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Abstract: The recombinant adeno-associated virus (rAAV) is a viral vector technology for gene
therapy that is considered the safest and most effective way to repair single-gene abnormalities in
non-dividing cells. However, improving the viral titer productivity in rAAV production remains
challenging. The first step to this end is to effectively monitor the process state variables (cell density,
GLC, GLN, LAC, AMM, and rAAV viral titer) to improve the control performance for an enhanced
productivity. However, the current approaches to monitoring are expensive, laborious, and time-
consuming. This paper presents an extended Kalman filter (EKF) approach used to monitor the rAAV
production using the online viable cell density measurements and estimating the other state variables
measured at a low frequency. The proposed EKF uses an unstructured mechanistic kinetic model
applicable in the upstream process. Three datasets were used for parameter estimation, calibration,
and testing, and the data were collected from the production of rAAV through a triple-plasmid
transfection of HEK293SF-3F6 cells. Overall, the proposed approach accurately estimated metabolite
concentrations and the rAAV production yield. Therefore, the approach has a high potential to be
extended to an online soft sensor and to be classified as a cost-effective and fast approach to the
monitoring of rAAV production.

Keywords: extended Kalman filter; unstructured mechanistic kinetic model; parameter estimation;
Bayesian inference; neural ordinary differential equation; rAAV production supervision

1. Introduction

In general terms, gene therapy is the introduction of a specific cell function through
the modification of the cellular genetic material of a patient for the treatment of hereditary
or acquired genetic diseases. The effective delivery of genes to the target tissue/cells is
carried out using gene delivery vehicles known as vectors, which remains a critical step
in gene therapy protocols [1,2]. This area has seen several approved treatments based on
viral vectors that vary from vector-based cancer therapies to the treatment of monogenic
disorders with life-long benefits [2,3]. The recombinant adeno-associated virus (rAAV) is a
versatile viral vector technology for gene therapy applications that may be designed for
specific functional interventions. It has proven to be safe and efficient in preclinical and
clinical evaluations because of its unique biological and physicochemical features, and
rAAV may be employed in a wide range of therapeutic applications in various genetic
disorders [1–4]. Although rAAV is one of the most effective vehicles for directly translating
the genomic revolution into medicinal therapies, the manufacturing of rAAV viral vectors
remains challenging [5], limiting the generalization of AAV-based treatments.

One of the technological limitations in upstream processing in rAAV manufacturing
is the low rAAV yield in large-scale production [5]. Low titers and a high variability in
product quality are often the results of an upstream procedure involving an insufficient
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triple-plasmid transfection of suspension-based cell culture [5]. The situation can be im-
proved by following the Food and Drug Administration’s initiative of process analytical
technology (PAT), which requires understanding the process and a timely monitoring of
critical process parameters (CPP) that affect critical quality attributes (CQA) [6]. However,
current techniques for monitoring the rAAV manufacturing in bioreactors are expensive,
laborious, and time-consuming. Sample taking is usually required to measure the CPPs,
such as the cell density and metabolites, and the quantification of the CQAs, such as a
rAAV genome titer using a quantitative Polymerase Chain Reaction (qPCR)/droplet dig-
ital Polymerase Chain Reaction (ddPCR) or a viral capsid titer using an enzyme-linked
immunosorbent assay (ELISA), takes one day to complete [7]. Recently, in situ monitoring
technologies, such as Raman spectroscopy [8,9] and fluorescence spectroscopy [10–12], have
been developed to estimate the cell density and metabolites in mammalian cell cultures in
real-time, but have not been reported as detecting the rAAV titer. Moreover, the setup of a
spectroscopy system is costly in terms of the investment and calibration effort [13]. On the
other hand, one solution is to develop fast and cost-effective real-time process monitoring
technologies through mathematical models of the production [14–16]. Mathematical mod-
eling (MM) is an essential component of process systems engineering (PSE) [17–19] and is
helpful in monitoring through process state estimation [14,17,20]. Estimation algorithms
that rely on the mathematical model can estimate variables that are not directly observable
and can predict meaningful process outputs and attributes that are either not measurable
online or can only be measured at a low sampling frequency [14,17,19].

The mathematical representations of the rAAV production for state estimation and
output prediction can be made with mechanistic kinetic models [21–23]. A mechanistic
kinetic model can be classified as unstructured and structured [14]. An unstructured
model enables the macro-modeling of the functionality of the bioreactor, and it can pro-
vide an insight toward the underlying macro-scale phenomena of the upstream process.
This kind of model can be used to depict the dynamics of the cell density, viability, nu-
trient/metabolite concentrations, and product titer [14], which could be determined by
online applications (where the data are analyzed in a continuous mode and the sensed
variable must be measured more frequently than it can change in the process) and offline
applications (where samples are required to be taken and analyzed in the laboratory after
proper pre-treatments) [18,24]. Narayanan et al. [21,22] and Fernandes-Platzgummer et
al. [23] have used an unstructured model for monoclonal antibody (mAb) production,
which is also based on mammalian cell cultures as rAAV production. It is a good start-
ing point for designing a mechanistic model for rAAV production without considering
the complexity of the triple-plasmid transfection process. On the other hand, structured
mechanistic models are more complex than unstructured ones because they describe details
about the intracellular environment of a homogenous cell population [14]. The structured
model of rAAV production presented by Nguyen et al. [25] is the first proposed model and
is essential for the mechanistic understanding of rAAV production pathways. However,
it is not feasible to be extended as an application of soft sensors in bioreactors because it
describes the kinetic behavior of transient transfection at the subcellular level. It is most
appropriate for cell-line development, where genome-level characteristics of the cells are
altered to achieve certain desired process behaviors.

A simple unstructured mechanistic kinetic model (UMKM) has a low prediction ability,
and it is not enough to process state estimation because it is improbable that a single set
of parameter values enables a kinetic model to satisfactorily for several data sets collected
under distinct operating circumstances [26]. Given this, UMKM is commonly implemented
with the Kalman filter approach [27] to improve the prediction accuracy and generate
predictions in between sampling instances. In various data analysis methods, the Kalman
filter and its non-linear extensions, such as the extended Kalman filter, are powerful tools for
predicting values of the unobserved states. Although there are several applications of the
extended Kalman filter for mAb production [22,28] and other cultivation processes [29,30],
its application to the rAAV production process has not been reported.
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In this research, an extended Kalman filter (EKF) was proposed to supervise the
rAAV production using only online viable cell density (Xv) measurements to estimate the
other process state variables, including glucose (GLC) concentration, glutamine (GLN)
concentration, lactate (LAC) concentration , ammonium (AMM) concentration, and rAAV
viral titers that are measured at a low sampling frequency. The proposed EKF was applied
to the cell expansion phase (CEP) and viral vector production phase (VVPP) of the upstream
process using a UMKM based on mass balances (only dependent on Xv measurements)
as a process model. Three datasets were used in the development of the proposed EKF,
and the data were collected from the production of rAAV by a triple-plasmid transfection
of HEK293SF-3F6 cells in three different environments: the shake-flasks dataset (offline
data), bioreactor 1 dataset (offline data), and bioreactor 2 dataset (online and offline data).
The parameters used in the UMKM were estimated with a neural ordinary differential
equation and Bayesian inference approaches using the bioreactor 1 dataset. Furthermore,
they were also estimated during the execution of EKF using the joint estimation method,
and the EKF parameters were obtained from the shake-flasks and bioreactor 1 datasets.
Our approach was evaluated with the bioreactor 1 and 2 datasets, and we showed that
the proposed approach can only use the online Xv measurements and estimate the GLC,
LAC, and rAAV viral titer effectively. The proposed approach is the first EKF approach
developed to monitor rAAV production, and it uses only one device as opposed to the
current approaches, which require multiple assays/devices. Our results indicate that the
proposed EKF has the potential to be generalized and extended to an online soft-sensor,
and to be classified as a cost-effective and rapid approach to monitoring rAAV production.

