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Abstract: Industry 4.0 is the latest technological age, in which recent technological developments
are being integrated within industrial systems. Consequently, maintenance management of current
industrial manufacturing systems is affected by the emergence of the technologies and features of
Industry 4.0. This study aimed to conduct a comprehensive literature review to understand how
Industry 4.0 technologies and features affect the various functions of maintenance management
systems. The reviewing process was initiated by examining the most recent related literature in
three different databases. In total, 54 articles were classified into three research categories. Then, the
integration of the main functions and components of the adopted maintenance management model
and the Industry 4.0 features and technologies were aligned, focusing on the driving force of predictive
maintenance. The analysis focused mainly on the technical aspects of the integration process,
including integration concepts and integration-assisting tools, identifying the main applications
and highlighting the challenges identified in the analysed literature. The key findings were that the
main functions of maintenance management systems are significantly influenced by different Industry
4.0 technologies, mainly artificial intelligence–machine learning, CPS, IoT, big data, augmented reality,
and cloud computing, in terms of successful integration. Consequently, the overall system implied
tangible improvements through the involvement of different Industry 4.0 features which promote
real-time condition monitoring, enable data management and curation, increase coordination between
various maintenance tasks, facilitate supervision through remote maintenance applications, and,
overall, improve operations and productivity, reduce unplanned shutdowns and, as a result, reduce
the associated costs. To provide research directions, examples, and methodologies for integrating the
various maintenance management system functions with the cutting-edge Industry 4.0 technologies
and features based on real and practical cases present in the reviewed literature, the review’s findings
are comprehensively categorised and summarised.

Keywords: maintenance management systems; Industry 4.0; maintenance engineering; predictive
maintenance; integration; Maintenance 4.0

1. Introduction

The changes occurring now in every aspect of our daily lives result from technological
advancement. This advancement has resulted in the emergence of new concepts, such
as the Internet of Things (IoT), cloud computing, big data, artificial intelligence (AI), and
cyber–physical systems (CPSs). These new technologies have paved the way for new
innovative opportunities and more significant development in socioeconomic life [1]. This
new stage of technological development is often referred to as “Industry 4.0” [2].

Industry 4.0 was first introduced by the German government to maintain mass produc-
tion effectiveness and efficiency [3]. Industry 4.0 was proposed to respond to an increasing
market demand around the globe, which implies more challenges, including intensified
competition with leading industrial economies, such as the United States, and other devel-
oping economies, such as China and India. In addition to this, Industry 4.0 has come into
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being since many European countries are struggling to maintain their leading economic
positions while facing various challenges, such as ageing communities, resource limitations,
demographic and social changes, and the dynamic nature of world markets [4,5]. Industrial
development has gone through four major advancement stages. The first industrial revo-
lution was initiated in the 18th century and was characterised by mechanisation enabled
by the power generated by steam and water. The second started at the beginning of the
20th century and was characterised by the utilisation of conveyor-based mass produc-
tion supported by the emergence of electricity. The third revolution began in the 1960s
and continued afterwards, witnessing the deployment of the programable logic controller
(PLC) and the integration of computerised systems in machines to elevate automation
and mass production [3,6,7]. The fourth development stage, namely, “Industry 4.0”, or
the fourth industrial revolution, occurring now, is characterised by the utilisation of new
technologies [8], which are resulting in new intelligent manufacturing systems [4]. Parallel
with the development of industry, maintenance management has continuously developed
to cope with the new requirements of industrial revolutions [8,9]. The origin of maintenance
goes back to the first industrial revolution. During this period, maintenance meant using a
machine until it failed and then repairing it. During the second industrial revolution, more
complex machines were born, which needed more care and more complex maintenance
activities. This age was characterised by frequency-based maintenance [10]. After the Sec-
ond World War, in the 1950s, manufacturing sectors rapidly grew and were characterised
by high competitiveness. Japanese engineers started to work on more proactive mainte-
nance strategies to keep machines working and reduce downtimes; that is, a preventive
maintenance strategy was applied. All technicians were encouraged to schedule general
maintenance activities and report any other noted observations of machines. This method
succeeded in reducing downtimes but resulted in high costs. Later, in the 1960s, more
proactive maintenance strategies were developed, such as reliability-centred maintenance,
risk-based maintenance, and total productive maintenance, due to the development of
new manufacturing technologies. In the 21st century, the complexity of manufacturing
systems is increasing, and maintenance has become a crucial and integrated part of the
overall production system, which demands more concentration on the reduction of the
associated costs, as well as increases in productivity, quality, and profits. More complex
knowledge is needed to achieve these goals. Thus, the predictive maintenance strategy is
being improved by better decision-support systems, which lead to fewer machine failures
and fewer downtimes. Furthermore, another strategy that needs very complex knowledge
is prescriptive maintenance, which is aligned with software support, AI, complex sensory
systems for instant condition-based monitoring, IoT, big data, augmented reality (AR),
and other integration-assisting tools in the total integration of maintenance management
with Industry 4.0.

