answer except them devoid of biased results. 
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7. Conclusions 

This work has been adopted by several famous e-commerce companies in KSA and 

Egypt. The proposed algorithm “OSM-CA” justifies and explains the metaheuristics de-

velopment to tackle large problems in minimum time and can handle them via the IoT 

[61]. The stowage map extracted more rapidly than LINGO by 60% at stowing 100 objects 

have different sizes, while superior to the ant colony and CA over all 400 stowed objects 

by 27% and 9%, respectively. The OSM-CA achieved a 28% reduction in the waiting time 

at various stations, reduced the over-processing activities by 35%, which accelerated the 

logistic trip (i.e., reflected on the total delivery time), and reduced the holding and trans-

portation costs by the same amount, as shown in Table 20. On the sidelines of the article, 

if the number of trips is reduced due to increasing in stowage capacity through transpor-

tation, the fuel consumption is reduced [24, 49, 61]. The main innovation of this work is 

extracting a visual stowage map guide for the driver for customizing the objects in an 

assigned area that achieves minimum waste in the stowage areas or unused spaces, as 

expounded in Appendix A. 

Table 20. The KPI of superior the proposed algorithm OSM-CA-IoT, according to the e-commerce 

objectives for more than 120 randomly examples. 

Verification of Superiority of the KPI’s OSM-CA Ant-Colony CA 

Maximum depth exploited at ≤100 objects 25% same 

Maximum depth exploited at ≥101 objects 9% 21% 

Unused Spaces [Table 17] 19% 3% 

Extracting the stowage solutions [(Table 18] 1.6% 0.28% 

Over-processing 35% 35% 

Waiting time reduced by 28% 14% 

Delivery time reduced by 14% 14% 

The average number of trips reduction 17.5% 2.76% 

Transportation costs decreased  6.9% 5.96% 

The total efficiency of solution < 40 boxes (Figure A2) 15.8% 30% 

The total efficiency of solution > 40 boxes (Figure A2) 27% 17.2% 

Customer satisfaction, according to VOC Up 8% Up 8% 

In Appendix A (Figure A1) illustrates the data inputs for the returned objects at a 

specific station aggregated via IoT to be stowed in preferred spaces that achieve the arti-

cle’s objectives. Those who adopt the proposed methodology enhance their e-commerce 

for specific products of many different sizes (i.e., bathtubs). They manage their transpor-

tation system via IoT for seven stations (i.e., aggregate the clients’ demands, extract the 

stowage map to indicate preferred loading locations, exchange the returned products un-

til they reach the next station by minute, and select the oriented products). They empha-

size the superiority of OSM-CA over the competitors discussed in this article by quickly 

creating the visual stowage map, which is considered a helpful guide for the stowage pro-

cess. Figure A2 illustrates the synopsis of the aggregated data of the objects that must be 

loaded and unloaded at different stations on the transportation path for one of the most 

famous companies in Egypt, which is based on data derived from Tables 17–19. Figure A2 

illustrates that the mathematical model loses its efficiency in finding a preferred solution 

with an increase in the number of products that must be stowed in over 200 boxes. Figure 

A3 discusses if the safety boundary between the stowed boxes is urgent or may be ne-

glected. Figures A4 and A5 illustrate the excellence of the ant-colony, which stows nine 

objects out of ten over the camel algorithm, which stows seven objects only, while the 

proposed stows all ten objects, as illustrated in (Figure A6) and (Figure A7). While if the 

number of objects transported increases over 400, the camel algorithm presents a pre-

ferred stowage map, reducing the unused area in the container. Figures A8–A13 discuss 

the contribution of OSM-CA in decreasing the unused stowed area in the containers over 
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their competition, as shown in Table 19. The authors implement the stowing in the poten-

tial containers called drawers as discussed by Ahmed M. Abed et al. (2022) [48,53] with 

two sizes: 80 × 90 and 160 × 180 inches. 

8. The Future Work 

The future work for this research point is developing the IoT to classify the products 

by using the harmony search algorithm according to profitability before creating the stow-

age map at each station and redesigning the best drawer sizes and whole trucks according 

to the companies’ needs via developing the digital twins’ program. 
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Appendix A 

 

Figure A1. Data of the return products of first station on distribution path aggregated via IoT. 
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Figure A2. The efficiency of transportation system on distribution path aggregated via IoT for seven 

stations (n = 7). 

 

Figure A3. Safety distance of the return products when stowage [0: < Y]. 
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Figure A4. The stowage map for nine objects by the ant-colony algorithm optimization for first sta-

tion on the distribution path. 

 

Figure A5. The stowage map for seven objects by the camel algorithm optimization for first station 

on the distribution path. 
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Figure A6. The container utilization by OSM-CA for first station on the distribution path. 

 

Figure A7. The stowage map by proposed algorithm optimization OSM-CA for first station on the 

distribution path. 
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Figure A8. The container utilization by OSM-CA for third station on the distribution path. 

 

Figure A9. The stowage map by proposed algorithm optimization OSM-CA. 
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Figure A10. The container utilization by ant-colony algorithm for third station on the distribution 

path. 

 

Figure A11. The stowage map by ant-colony algorithm for third station on the distribution path. 
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Figure A12. The container utilization by camel algorithm for third station on the distribution path. 

 

Figure A13. The stowage map by camel algorithm for third station on the distribution path. 
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