2. Materials and Methods

This section will describe the proposed EKF and the datasets used for calibration
and testing.

2.1. Unstructured Mechanistic Kinetic Model Formulation for rAAV Production

The upstream rAAV manufacturing process has four phases: (i) plasmid development,
(ii) cell expansion phase, (iii) plasmid transfection, and (iv) viral vector production phase [5].
Our UMKM was designed to apply to the second and fourth phases in a situation that does
not have nutrition limitations. The system of ordinary differential equations that compose
the proposed unstructured mechanistic model representing the cell culture was established
based on mass balances commonly used for monoclonal antibody production [21–23]. This
strategy was used because both monoclonal antibody production and rAAV production
are based on mammalian cell cultures [31,32], and unstructured mechanistic models have
been widely employed in monoclonal antibody production using Chinese hamster ovary
(CHO) cells to optimize their biomanufacturing [31,33,34].

The system of ordinary differential equations representing the HEK293 cell culture
in the cell expansion and viral vector production phases was established based on mass
balance Equations (1)–(6) as follows:

dXV(t)
dt

= µXv XV(t) (1)

dGlc(t)
dt

= −µGlcXV(t) (2)

dGln(t)
dt

= −µGlnXV(t) (3)

dLac(t)
dt

= µLacXV(t) (4)

dAmm(t)
dt

= µAmmXV(t) + kdegGln(t) (5)

dAAV(t)
dt

= µAAV XV(t) (6)
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Because the complete metabolic pathway and rAAV production mechanism are un-
known, a simplified mass-balance equation system was applied with all variables depend-
ing on viable cell (Xv) measurements. This system represents the cell growth, uptake
of substrates, metabolism, and production process with six parameters: the specific cell
growth rate (µXv ), the specific rates of uptake (consumption) of the main nutrients, glucose
(µGlc) and glutamine (µGln), the specific rates of production of the metabolite waste, lactate
(µLac) and ammonium (µAmm), and specific rate of production of rAAV (µAAV). In the case
of ammonium production, the specific rates must consider the spontaneous glutamine
degradation in the medium into ammonium [23,35]. This process follows first-order rate ki-
netics concerning glutamine concentration, kdeg being the glutamine degradation constant.
Equation (6) enables us to estimate the concentration of viral titer as cell product (quan-
tified as genome copies), where the parameter µAAV represents the specific rate of rAAV
production. The proposed UMKM has two phases. When applied to the cell expansion
phase, we considered AAV(t) = 0 and µAAV = 0, since there is no production of rAAV in this
phase. In VVPP, the AAV(t) and µAAV are different from zero. All parameters used in this
work were estimated using EKF and the approaches described in Sections 2.3.1 and 2.3.2.

2.2. Extended Kalman Filter

The EKF requires a state–space model to perform estimation on the state variables of a
process, such as the rAAV production [26,36,37]. A state-space model consists of process
and measurement (observation) models [38]. The process model describes the states of the
process, including observed and unobserved state variables, and the measurement model
describes the relation between the observed variables and the unobserved state variables.

The proposed UMKM (Section 2.1) was used as the process model of EKF, whose pur-
pose is to deal with the non-linear process and measurement models by using linearization
based on the first-order Taylor series expansion [26,29]. The EKF can use offline or online
measurements of Xv to estimate UMKM state variables value (Xv, GLC, LAC, AMM, and
rAAV viral titer) concentrations, as well as UMKMparameters(µXv , µGlc, µGln, µLac, µAmm, kdeg
and µAAV); see Figure 1. The state variables vector to be used by the EKF is composed of
the state variables of the UMKM (observed and unobserved) and its parameters. It is called
the joint state and parameter estimation method via EKF [28–30,37], and the state variables
vector is defined as:

ψ(t) = [Xv, GLC, GLN, LAC, AMM, AAV, µXv , µGlc, µGln, µLac, µAmm, kdeg, µAAV ]
T . (7)

Subsequently, the process model is represented as

dψ(t)
dt

= φ(ψ(t), t) + ω(t), (8)

d
dt



XV
Glc
Gln
Lac

Amm
AAV
µXv

µGlc
µGln
µLac

µAmm
kdeg

µAAV



=



µXv XV
−µGlcXV
−µGlnXV
µLacXV

µAmmXV + kdegGln
µAAV XV

0
0
0
0
0
0
0



+ ω(t) (9)
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where φ denotes non-linear functions of the state variables in ψ(t), which corresponds
to the proposed UMKM. The UMKM parameters in process model were considered time-
dependent and were estimated by adding these parameters as an additional state variable
whose differential equation is equal to zero. This procedure that estimates the UMKM
parameters was used in [28–30]. The process model is formulated in a continuous time t
and the white process noise vector is represented by ω ∼ N (0, Q), with zero mean and
error covariance matrix of process model represented by Q.

The measurement model is defined as

Zk = H1ψ(tk) + v, (10)

where the matrix H1 is a linear operator that matches the states variables of ψ(tk) to
the measured variables Zk that are obtained at a discrete instance k in a similar way as
carried out in [28] and in code available in [29]. In our context, H1 brings only the state
variable Xv into the measurement space because only this state variable is measured. The
white measurement noise vector is represented by v ∼ N (0, R), with zero mean and
measurement noise variance represented by R, since just Xv is measured.

Another important component of EKF process is the state error covariance matrix
(P), which contains the error covariance of the predicted state variables values. P can be
formulated using linear terms of a Taylor expansion in the continuous-time domain by the
following differential equation:

dP
dt

= J(t)P(t) + P(t)J(t)T + Q (11)

J(t) =
∂φ(ψ(t), t)

∂ψi

∣∣∣∣
ψ=ψ̂(t)

(12)

where J is the Jacobian matrix.
The EKF algorithm was implemented through the prediction step (time update) and

correction step (measurement update) [28–30,36,37].
Prediction step: Using the initial condition, the predicted state variables vector

(ψk/k−1) and predicted error covariance matrix of state (Pk|k−1) were estimated by solving
9 and 11 from tk−1 to tk, where a new measurement is obtained at time k. It is noteworthy
that the initial conditions in the prediction step are initial estimation error covariance matrix
of state Pi,i(t = 0), and initial state variables vector ψ(t = 0) (composed of state variables
and parameters of UMKM).