This paper reviews the most recent research works on integrating maintenance man-
agement systems’ functions and Industry 4.0 technologies and features to answer the
research questions posed in the research objectives.

2. Background

This section aims at providing an overview of the maintenance management system
model adopted in this study, as well as maintenance strategies and Industry 4.0 technologies
and features.

2.1. Maintenance Management

According to the European Committee of Standardization [11], maintenance manage-
ment “includes all activities that determine the maintenance objectives, strategies, and
responsibilities, and implementation by such means as maintenance planning, maintenance
control, and the improvement of maintenance activities and economics”.

Maintenance was considered a nightmare in past decades due to the application of
corrective maintenance only [12]. In this process, maintenance mainly involved repairing
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and replacing things when needed, without planning, scheduling, or optimisation, combined
with a lack of awareness of machine downtimes and behaviour. After that, maintenance
activities became an independent function in most factories instead of being a production
sub-function [13]. Nowadays, with the inherent development of technological and indus-
trial sectors, maintenance management has become a more complex function, including all
technical and managerial skills and the flexibility to deal with dynamic business environments.

According to Duffuaa and Raouf [14], maintenance management systems consist of
three major functions: planning, organisation and control. As depicted in Figure 1, planning
activities include strategic maintenance alliances, in which the maintenance department should
have its strategic maintenance plans comply with the strategic objectives of the company,
such as outsourcing, organisation, and support. Moreover, planning includes maintenance
load forecasting; its outputs are used as inputs for maintenance scheduling, maintenance
control, and maintenance capacity planning, in which the needed resources for maintenance
activities are determined, including manpower, material, spare parts, tools, and equipment.
Furthermore, maintenance organisation planning is about the planning of factors that affect
the maintenance process, such as plant size, maintenance load, type of organisation, and
craftsmen skills. The last activity of maintenance planning is maintenance scheduling, in
which resources, including manpower, are assigned to specific tasks within a timeframe.
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Similarly, organising activities include designing jobs and tasks, standards, and project
management for better control. Feedback and control represent essential parts of manage-
ment to control work, materials, and inventories, including spare parts, costs, quality, and
the overall performance of manufacturing systems.

Maintenance is not just about retaining and restoring a unit, but includes another impor-
tant aspect, namely, optimising the overall cost. The goal is to find the general optimum for
any process based on predetermined requirements and targets. For this purpose, maintenance
strategies need to be addressed and selected. Accordingly, the main maintenance strategies in
any modern manufacturing system include but are not limited to the following:

Corrective maintenance (CM): Also known as run-to-failure maintenance or break-
down maintenance. This concept is based on fixing things after a failure occurrence [13]. It
can be carried out promptly after the failure occurrence or postponed for further repair or
replacement actions.

Preventive maintenance (PM): Ensures that equipment does not break unexpectedly.
To achieve this, maintenance must be performed regularly to maintain the stability of
machines [15].
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Risk-based maintenance (RBM): In which the available resources for maintenance tasks
are prioritised toward the machines or other assets the failure of which poses the most
significant threats to the whole system [16]. Based on the associated risk analysis of the
potentially failed asset, maintenance plans and schedules are updated, then they are monitored
through other maintenance strategies, such as condition-based maintenance [17,18].

Condition-based maintenance (CBM): A maintenance action and decision-making pro-
gram which recommends suitable actions according to condition monitoring information
by utilising prognostic methods for more reliable and cost-effective maintenance [19].