Correction step: In this step, the estimates of the prediction step (ψk/k−1 and Pk|k−1)
were combined with the measured value (Zk) and Kalman gain (Kk) to provide corrected
state variables vector (ψk/k) and corrected error covariance matrix of state (Pk|k) using the
following equations:

Kk = Pk|k−1HT
2 (H2Pk|k−1HT

2 + R)−1 (13)

ψk/k = ψk/k−1 + Kk(Zk −H1ψk/k−1) (14)

Pk|k = (I−KkH2)Pk|k−1 (15)

The discrepancy between the true measurements Zk and the predicted measurement
H1ψk/k−1 (that correspond to Xv) was multiplied by the Kalman gain and used to update
all predicted state variables in ψk/k−1. The matrix H2 is a second linear operator that
enables P and K to be updated with information about the UMKM parameters, since we
used a simple UMKM, and P and Q with uncorrelated elements. As we wanted to estimate
the other state variables and the parameters from the Xv measurements available in discrete
time, the H2 used in our case was H2 = diag([1 0 0 0 0 0 1 1 1 1 1 1 0]) in cell expansion
phase and H2 = diag([1 0 0 0 0 0 1 1 1 1 1 1 1]) in the viral vector production phase. H1=
diag([1 0 0 0 0 0 0 0 0 0 0 0 0]) was used in both phases since we only had Xv measurements.
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Using the corrected state variables vector (ψk/k) and corrected error covariance matrix
of state (Pk|k) as initial condition, we could return to the prediction step until the next
measurement was obtained and everything repeated again. In addition, the parameters
values used in the UMKM and the extended Kalman filter are described in Section 2.5 and
in Table 1.
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Figure 1. EKF for rAAV production monitoring—the EKF performs a continuous estimation of
UMKM state variables and parameters. The proposed EKF can use offline (b,c) and online (g) mea-
surements of Xv collected from a bioreactor (a). The Xv measurements (the only measured state
variable) are inputs (d) of EKF (e), which uses them to estimate the other state variables during rAAV
production (f).

Table 1. Datasets used in EKF development.

Shake-Flask Dataset
(Runs 1, 2 and 3) Bioreactor 1 Dataset Bioreactor 2 Dataset Bioreactor 2 Dataset

Offline Measurements Offline Measurements Offline Measurements Online Measurements

Xv Xv|GLC|GLN|LAC|
AMM|AAV

Xv (CEP) and
GLC|LAC|AAV

(VVPP)
Xv (CEP and VVPP)

UMKM Parameters
Estimation (µXv , µGlc,
µGln, µLac, µAmm, kdeg,

µAAV)

- X - -

Initial Estimation Error
(IEE) covariance matrix

of states (Pi,i)
- X - -

Error covariance matrix
of process model (Qi,i)

- X - -

Measurement noise
variance R X - - -

EKF Calibration - X - -
EKF Test - - X X

2.3. ODE Parameter Estimation Approaches

The parameter estimation of a system of ODEs is a problem that necessitates finding
the solution to a dynamic optimization problem, which is a non-convex problem that
generally demands global optimization methods [39]. In this work, we used neural ordinary
differential equation (NODE) and Bayesian inference approaches to estimate the parameters
of the proposed UMKM. The main reason is to increase the robustness of results because
findings can be strengthened when different methods generate results that converge and are
found to be congruent. Consequently, this can increase confidence regarding the findings.
NODE is a method used for learning time-continuous dynamics from data in the form
of a system of ordinary differential equations. It is a particularly promising approach
for learning latent dynamics of dynamical systems. NODE naturally fits well as a latent
dynamics model in reduced-order modeling of physical processes because it learns the
latent dynamics in the form of ODEs [40]. Furthermore, NODE is flexible in learning from
irregularly sampled time-series data [40–43]. Including ODE in NODE enables optimizing
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and obtaining the point estimates for the best parameters of ODE. However, data have noise,
and we need to generate a fit with some uncertainty, which is necessary for uncertainty
quantification [44,45]. This can be carried out with Bayesian inference because it enables
parameter estimation with quantified uncertainty, which can be represented by mean
± Standard Deviation (StD). It is noteworthy that the UMKM parameters estimated by
Bayesian inference are used as initial UMKM parameters in the state variables vector of EKF
to be updated during the process using the joint state and parameter estimation method
described in Section 2.2.

2.3.1. Neural Ordinary Differential Equation

NODE is a family of neural network models in which one or some hidden layers are
implemented with an ordinary differential equation solver. In NODEs, the forward and
backward propagation rely on solving an ODE and its adjoint equation [41–43]. Therefore,
a neural network able to approximate the ordinary differential equation of the dynam-
ical system is called a NODE [46]. It models the dynamics of the hidden feature state
h(t) ∈ RN using an ODE that is parametrized by a derivative model (neural network)
f (h(t), t, θ) ∈ RN with learnable parameters θ = [µXv , µGlc, µGln, µLac, µAmm, kdeg, µAAV ]
as follows:

dh(t)
dt

= f (h(t), t, θ). (16)

Therefore, NODEs are composed of a derivative model f (h(t), t, θ) used to compute
the dynamics of hidden layer at a given time t ∈ [t0, tn], a set of parameter θ, and a time
interval, [t0, tn], in order to evaluate them. NODEs obtain the solution of ODE,

h(tn) = [XV(tn), Glc(tn), Gln(tn), Lac(tn), Amm(tn), AAV(tn)]
T , (17)

by integrating the derivative model over the time span as follows:

h(tn) = h(t0) +
∫ tn

t0

f (h(t), t, θ)dt, (18)

Then, using a black-box numerical ODE solver, we obtained

h(tn) = ODESolve(h(t0), f , θ(t), t0, tn) (19)

where h(t0) represents the initial condition of system of ODE. The ultimate objective is for
h(t) to get as close to the desired observed data yobs(t) (discrete measurements) as possible:

yobs(t) = [XVobs(t), Glcobs(t), Glnobs(t), Lacobs(t), Ammobs(t), AAVobs(t)]T . (20)

Thus, a loss function is needed to assess the performance of NODEs at each iteration.
In this work, we included the system of ODE in a single-layer neural network that takes the pa-
rameters θ and returns the solution of the state variables XV(t), Glc(t), Gln(t), Lac(t), Amm(t)
and AAV(t). Then, using the mean square error loss function defined as
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L(µXv , µGlc, µGln, µLac, µAmm, kdeg, µAAV) =

‖ log(h(t))− log(yobs(t)) ‖2=

‖ log(XVh(t))− log(XVobs(t)) ‖2

+ ‖ log(Glch(t))− log(Glcobs(t)) ‖2

+ ‖ log(Glnh(t))− log(Glnobs(t)) ‖2

+ ‖ log(Lach(t))− log(Lacobs(t)) ‖2

+ ‖ log(Ammh(t))− log(Ammobs(t)) ‖2

+ ‖ log(AAVh(t))− log(AAVobs(t)) ‖2,

(21)

We trained the NODE to arrive at optimal parameters that make the solution of
ODE system near to observed values of the train set (bioreactor 1 dataset). Minimization
was carried out through local adjoint sensitivity analysis following a similar procedure
outlined in [41] and implemented using the adaptive differential evolution optimizer with
2500 iterations and with the strategy rand/1/bin with radius limited sampling (the word
“rand” indicates that the individuals selected to compute the mutation values are chosen at
random, “1” is the number of pairs of individuals chosen, and, finally, “bin” means that a
binomial crossover is used) [47,48].

2.3.2. Bayesian Inference Parameters Estimation

Bayesian inference provides a robust approach toward parameter estimation with
quantified uncertainty using a posterior distribution. In the Bayesian framework, beliefs
about a parameter are described by a posterior distribution:

p(θ|yobs) ∝ p(yobs|θ)p(θ). (22)

The posterior distribution, Equation (22), is a probability distribution for model pa-
rameter values, θ = [µXv , µGlc, µGln, µLac, µAmm, kdeg, µAAV ] (unknown parameters), con-
ditioned on observational data yobs. It is proportional to the likelihood, p(yobs|θ), times
the prior, p(θ) [44,45]. Equation (22) allows us to learn model parameters from data by
incorporating prior knowledge with likelihood and sampling model parameters from the
corresponding posterior distribution. Markov chain Monte Carlo (MCMC) methods were
used to generate a sufficient quantity of samples from the posterior distribution, such that
the properties of the posterior distribution can be estimated through the generated samples.
In our case, the observed data used to estimated the parameters came from bioreactor
1 dataset, (yobs = DatasetBioreactor1), and the likelihood is the ODE solver with probabilistic
parameters θ, defined as

p(yobs|θ) = ODESolve(h(t0), f , θ(t), t0, tn). (23)

Aiming to find the distributions of the parameters p(θ|yobs) to obtain their mean and
StD, the No-U-Turn-Sampler (NUTS) was used [44,45]. It is an extension of the Hamiltonian
Monte Carlo (HMC) algorithm, which is MCMC method. In the NUTS algorithm, we
used 2000 iterations to run it and a target acceptance rate of 0.65. In this work, we used
Turing, Distributions, and DifferentialEquations.jl Julia packages to solve and estimate the
parameters of the metabolic equations [45].
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2.4. Datasets
2.4.1. Data Description

The data were collected from the production of rAAV through triple-plasmid transfec-
tion of HEK293SF-3F6 cells (National Research Council Canada, Montreal, QC, Canada)
in three shake-flasks and two bioreactors. In the shake-flasks experiments, rAAV6 vectors
were produced, whereas, in the first bioreactor, rAAV9 vectors were produced, and in the
second bioreactor, rAAV6 vectors were produced. The triple-plasmid transfections were
completed following the methods previously described in the literature [49].

2.4.2. Shake-Flasks Dataset

Three 250 mL samples of cells culture with starting viable cell density between
0.58–0.73 × 106 cells/mL in HycellTM TransFxTM medium added with 6 mM of L-glutamine
(Cytiva Life Sciences, Chicago, IL, USA) were cultured in shake-flasks. The cells were in-
cubated at 37 °C, 5% CO2 in a shaker incubator (Infors, Basel, Switzerland) at 120 rpm
agitation rate and transfected at 36 h post inoculation (hpi) with the viable cell density at
around 1× 106 cells/mL for all runs. The shake-flasks were harvested at 84 hpi (48 h post
transfection). Samples were taken every 12 h until harvest.

2.4.3. Bioreactor 1 Dataset

The bioreactor production was carried out in a 3 L bioreactor with a 2.7 L working
volume controlled by a my-Control controller (Applikon Biotechnology, Delft, the Nether-
lands). The dissolved oxygen was maintained above 40% by the oxygen supply PID control
loop at a stirring rate of 90 RPM. The pH was maintained at 7.2 by CO2 overlay and sodium
bicarbonate addition PID control loop. The temperature was maintained at 37 °C using a
heating jacket. Cells were inoculated into a bioreactor with an initial viable cell density
of 0.36 × 106 cells/mL in the same medium as the shake-flasks experiment. The cells
were transfected at 57 hpi with viable cell density at 1.27× 106 cells/mL. The bioreactor
was harvested at 114 hpi (61 hpt). Samples were taken approximately every 24 h before
transfection and approximately 12 h after transfection until harvest.

2.4.4. Bioreactor 2 Dataset

Bioreactor 2 was cultivated under same setup as bioreactor 1. Cells were inoculated
with initial viable cell density of 0.27 × 106 cells/mL in the same medium. The cells were
transfected at 53 hpi with viable cell density at 1.03 × 106 cells/mL. The bioreactor was
harvested at 102 hpi (49 hpt). Samples were taken approximately every 24 h.

2.4.5. Current Approach: Quantitative Analysis

Figure 2 shows the quantitative analysis performed using current approaches that
allow for the rAAV production monitoring. The online viable cell density of bioreactor 2
was monitored by a capacitance probe (FUTURA ABER, Aberystwyth, UK) at a recording
interval of 1 min. The probe reading was zeroed in pure medium and calibrated at a cell
density of 1 × 106 cells/mL. Offline viable cell density and metabolites were measured
with Vi-Cell XR cell counter (Beckman Coulter, Brea, CA, USA) and Bioprofile® FLEX2
metabolite analyzer (NOVA Biomedical, Waltham, MA, USA), respectively, right after the
sample was taken. Offline samples for vector genome (vg) copies quantification by ddPCR
were frozen at -80 degrees after being taken. On the day of quantification, the sample was
thawed and harvested before viral DNA extraction with a High Pure Viral DNA Extraction
kit (Roche Diagnostics, Risch-Rotkreuz, Switzerland). The harvest and ddPCR were carried
out following the methods in the literature [49].

It is noteworthy that the offline quantification of Xv, GLC, GLN, LAC, and AMM takes
around 30 min to obtain one set of data point at specific time t. However, the quantification
of viral titer in rAAV production was carried out only at the end of production. After the
production was completed, the samples collected were used to quantify the viral titer and
the ddPCR, which took 1 day to complete the process.
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Figure 2. Current approach used for rAAV production monitoring - Offline and Online quantitative
analysis. (a) The rAAV production was performed in Shake-Flaskes and Bioreactors. The offline
measurements (b and c) were performed with the samples collected from these two environments
and quantified in three different devices. Quantified state variables are Xv, Glc, Gln, Lac, Amm, and
rAAV viral titer (d). The Online measurement of Xv was performed in the bioreactor 2 (e). The offline
quantification of Xv, GLC, GLN, LAC and AMM takes around 30 minutes for one set of data point,
and the quantification of viral titer in rAAV production is done only at the end of production.