Reliability-centred maintenance (RCM): An approach that was originally developed for
the aircraft industry and used to generate a cost-effective maintenance schedule by utilising
estimated parameters for the reliability of the system [20]. For applications that have safety
issues, the minimisation of costs and downtime as the main goals are usually achieved
by eliminating the chance of failure occurrence by striking a balance between safety and
availability, along with cost-effective maintenance. RCM has two categories: the first involves
the analysis and categorisation of failure modes according to their effects on systems; the
second involves the assessment of maintenance scheduled impacts on system reliability. The
results are formalised in the methodology of failure mode and effects analysis (FMEA).

Predictive maintenance (PdM): Represents an optimised trade-off between main-
tenance and performance costs. In addition, it measures efficiency and productivity
and predicts remaining useful life before failure happens; it includes health condition
monitoring and prognostics for future system behaviour and helps in decision-making
processes [21,22]. It has been found that predictive maintenance is an effective strategy
that can reduce the downtime of machines by 30–50% and extend their lifetime by 20–40%
compared to traditional strategies [23,24].

Prescriptive maintenance: An advanced version of predictive maintenance supported
by further decision-making mechanisms. Prescriptive maintenance goes one step further
than PdM; it inspects not only the equipment to be maintained but also its environment
and the correlation between them [25].

Opportunistic maintenance (OM): According to [26,27], OM is a systematic method
of collecting, investigating, and preplanning activities for the generation of maintenance
tasks to be implemented given opportunity [28]. A typical example is when a complex
machine is disassembled to replace a broken component and it might be worth replacing
other components that are close to end of life.

2.2. Industry 4.0

Industry 4.0 has been intensively discussed since the time it was first proposed by the
German government in 2011 [4,29]. However, a brief definition of Industry 4.0, including
its features and technologies, is vital to justify the topic being discussed in this paper.

Industry 4.0 indicates the current technological advancement and the integration of
information and communication technology (ICT) applications in production systems [30].
This integration has resulted in new production and management system paradigms
that depend mainly on higher communication and collaboration along value chains [7].
Furthermore, the availability and affordability of sensors, networking, and control devices,
in addition to supercomputing power and cloud computing, have paved the way for what
are called cyber–physical systems (CPSs), where whole systems, including information,
objects, and humans, are interconnected [31,32]. Industry 4.0 is also known for integrating
IoT on the manufacturing shopfloor and in the management supporting activities, such
as logistics and planning. Such integration has resulted in a global network for the whole
system, including machining, warehousing, and customers, where each party can control
and exchange information with the others [5].

Industry 4.0 significantly impacts several aspects of production systems, i.e., optimis-
ing resource allocation and reducing human resources and logistical costs [33]. Moreover,
Industry 4.0 has enhanced the flexibility of business processes by combining different
business inputs, such as time, cost, quality, labour, and logistics [5]. Overall, Industry 4.0 is
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the synergistic combination of several technologies, resulting in several features that can be
utilised in modern production systems and whole value chains.

2.2.1. Industry 4.0 Technologies

This section presents the most commonly studied Industry 4.0 technologies.
The Internet of Things (IoT) represents the system in which elements in the material

world, such as machines, equipment, and devices, communicate with each other and with
cyber elements, such as software and data [1,34]. The main characteristic of IoT is the
strongly decentralised and heterogeneous digital information exchange between devices
connected in a network. IoT offers the possibility of providing an instant response to any re-
quest from surrounding objects or environments [35]. IoT has enhanced production systems
by optimising resources based on the collection of data from different locations in a value
chain. Such information includes production monitoring, quality inspection, consumption
information, and product performance under different operational conditions [32,36,37].

Cloud computing comprises online resources, such as servers, applications, and
networks, to offer regular services that require more investment and resources to operate
locally. Cloud computing is commonly used nowadays for its efficiency, cost-effectiveness,
stability, and high-power availability, if needed [38]. Moreover, cloud computing is one of
the main infrastructures for big data.

Big data is related to the development of the Internet and connectivity, which have
generated production-related data in large volumes, with high velocity, variety, and veracity.
Such data require more sophisticated systems that can handle, analyse, and transform them
into useful knowledge. Data obtained with IoT devices are analysed, only meaningful
information is extracted, and knowledge is transferred efficiently to support business
activities [1].