Figure 2. Current approach used for rAAV production monitoring: offline and online quantitative
analysis. (a) The rAAV production was performed in shake-flasks and bioreactors. The offline
measurements (b,c) were performed with the samples collected from these two environments and
quantified in three different devices. Quantified state variables are Xv, Glc, Gln, Lac, Amm, and
rAAV viral titer (d). The online measurement of Xv was performed in bioreactor 2 (e). The offline
quantification of Xv, GLC, GLN, LAC, and AMM takes around 30 min for one set of data point, and
the quantification of viral titer in rAAV production is carried out only at the end of production.

2.5. Parameters of the UMKM and the Extended Kalman Filter

The datasets used to obtain the UMKM parameters (µXv , µGlc, µGln, µLac, µAmm, kdeg,
µAAV) and the EKF parameters (R, P, and Q) are presented in Table 1. We estimated the
parameters of the UMKM for the cell expansion and viral vector production phases with
two different approaches, NODE and Bayesian inference, using the bioreactor 1 dataset,
and the results of these approaches are discussed in Section 3.1.

The UMKM parameters were also estimated by the EKF during its execution (using
the joint estimation method). This is important because this can enable the EKF to better
estimate the state variables in different datasets. However, to this end, the EKF parameters
should be well defined. The initial estimation error (IEE) covariance matrix of states (Pi,i)
and error covariance matrix of process model (Qi,i) (parameters of EKF) were assumed
constant and uncorrelated. This means that these covariance matrices are constant and
diagonal, and the diagonal elements are noise variances. These simplification assumptions
are common due to the limited data [28–30]. The IEE covariance matrix (Pi,i) was assumed
diagonal with zero variances for all UMKM metabolic states variables (Xv, GLC, LAC,
AMM, and rAAV viral titer), since actual data were used for the initial point. However,
the Pi,i values regarding the UMKM parameters (µXv ,µGlc,µGln,µLac,µAmm,kdeg,µAAV) were
obtained in the calibration of EKF (Sections 2.6.1 and 3.2). The diagonal values of the
Qi,i regarding the UMKM parameters were obtained similarly (Sections 2.6.1 and 3.2);
however, the values regarding all metabolic states were considered different from zero but
lower than the measurement noise variance (R) that was obtained from the variance of
Xv measurements in the shake-flask dataset regards three runs, see Table 1. Please note
that R represents only the variance of Xv, since only Xv is measured, and is therefore
one-dimensional.
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2.6. Evaluation

The evaluation aims to check the potential of the proposed EKF to estimate the
state variables of rAAV production using only the Xv measurements. Therefore, the
main result of the evaluation comes from the EKF test using a realistic scenario where
online measurement of Xv must be used to estimate the other state variables of rAAV
manufacturing in CEP and VVPP. It is essential to point out that the EKF test depends
on the UMKM parameters estimated by the Bayesian inference to be used as the initial
condition in the state variables vector ψ(t = 0), and on the calibration of EKF to obtain
Pi,i(t = 0) and Qi,i.

2.6.1. Calibration Using Offline Values

Model calibration is the process of identifying a set of optimal model parameters
that accurately describe the behavior of a system. It is accomplished by comparing model
predictions to reference data taken on the system [50]. It can be carried out manually using
parameter adjustments when we have a start point near the optimal model parameters [51].
In this work, the EKF calibration aimed to identify the final values for the parameters
Pi,i(t = 0) and Qi,i regarding the (µXv , µGlc, µGln, µLac, µAmm, kdeg, µAAV) that enables EKF
to use the measurement of Xv and estimate the other state variables. The reference data
used in the calibration were the observed data from the bioreactor 1 dataset. Furthermore,
the initial observed data from the bioreactor 1 dataset were used as the initial conditions
of the state variable vector, see Table 2. This dataset has only offline measurements of
all-state variables; see Table 1. The calibration was performed manually, considering the
variance computed from the standard deviation (StD) obtained by Bayesian inference to
estimate UMKM parameters (Section 3.1) as the start point near the optimal EKF parameters
(Pi,i(t = 0) and Qi,i). It is a challenging task to properly estimate Pi,i(t = 0) and Qi,i due
to the limited amount of data. Therefore, these manual calibration and simplification
assumptions were made to estimate these errors. Furthermore, we evaluated the calibration
obtained by comparing the prediction of UMKM (with estimated parameters by Bayesian
inference) and EKF. The root means square error (RMSE) was used as a metric to assess the
similarity between their predictions and the observed values of offline measurements of
the bioreactor 1 dataset.

Table 2. Initial conditions of state variables in CEP and VVPP for the EKF calibration using bioreactor
1 dataset.

State Variables Name Value in CEP Value in VVPP 1

Xv Viable cells 0.36 × 106 c/mL 1.27 × 106 c/mL
GLC Glucose 32.19 mM 24.1 mM
GLN Glutamine 5.03 mM 3.54 mM
LAC Lactate 0.111 mM 7.88 mM

AMM Ammonium 0.33 mM 1.46 mM
AAV AAV viral titer 0 VG/mL 0 VG/mL

1 The VVPP values are different from CEP values because they are different phases of upstream process.

2.6.2. EKF Test

The goal of the EKF test is to assess the performance of the proposed EKF in estimating
the rAAV production states from online measurements of Xv in VVPP. Estimates close to
the reference data (observed data) represent a good performance of the EKF and indicate
that the proposed EKF can reduce the demand for the offline analysis required by the
current approaches for monitoring rAAV production. The EKF test uses the final set of
parameters Pi,i(t = 0) and Qi,i obtained in the calibration (as well as the R), and an initial
state variables vector ψ(t = 0) composed of UMKM parameters estimated by Bayesian
inference. The EKF test was performed with the bioreactor 2 dataset with four key process
parameters: online measurements of Xv and offline measurements of GLC, LAC, and
rAAV (where the sampling frequency is approximately every 24 h); see Table 1. The
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online measurements were input into the proposed EKF to estimate the state variables,
and the offline measurements were used as reference data to assess the EKF estimation. It
is important to point out that the initial condition of UMKM state variables in CEP that
compose the initial state variables vector ψ(t = 0) came from the bioreactor 2 dataset,
but the final concentration of state variables estimated by EKF in CEP was considered as
the initial concentration of UMKM state variables in VVPP that compose the initial state
variables vector ψ(t = 0) in that phase. Furthermore, the EKF was applied in a different
dataset that was used to estimate UMKM parameters (bioreactor 1 dataset). Here, different
from the calibration, it was not expected that UMKM could predict the bioreactor 2 dataset
well with the parameters estimated from the bioreactor 1 dataset during the entire process.
On the other hand, the EKF was expected to outperform the UMKM when estimating
the state variables related to the bioreactor 2 dataset because it can update the UMKM
parameters during the execution. The RMSE was also used as a metric to evaluate the
similarity of EKF estimation and the offline measurements of the bioreactor 2 dataset.

3. Results

The results of this work are presented in the following sequence: parameter estimation,
calibration, and the testing of EKF. This sequence was chosen because, in order to perform
the EKF test, it is necessary to use the results of the Bayesian parameter estimation for
UMKM and the calibration of EKF.

3.1. UMKM Parameter Estimation with NODE and Bayesian Inference

The loss functions in the training processes of NODE with regard to UMKM converged
to a minimum before 2000 iterations in CEP, and 1500 iterations in VVPP; see Figure S1. The
chains obtained with the NUTS sampler in Bayesian inference were sufficiently converged.
This was verified with the auto-correlation function (ACF) plot. It is a valuable diagnos-
tic for assessing the chain mixing rate. Figures S2 and S3 show the marginal posterior
distributions for the parameters of UMKM in CEP and VVPP and the respective ACF
plots. The ACF values quickly dropped to zero, indicating the good quality of the mixing
obtained with the NUT sampler. Furthermore, the parameters estimated with the NODE
and Bayesian approaches showed a high similarity with the parameter values estimated
by the NODE approach within the range of the variation (mean ± StD) estimated by the
Bayesian approach; see Table 3. It is noteworthy that Bayesian inference results were used
as an initial condition in the state variables vector ψ(t = 0) (columns 4 and 6 of Table 3),
and in the calibration of EKF, to obtain Pi,i(t = 0) and Qi,i (columns 5 and 7 of Table 3).

Table 3. Estimated parameters for the UMKM in cell expansion phase (CEP) and viral vector
production phase (VVPP) by NODE and Bayesian inference.

NODE Bayesian
Inference

Parameter CEP VVPP CEP (Mean) CEP (StD) VVPP (Mean) VVPP (StD)

µXv (h−1) 0.0295 0.0068 0.0299 0.0004 0.0065 0.0003
µGLC (mmol 10−6c h−1) 0.1850 0.0955 0.1895 0.0028 0.0973 0.0050
µGLN (mmol 10−6c h−1) 0.0329 0.0172 0.0350 0.0030 0.0213 0.0031
µLAC (mmol 10−6c h−1) 0.2500 0.0243 0.2544 0.0045 0.0214 0.0031
µAMM (mmol 10−6c h−1) 10−5 0.0001 0.0001 0.0001 0.0001 2.9 × 10−5

kdeg (h−1) 0.0050 0.0022 0.0049 0.0001 0.0020 0.0003
µAAV (109 vg/mL h 106c) 0 0.0622 0 0 0.0644 0.0027

3.2. EKF Calibration

Figure 3 presents the results of the calibration of EKF regarding the cell expansion
phase. In this case, the offline measurements of Xv (plot A) from the bioreactor 1 dataset do
not have measurements that can be considered as outliers, and the EKF estimation followed
the offline observed data and estimation of UMKM. The offline measurements of the other
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state variables have a small amount of noise, but they are not considered outliers; see the
red points in Figure 3 , plots B, C, D, and E. The plots show that the proposed EKF performs
similarly to UMKM in estimating the state variables in CEP, which is confirmed by the
similar RMSE values of the proposed EKF and UMKM estimations regarding the offline
measurements of the bioreactor 1 dataset; see Table 4. In addition, the UMKM parameters
(µXv , µGlc, µGln, µLac, µAmm, kdeg, µAAV) estimated by EKF during the process do not present
a significant discrepancy from the parameters estimated by Bayesian inference using the
bioreactor 1 dataset. This result was expected, since the parameters estimated by Bayesian
inference were used as initial UMKM parameters by EKF, and these parameters enabled
the process model of EKF (UMKM) to perform estimation near the observed data of the
bioreactor 1 dataset. In plot F, Figure 3, we can see that the parameters do not change
significantly during the EKF process. The final values of Pi,i(t = 0) and Qi,i (as well as R)
used in the calibration of EKF in CEP are presented in the Tables 5 and 6, and the initial
condition of state variables vector ψ(t = 0) was composed of values of column 3 of Table 2
(state variables) and column 4 of Table 3 (mean of UMKM parameters obtained by Bayesian
inference in CEP).

Table 4. RMSE values of the EKF and UMKM estimations regards bioreactor 1 dataset in the calibration.

EKF EKF UMKM UMKM
State

Variables Name RMSE Value
in CEP

RMSE Value
in VVPP

RMSE Value
in CEP

RMSE Value
in VVPP

Xv Viable cells 0.009 0.235 0.027 0.258
GLC Glucose 0.425 1.529 0.456 1.47
GLN Glutamine 0.076 0.367 0.085 0.363
LAC Lactate 1.021 0.655 1.082 0.635

AMM Ammonium 0.014 0.123 0.015 0.12

AAV AAV viral
titer - 0.722 - 0.819

Table 5. Initial estimation error (IEE) covariance matrix Pi,i for EKF.

Parameter Name Value in CEP Value in VVPP

P1,1 (c2/mL2) Viable cells IEE 0.00 0.00
P2,2 (mM2) Glucose IEE 0.00 0.00
P3,3 (mM2) Glutamine IEE 0.00 0.00
P4,4 (mM2) Lactate IEE 0.00 0.00
P5,5 (mM2) Ammonium IEE 0.00 0.00

P6,6 (VG2/mL2) AAV viral titer IEE 0.00 0.00
P7,7 (h−2) µXv IEE 1.71 × 10−6 7.92 × 10−7

P8,8 (mmol 10−12c h−2) µGLC IEE 1.53 × 10−6 2.56 × 10−5

P9,9 (mmol 10−12c h−2) µGLN IEE 1.81 × 10−6 1.05 × 10−5

P10,10 (mmol 10−12c h−2) µLAC IEE 2.55 × 10−5 9.59 × 10−6

P11,11 (mmol 10−12c h−2) µAMM IEE 2.97 × 10−9 6.71 × 10−10

P12,12 (h−2) kdeg IEE 3.37 × 10−9 8.71 × 10−8

P13,13 ( vg2/mL2 h2 1012c) µAAV IEE 0 4.30 × 10−6
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Table 6. Measurement noise variance R and error covariance matrix of process model Qi,i for the EKF.