Simulation has become an important tool in Industry 4.0 contexts. It is a powerful compu-
tational tool for designing, analysing, and understanding the behaviour of complex systems; it
plays a key role in the successful implementation of digital manufacturing [39,40]. Moreover,
complex systems can be modelled with simulation, and virtual experiments can be conducted
to validate or configure processes or products to support decision making [34,41]. Deep insights
into such complex systems can be obtained through different simulation techniques, while digi-
tal twin creation helps analyse real-time data to predict failures and breakdowns and improve
maintenance planning and scheduling activities [42].

Artificial intelligence (AI) is considered one of the primary keys to transforming man-
ufacturing systems in the era of Industry 4.0. Through the integration of IoT, big data, and
AI tools, manufacturing systems are able to make factual decisions by real monitoring and
analysis of their processes through real communication modules to coordinate and monitor
all activities between machines, people, sensors, and other parts of the manufacturing
system [43]. Meanwhile, machine-learning (ML) techniques are used in real-life scenarios
to predict the future behaviour of systems [44]. The most suitable algorithm can be chosen
based on the given computational power, memory resources, and the number and qual-
ity of the data to be analysed [45]. Artificial neural networks (ANNs) [46], neuro-fuzzy
systems [47,48], hidden Markov models in Bayesian methods [49,50], Kalman filters, par-
ticle filters, and variants [51], and logistic regression [52] algorithms, along with many
other tools, are used to develop effective machine-learning models to achieve high levels of
operational maintenance and business excellence.

Cyber–physical systems (CPSs) comprise environments in which the physical world,
including machines, warehousing, and whole manufacturing systems, are transformed into
the cyber world through network devices [3], where both the cyber and the physical parts
interact. Exhaustive connectivity, supported by supercomputing power, has enabled such
systems to gather and process real-time data and control production processes instantly.
In an Industry 4.0-enabled facility, every process is simulated and verified virtually, and
once an optimum plan is ready, it is directly transformed into the physical world [53]. Such
technology has automatically enabled production systems to adapt to instant production
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changes [6]. The vision of future factories (smart factories) can be achieved through
Industry 4.0, in which CPSs monitor physical processes and visualise the real world by
making virtual copies of these processes to implement and make decentralised decisions
and actions [54]. A new type of smart production system known as a cyber–physical
production system (CPPS) has emerged due to the development of new Industry 4.0
applications in smart factories [55]. Moreover, as stated by Monostori [56], CPPSs are more
specific applications of CPSs in manufacturing [57,58]. The term refers to the integration
of computer sciences, information and communication technologies, and manufacturing
science and technologies.

2.2.2. Industry 4.0 Features

Ibarra et al. [31] highlighted the major features of Industry 4.0 as the following:
Interconnection refers to the interconnection between different elements in a value

chain. An example is interconnection between machines that handle similar work to
coordinate the flow of products and avoid downtime or production delays. The product can
inform the machine about the kind of operation to perform. Such interconnection elevates
intelligent production. Similarly, products are smart and connected; once a product is
produced in a machine, the next machine is well-informed jointly with the conveyor or the
logistics robot responsible for transporting the product to the location of the next production
process [53]. Moreover, the connection between products, machines, and processes through
data-exchange points results in more flexibility and autonomy. Such a process is realised
by integrating the elements of cyber–physical systems and results in an intelligent value
chain that can adapt, diagnose, and repair itself remotely [59].

Interoperability is a crucial feature in Industry 4.0; it is the ability of two different
systems to communicate with each other and make mutual use of their functionalities
according to basic and common technological standards [6]. Therefore, machines, products,
suppliers, and customers are integrated through a common language. Interoperability is
vital for the effective operation of IoT, as every machine should have an interoperability
standard that makes communication with other machines possible [34].

Integration is the process of combining all elements of the production system, includ-
ing machines, products, and control systems, using sensors and actuators, and connecting
these elements with other key players, such as customers, suppliers, logistics, transporta-
tion, maintenance, and production management [33]. Henning et al. [5] highlighted three
types of integration: horizontal, vertical, and end-to-end. Vertical integration refers to
the integration of different units within an intelligent factory, while horizontal integration
refers to the integration of the factories in the whole manufacturing value chain. End-to-
end integration means the inherent integration in the entire value chain supporting the
processes of the different stages in a product’s lifecycle, such as product design, production
planning, maintenance, and recycling [4,60].

Decentralisation is the capability of a smart product or CPS to identify and successfully
connect itself to another physically decentralised system and provide information about its
state or conditions; thus, decentralisation could be either physical or logical [61].

3. Research Methodology
3.1. Research Objectives

This study aimed to examine, through a literature review, the current state of the
integration of maintenance management systems within an Industry 4.0 environment.
Moreover, it aimed to understand how the functions of maintenance management systems
are impacted not only by Industry 4.0 technologies but also by Industry 4.0 features
that appear to have a significant impact on the integration process, with a focus on key
integration enablers, such as integration concepts and integration-assisting tools. This
study attempted to answer the following research questions:
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• How can Industry 4.0 influence maintenance management system functions?
• What assisting tools are used in the integration process within an Industry 4.0 environment?
• What are the impacts of Industry 4.0 features on the different components of a mainte-

nance management system?

Moreover, potential applications, future trends, and challenges are also addressed.

3.2. Research Method

To initialise a comprehensive literature review process based on [62], three keywords
were selected to search for papers published from 2017 to July 2022 available from different
scientific resources (Web of Science, Scopus, and Google Scholar). The keywords used in
the search were “Industry 4.0 & Maintenance”, “Industry 4.0 & Maintenance Management”,
and “Industry 4.0 & Maintenance Planning”.

The search resulted in 102 papers related to maintenance and Industry 4.0 with both
parts of each keyword pair in their titles.

In the next step, each paper was reviewed carefully, and irrelevant papers were excluded.
The final number of papers included in this study was 54. Note that the duplicate papers
found in more than one scientific resource were eliminated; only one instance was considered.

The inclusion and exclusion criteria are presented in detail using the PRISMA flow
diagram in Figure 2.

The publication years and numbers of citations of the selected 54 papers are detailed
in Figure 3. The average number of papers published annually from 2017 to July 2022
was about nine, while the average number of citations was 171, with a peak in 2017. The
number of published papers increased yearly, indicating that researchers have become
more and more interested in this research area.

Finally, the selected articles were categorised into three research categories: integration
concepts, applications, and challenges, as shown in Figure 4.
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The analysed articles employed different scientific approaches in their studies, such
as frameworks, case studies, experimental designs, simulations, prototypes, surveys, and
conceptual approaches. It is worth mentioning that some of the researchers used more
than one approach in their studies, for example, using case studies or simulations to test
and validate the developed framework. Table 1 summarises the categories of the analysed
research articles along with the scientific approach used.

Table 1. Categorisation of the analysed articles. Source: Authors’ elaboration.

Research Categories

Article Integration Concepts Applications Challenges Approach/Method

[63] X Framework

[64] X Case study

[65] X Case study
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Table 1. Cont.

Research Categories

Article Integration Concepts Applications Challenges Approach/Method

[66] X X Framework

[67] X X Case study

[68] X Framework

[69] X Prototype

[70] X Framework

[71] X X Case study

[72] X Framework/
experimental design

[73] X X X Framework

[74] X X Case study

[75] X Framework

[76] X X Framework

[77] X X Framework

[78] X Framework

[79] X X Framework

[80] X X Framework

[81] X Framework

[82] X X Framework/
case study

[83] X X Framework/
experimental design

[84] X X Framework/case study

[85] X X Framework

[86] X Framework/case study

[87] X X Case study

[88] X X X Framework

[89] X Framework/simulation

[90] X X Framework

[91] X Framework

[92] X X Framework/prototype

[93] X Prototype

[94] X X Prototype/case study

[95] X X Framework

[96] X X Case study

[97] X X Framework

[98] X X Conceptual

[99] X X Conceptual

[100] X X Framework/simulation/
case study

[101] X Framework

[102] X Conceptual
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Table 1. Cont.

Research Categories

Article Integration Concepts Applications Challenges Approach/Method

[103] X Conceptual

[104] X Conceptual

[105] X Conceptual

[106] X Conceptual

[107] X Framework/prototype

[108] X Conceptual

[109] X Case study

[110] X Survey

[111] X Survey

[112] X Survey

[113] X Conceptual

[114] X X Framework

[115] X Framework

[116] X X X Framework/case study

It is also noticeable that most of the researchers developed frameworks or models in
addition to other types of scientific approaches. Almost all the researchers used trendy or
new integration concepts in their studies; on the other hand, they gave more attention to
the challenges of such modes of integration or even proposed solutions to handle them.