Parameter Name Value in CEP Value in VVPP

R (c2/mL2) Viable cells MNV 1 0.006 0.006
Q1,1 (c2/mL2) Viable cells PNV 2 0.0006 0.000006

Q2,2 (mM2) Glucose PNV 0.0006 0.0006
Q3,3 mM2 Glutamine PNV 0.0006 0.0006

Q4,4 (mM2) Lactate PNV 0.0006 0.0006
Q5,5 (mM2) Ammonium PNV 0.0006 0.0006

Q6,6 (VG2/mL2) AAV viral titer PNV 0.0006 0.0006
Q7,7 (h−2) µXv PNV 1.71 × 10−7 7.92 × 10−8

Q8,8 (mmol 10−12c h−2) µGLC PNV 1.53 × 10−5 1.16 × 10−5

Q9,9 (mmol 10−12c h−2) µGLN PNV 1.81 × 10−5 1.05 × 10−5

Q10,10 (mmol 10−12c h−2) µLAC PNV 2.55 × 10−4 15.59 × 10−6

Q11,11 (mmol 10−12c h−2) µAMM PNV 2.97 × 10−9 0.11 × 10−8

Q12,12 (h−2) kdeg PNV 3.37 × 10−9 0.71 × 10−8

Q13,13 (vg2/mL2 h2 1012c) µAAV PNV 0 15.30 × 10−6

1 MNV—measurement noise value; 2 PNV—process noise value.

Figure 4 presents the results of the calibration of EKF in the viral vector production
phase. In this case, the offline measurement set of Xv (plot A) from the bioreactor 1 dataset
has a measurement that can be considered as an outlier (second red point in plot A), but
the EKF was able to estimate a value close to the real dynamic of Xv. With regard to the
other state variables, the predictions of EKF and UMKM were similar, and the RMSE values
computed between the EKF and UMKM prediction using the offline measurements of the
bioreactor 1 dataset confirm this; see Table 4. The RMSE values obtained are very similar.
Furthermore, in the same way, as observed in the CEP, the final parameters estimated
by EKF do not significantly differ from those estimated by Bayesian inference. Some
parameters decreased their values during the process due to the influence of an outlier
in Xv, but they returned to values close to the initial parameters; see Figure 3 plot G. The
values of Pi,i(t = 0) and Qi,i (as well as R) used in the calibration of EKF in VVPP are
presented in Tables 5 and 6, and the initial condition of state variables vector ψ(t = 0) was
composed of values of column 4 of Table 2 (state variables) and column 6 of Table 3 (the
mean of UMKM parameters obtained by Bayesian inference in VVPP).
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Figure 3. EKF calibration in CEP with bioreactor 1 dataset: the UMKM predictions were performed
with parameters (µXv , µGlc, µGln, µLac, µAmm, kdeg, and µAAV) estimated by Bayesian inference (red
lines in plots (A–E)), and EKF estimation (blue lines in plots (A–E)) was performed using these
UMKM parameters as initial parameters, and were updated during the process. However, the
final UMKM parameters found by EKF are not very different from those used as initial parameters
obtained by Bayesian inference; see plot (F). The EKF and UMKM estimations were very similar.

Figure 4. EKF calibration in VVPP with bioreactor 1 dataset: the UMKM predictions were performed
with parameters (µXv , µGlc, µGln, µLac, µAmm, kdeg, and µAAV) estimated by Bayesian inference (red
lines in plots (A–F)). EKF predictions (blue lines in plots (A–F)) were performed using the parameters
estimated by Bayesian inference as initial UMKM parameters since they were updated during the
process. However, despite some fluctuations, the final parameters found are not very different from
those used as initial parameters; see plot (G). The EKF was able to use the Xv measurement (with an
outlier) and, similar to UMKM, estimate GLC, LAC, AMM, and rAAV.
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3.3. EKF Test

The first step in the EKF test was to estimate the state variables of CEP because we
consider the final values estimated in CEP as the initial conditions of state variables that
compose ψ(t = 0) to be used by EKF in VVPP. The EKF test was performed with the same
EKF parameters (Pi,i(t = 0), Qi,i, and R) used in the calibration process (Tables 5 and 6).
However, the initial condition of state variables vector ψ(t = 0) in CEP was composed of
state variables of the bioreactor 2 dataset (column 3 of Table 7) and the values of Bayesian
UMKM parameters estimation (column 4 of Table 3). Figure 5 presents the results of EKF
estimations in CEP. Plot A shows the online Xv measurements with noise (orange line) and
EKF estimations following the exponential behavior of Xv (blue line). Plots B, C, D, and
E present the final estimated values (last column of Table 7). The parameters estimation
(plot F) presented the same behavior obtained by the calibration. It did not present the final
values as being significantly different from the initial parameters. This is because the initial
conditions of UMKM state variables in bioreactor 1 and 2 datasets are the same in CEP.

Table 7. Initial conditions of state variables for the EKF test with bioreactor 2.

State Variable Name Value in CEP Value in VVPP 1

Xv Viable cells 0.2512 × 106 c/mL 1.0011 × 106 c/mL
GLC Glucose 32.19 mM 26.7219 mM
GLN Glutamine 5.03 mM 4.0299 mM
LAC Lactate 0.111 mM 7.2925 mM

AMM Ammonium 0.33 mM 1.5469 mM
AAV AAV viral titer 0 VG/mL 0 VG/mL

1 These values are related to the final EKF estimation for CEP with bioreactor 2 dataset; see Figure 5.

The EKF estimations for the VVPP were performed using the initial state variable
vector ψ(t = 0) composed of the estimated concentrations of GLC, GLN, LAC, and
AMM (last column in Table 7), the initial online measurement of Xv in VVPP as the initial
concentration of Xv, and the values of Bayesian UMKM parameters estimation (column 6
of Table 3). The EKF results in VVPP are presented in Figure 6. Plot A presents the online
measurements of Xv (orange line) with noises and the EKF estimation (blue line). The red
line is UMKM estimation with the parameter µXv obtained from the bioreactor 1 dataset,
which is the initial value of ψ(t = 0) in VVPP. Comparing UMKM and EKF estimation, we
can see that bioreactor 1 and 2 datasets have different dynamics for Xv measurements, but
the EKF followed the real dynamics of the bioreactor 2 dataset. Plots B, C, and D show the
EKF estimation for GLC, LAC, and rAAV. All EKF estimations (blue lines) are near to the
offline measurements (reference data) of these state variables (red points). On the other
hand, the red lines show the UMKM estimations in VVPP using the parameters µGLC, µLAC,
and µAAV of column 6 of Table 3 without updates during the entire estimation process. The
UMKM estimations were far from the offline measurements. These results were confirmed
with the RMSE of the EKF and UMKM estimations with the offline measurements of the
bioreactor 2 dataset; see Table 8. The RMSE values of the EKF estimation are the lowest,
resulting from the parameter estimation performed by EKF that updates the parameters
µGLC, µLAC, and µAAV of column 6 of Table 3 during the estimation process. The plot E
shows the parameter estimation regarding VVPP performed in this test by the EKF. In this
plot E, we can see that all state variables converged to a final value higher than the initial
value. However, the parameters of GLC, LAC, and rAAV (µGLC, µLAC, and µAAV) showed
a significant difference compared to their initial parameter values. This is because these
initial values were obtained from the bioreactor 1 dataset and the EKF updated them to the
bioreactor 2 dataset, another cell culture regarding rAAV production.
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Table 8. RMSE values of the EKF and UMKM estimations regarding bioreactor 2 dataset in the EKF
test.