4. Maintenance Management in the Context of Industry 4.0

Various technologies are being used in manufacturing systems, but new concepts of
integration can transform production and other related systems, such as maintenance. The full
integration of such technologies can transform manufacturing cells and other supporting sys-
tems, such as maintenance engineering, to operate as fully integrated and automated systems
with higher performance and greater efficiency. Extensive research has been conducted to in-
vestigate the interaction of Industry 4.0 and maintenance management systems. In this section,
the 54 research articles filtered are summarised and classified using the previously mentioned
research categories based on the major Industry 4.0 technologies, and their implications for
relevant maintenance management system functions are considered.

4.1. Aligning Maintenance Management and Industry 4.0 Technologies—Trending Concepts and
Integration-Assisting Tools

As explained earlier, Industry 4.0 is an umbrella term for several newly developed
technologies, such as IoT, cloud computing, big data, simulation, AI, and CPSs. The
adaptation of Industry 4.0 is vital at many managerial levels in manufacturing systems. To
facilitate this, an implementation strategy is needed to digitalise manufacturing systems
and their support systems, such as maintenance planning and scheduling. This can be
achieved by the successful integration of new ICT technologies and big data capabilities
through CPSs, which can enable significant improvements in maintenance throughout
manufacturing systems.

The transformation from current maintenance systems to digital maintenance com-
plying with Industry 4.0 requirements needs recommendations and instructions to be
generated, as in Fusko et al. [64]. Moving forward to digital or smart factories, the fol-
lowing Industry 4.0 factors present the main triggers of such transformation: real-time
data collection through sensory or condition-monitoring systems, data-processing methods
to ensure the accuracy and quality of collected data, and, finally, prediction models to
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prevent failures and update information. Smart and predictive maintenance are the main
concepts used in smart factories [108], where many production and maintenance tasks need
to be managed simultaneously, such as data collection and evaluation, resource availability,
production, maintenance, and quality control.

To increase the effectiveness of production processes in terms of maintenance, reduce the
workforces required, and increase the effectiveness of management and planning processes,
total productive maintenance (TPM) practices were digitalised by Tortorella et al. [65], who
derived five case-based research propositions. It is likely that an innovative approach to man-
aging the maintenance process for complex equipment in a production hall with preventive
maintenance and TPM concepts was developed by Hardt et al. [90]. This approach focuses on
gathering and analysing operational data for different equipment components working under
different users and operational conditions.

4.1.1. Predictive Maintenance (PdM)

Based on Industry 4.0 features and technologies and the intensive literature review
conducted in this paper, the latest maintenance trends and terms have been investigated.
These new trends are based on the key role of predictive maintenance (PdM) as the main
integration enabler.

The predictive maintenance approach is the focal point of recent AI applications in
the context of Industry 4.0. ML algorithms help detect and predict failures before their
occurrence to avoid unplanned shutdowns and predict the remaining useful life (RUL)
of equipment. Machine-learning methods also support the scheduling of maintenance
activities through combined IoT technology to reduce downtime and maintenance costs
and increase machine availability [63,109,114,117]. PdM can also be implemented using
digital twins [115].

For instance, Kiangala and Wang [72] designed an experimental method to detect
conveyor motor faults and generate a predictive maintenance schedule accordingly. Real-
time vibration data are collected from SCADA systems connected to a graphical user
interface (GUI) to display the predictive maintenance schedule. This leads to an easy
reconfiguration of the maintenance rules when needed. Additionally, historical records and
the number of previous breakdowns can be obtained from the CMMS for future planning
and to evaluate the applied reconfigurations [73].

To connect the predictive maintenance concept with Industry 4.0 technologies,
Li et al. [75] introduced a framework for predictive maintenance to analyse and predict
faults in a machining centre. The framework included data acquisition, data pre-processing,
fault diagnosis, and prognosis based on ANN, performance analysis, and maintenance
schedule optimisation. Similarly, Tran Anh et al. [82] presented a PdM strategy applied in
an automotive manufacturing company to cope with Industry 4.0 requirements, focusing
on its impact on maintenance optimisation, in addition to the financial situation.

ML algorithms and data-driven modelling are widely used for failure prediction [116].
A PdM model using the ML technique (Bayesian Filter) was developed by
Ruiz-Sarmiento et al. [79] to predict the gradual degradation of machinery in a rolling
process and then apply maintenance actions. Similarly, Paolanti et al. [80] used a random
forest approach for PdM. The required data were collected from the sensory system and
the machine’s PLC, while the communication protocols were set using Microsoft Azure.
The results showed that the developed PdM predicted machine statuses efficiently and
with high accuracy. Kiangala and Wang [83] suggested an experimental design for a PdM
framework to detect the deterioration in conveyor motors in small manufacturing firms. To
classify abnormalities into those that are production-threatening and those that are not, an
ML classification model was built using time-series imaging and a convolutional neural
network (CNN) to increase the accuracy of classification combined with parameterised rec-
tifier linear units to improve the performance of the model. Moreover, principal component
analysis (PCA) was applied to the multivariate time series to reduce the dimensions to two
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channels. The experimental results showed that this PdM framework was better in terms
of performance and accuracy than the traditional approaches.

In the same way, a prediction model to predict anomalies in the bearings of an assembly
conveyor carrier using Industrial Internet of Things (IIoT) devices, a neural network (NN),
and sound analysis were developed by Tanuska et al. [95]. This model is based on an
online condition-monitoring system consisting of data collection and processing, data
storage, and anomaly detection to provide early warnings. These processes aim at detecting
the wheel bearing failure that leads to bearings getting stuck, stopping the movement
of the carrier, and shutting down the whole conveyor. Moreover, the detection process
aims to minimise unscheduled shutdowns of the conveyor and prepare proper schedules
for maintenance. Fernandes et al. [96] implemented a mixed CBM/PdM approach in an
automotive case study by introducing the business process management (BPM) and the
business process model and notation (BPMN) methods to decrease maintenance costs
and improve productivity. The implemented methods resulted in better prediction of the
breakdown of machines, better scheduling for maintenance and component replacement,
minimisation of the periodic inspection of the machines, and, finally, minimisation of the
numbers of unplanned shutdowns and emergency stops.

Moreover, data-driven models can be used to develop architectures for PdM. Thus,
Calabrese et al. [81] used such a model combined with machine-learning algorithms in
an industrial woodworking machine to predict failure probabilities and the RUL of the
machine. The proposed method was tested and showed high effectiveness in reducing
machine downtime. Lastly, it was deployed in a big data framework to monitor multiple
connected machines. It is worth mentioning that the prediction is a valuable source of
information that can be used in maintenance management systems.

Yan et al. [84] proposed a processing scheme for industrial big data to provide new
solutions for PdM implementation. The scheme is based on structuring heterogeneous
multisource information, characterising it, modelling invisible factors, and, finally, imple-
menting PdM using machine-learning techniques, such as ANN. The scheme was verified
by an actual case study to predict the RUL of a key machine tool component. In terms
of the effective use of PdM, Sahal et al. [85] filled the technological integration gaps be-
tween Industry 4.0 applications and existing open-source big data and streaming analytic
technologies in railway transportation and wind energy industries by showing the require-
ments for implementing PdM, along with the available big data technologies that could
serve these requirements, as one of Industry 4.0’s main technologies. This study resulted in
guidelines and technology combinations of open-source tools that could help implement
PdM and support decision makers.

PdM is considered the central concept of integration; in fact, different concepts con-
nected with it were found in the literature. Ferreira et al. [66] utilised a CPS in sheet-metal-
working machinery to achieve a full proactive maintenance system; three approaches were
employed: (1) component failure detection using various detection means and models;
(2) component failure prediction, depending on data collected from the sensory system,
and then prediction of the RULs of the machine and its components, as well as potential
failures before their occurrence; and (3) component failure diagnosis to identify the root
causes of problems. These approaches utilise empirical models to help technicians diagnose
problems. Pilot implementation of the framework was realised, and the result was a CPS
integrated with the maintenance system (combined predictive and proactive maintenance).

Similarly, smart or intelligent maintenance strategies based on the concept of PdM are
other sub-concepts used by some researchers. Einabadi et al. [67] suggested an Industry 4.0-
based predictive maintenance system for the automotive industry which enabled dynamic
and real-time prediction of the RULs of machine components using an ANN method based
on data gathered from a sensory system. At the plant level, Chiu et al. [70] proposed a
predictive maintenance system based on Industry 4.0 technologies to overcome the problem
resulting from the fact that PdM is usually designed for single items of equipment in
contexts where resource allocation might be complicated, when there are tens or hundreds
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of pieces of equipment at the factory level. The proposed PdM system is based on modified
Industry 4.0 tools, namely, “cyber-physical agent and advanced manufacturing cloud
of things”. Moreira et al. [87] upgraded an injection moulding machine in an Industry
4.0 environment with real-time monitoring sensors to reduce the number of unnecessary
shutdowns and failures, decrease maintenance costs, and maximise the performance of
the tool. Moreover, the collected data enable the implementation of smart predictive
maintenance, solving the main challenge of Industry 4.0.