State Variable Name

RMSE of UMKM
Estimation with

Parameters
Estimated by BI

RMSE of EKF
Estimation

GLC Glucose 2.931 0.778
LAC Lactate 2.29 0.228
AAV AAV viral titer 2.616 0.355

Figure 5. EKF test with bioreactor 2 dataset for CEP-EKF estimation for the cell expansion phase of
the upstream process. The Plot (A) shows the online Xv measurements with noise (orange line) and
EKF estimations following the exponential behavior of Xv (blue line). The last values estimated by
EKF in CEP are considered as the initial condition of state variables in VVPP (B–E). The parameter
estimation had some fluctuations regarding the LAC parameter, but the final parameters found are
not very different from those used as initial parameters; see plot (F).
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Figure 6. EKF test with bioreactor 2 dataset for VVPP: EKF estimation for the viral vector production
phase of the upstream process. The UMKM predictions were performed with parameters estimated
by Bayesian inference (red lines in plots (A–D)) using bioreactor 1 dataset, and EKF estimation
(blue lines in plots (A–D)) was performed using these parameters as initial parameters. They were
updated during the process; see Plot (E). The EKF was able to use the Xv measurement and performed
estimation near to offline measurements of GLC, LAC, and rAAV.

4. Discussion

The main result of the evaluation came from the EKF test (Section 3.3). However, the
EKF test depended on the results of the UMKM parameters estimation (Section 3.1) and
the EKF calibration (Section 3.2) to be performed, as described in Section 2.6. The UMKM
parameters estimation performed by NODE and Bayesian inference found congruent pa-
rameters values (Section 3.1). Besides these values being used as the initial condition in the
state variables vector ψ(t = 0), they were also used in the EKF calibration to obtain the
final values of EKF parameters Pi,i(t = 0) and Qi,i to be used in the EKF test. The results of
the EKF test showed that the proposed EKF, with the process model (UMKM) depending
only on the online viable cells (Xv) measurements, was able to estimate the other state
variables of rAAV production, with values very close to the offline measurements. These
results imply that the proposed EKF has solid potential to evolve into an online soft-sensor
application and to be viewed as a low-cost and fast solution for monitoring rAAV produc-
tion throughout the upstream process at the macroscale. This is because the offline/online
measurement process of the state variables (viable cell density, metabolites, and rAAV viral
titer ) used to generate the datasets required the use of multiple assays/devices to perform
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the measurements of all state variables (as described in Section 2.4.5 and Figure 2), whereas
the proposed EKF requires only one (as described in Section 3.3 and Figure 1). The reason
for this is that the Xv measurement (viable cells) will be an input to the EKF, which is then
used to estimate all state variables of rAAV production. It can consequently reduce the
costs of frequent sampling. Furthermore, the fact that EKF relies only on Xv measurements
to estimate all state variables is a desirable step forward for online soft sensors since they
are used to estimate state variables over time that are difficult to measure directly, or that
can only be measured at a low sampling rate [18]. However, despite significant results
achieved by the proposed EKF, it is important to point out that it has limitations and needs
more tests and further improvements. The proposed approach cannot contribute to the
understanding of the rAAV production mechanistic model and should be considered as
a limitation. Furthermore, more tests and improvements should be considered to extend
the proposed EKF to a stable soft-sensor application that is ready to be used in the indus-
try. Three future research directions might be considered. The first direction is related to
increasing the complexity of the mechanistic model. The UMKM and EKF had the same
performance in estimating AMM, but they did not perform a prediction near the observed
data properly. The main reason for this discrepancy is that the conversion between NH4+,
NH3(aq), and NH3(g) is not considered in the model. The sparging of oxygen and constant
air overlay flow would remove the NH3(g) so that the reaction equilibrium shifts to the
direction of converting NH4+ to NH3(g), hence decreasing NH4+ at the end of process.
This could be solved by introducing an AMM removal term to Equation (5) [35,52]. It is
noteworthy that the trend of Xv during VVPP is not exponential. This may be because of
transfection, nutrition limits (GLC and GLN), and toxic compound accumulation (LAC
and AMM). Second, an additional improvement is estimating the parameters with other
methods to confirm the convergence obtained. An option includes calibrating parameters
outside the EKF calculation with an outer optimization routine [29]. Third, the proposed
EKF needs validation with different datasets containing offline and online measurements
of rAAV productions. The datasets used in this initial study allow us to test the proposed
EKF, aiming to have a preliminary idea about its potential as an approach to monitoring
the rAAV production using only the Xv measurements to estimate the state variables of
rAAV production, but the datasets limit the final validation because of their small size and
missing online and offline measurements.

5. Conclusions

The first step toward increasing rAAV viral titer productivity is to perform efficient
monitoring with technology that will increase the speed and reduce the cost by automating
tedious tasks. The present work was an initial study that proposed an EKF application to
estimate state variables of rAAV production in different phases of the upstream process
based only on online/offline measurements of Xv. The proposed EKF used an UMKM
as a process model that models the upstream process (cell expansion and viral vector
production kinetic models). The initial parameters of UMKM and EKF were estimated with
Bayesian inference and updated during the EKF process. The development and evaluation
of the proposed EKF were performed with three datasets (shake-flasks, bioreactor 1, and
bioreactor 2 datasets), where the data were collected from the production of rAAV through
the triple-plasmid transfection of HEK293SF-3F6 cells. The evaluation showed that the
EKF used the online/offline Xv measurements and efficiently estimated the state variables
(GLC, LAC, and rAAV). Our findings based on the main results of the evaluation (EKF
test) are twofold: first, the proposed EKF indicates that it can reduce the number of devices
for monitoring the state variables for rAAV production over the upstream process phase
since it requires only one device to measure Xv. This contrasts with current approaches that
require multiple assays/devices to monitor the rAAV production. Second, the proposed
EKF can enable the online monitoring of the rAAV viral titer since all EKF estimations
on the rAAV viral titer were performed in real-time using only online Xv measurements.
These estimations allow for the monitoring of the rAAV viral titer every 1 min, in contrast
with conventional approaches that can deliver a result on the rAAV viral titer productivity
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only after the entire process is completed, which can take one day after the production. The
results obtained with the proposed EKF show the potential of the approach, which might
be extended to a soft sensor or a model predictive control (MPC) application to enable
the low-cost and fast monitoring of rAAV production. Our future works will focus on
increasing the complexity of UMKM, testing other parameters estimation methods with
EKF, and validating the EKF with more datasets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr10112180/s1, Figure S1: Losses of the training process of
NODE of cell expansion phase (CEP) (loss minimum around 2) and viral vector production phase
(VVPP) kinetic models (loss minimum around 16); Figure S2: Marginal posterior distributions for the
parameters of the cell expansion phase (CEP) kinetic model. ACF plot shows auto-correlation in the
sampled values decaying away rapidly to zero, indicating that the mixing of the NUTS sampler is
good; Figure S3: Marginal posterior distributions for the parameters of the viral vector production
phase (VVPP) kinetic model. ACF plot shows auto-correlation in the sampled values decaying away
rapidly to zero, indicating that the mixing of the NUTS sampler is good.
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