In the same way, Nordal and El-Thalji [88] proposed an intelligent maintenance man-
agement system in compliance with Industry 4.0 requirements. The developed intelligent
system included (1) analysis, evaluation, and needs identification of the existing mainte-
nance system; (2) extraction of the requirements of the future system, including the business
model and the related stakeholders and Industry 4.0 requirements; and, finally, (3) mod-
elling of the desired future system. Communication at all maintenance management levels
was clarified, including asset-to-asset, asset-to-enterprise, and enterprise-to-enterprise
communication, supported by advanced technologies for computation, such as predictive
maintenance, machine learning, and maintenance optimisation. Maintenance operations
were managed using an appropriate integrated ERP and computerised maintenance man-
agement system (CMMS).

In terms of asset management, as a central part of a maintenance management system,
Toeh et al. [89] presented an integrated predictive-maintenance-based machine-learning
model in fog computing to manage assets (physical, virtual, and human resources), using
a genetic algorithm (GA). Fog Workflowsim was used to simulate time and costs and
to evaluate the performance of the GA, along with other methods, such as MinMin and
MaxMin. Logistic regression as a supervised machine-learning algorithm was used to build
the predictive maintenance model that reached 95.1% training and prediction accuracy.

Bourezza and Mousrij [97] presented an approach to implementing an intelligent mainte-
nance strategy based on the concept of PdM and aligned with Industry 4.0 technologies. The
approach consisted of several modules: condition data acquisition, analysis, failure detection,
and prediction of device RULs. The main aim of such an approach is to support engineers and
technicians in their decision making in planning, scheduling, and implementing maintenance
tasks by providing them with real-time monitoring of machines and equipment.

Remote maintenance is another concept of integration based on augmented reality (AR)
and off-the-shelf smartphones, which was examined by Masoni et al. [69]. This application
allows an unskilled maintenance operator acting in the maintenance location to be connected
to the control room and be remotely guided by a skilled operator, equipment, and machines.
Similarly, Contreras et al. [107] defined a model of integrating additive manufacturing tech-
nology in an Industry 4.0 environment to improve maintenance management systems and
allow the use of trendy techniques, such as self-maintenance and remote maintenance.

To facilitate integration within an Industry 4.0 environment and compliance with the evo-
lution of the technical documentation of Industry 4.0, Scurati et al. [93] proposed a controlled
and comprehensive visual manual that includes a vocabulary of graphical symbols related to
all maintenance instructions by exploiting AR technology. Thus, all available maintenance
actions were converted into graphical symbols. The resulting manual integrated all these
symbols in a real application of AR technology to assist in applying remote maintenance.

To support low-skilled technicians in performing maintenance tasks and procedures
by utilising AR and computer vision (CV) techniques, Konstantinidis et al. [94] described a
model called the Augmented Reality Maintenance Assistant (MARMA) that is able to generate
maintenance instructions and support technicians. Additionally, integrating Industry 4.0
technologies and maintenance practices in the aeronautical industry is widely discussed to
address how Industry 4.0 impacts maintenance. Ceruti et al. [92] suggested a method of such
integration using AR and additive manufacturing (AM) technologies, where the main role
of AR is to provide the technician with enhanced ways to perform maintenance tasks, such
as maintenance user manuals with virtual models of machines and their components. On
the other hand, AM assists in reducing large warehouses by manufacturing some types of
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maintenance spare parts when needed. Overall, AM and AR can work together to reduce
maintenance costs and time by identifying failed components, scanning them with reverse-
engineering techniques, and printing replacements instantly using AM techniques.

To support the decision-making process in a successful integration, different factors
must be identified [103]. These factors can be summarised as the classification and iden-
tification of production, maintenance tasks, and supporting Industry 4.0 technologies,
description of the capabilities of the available technologies, and, finally, the analysis and
interpretation of the obtained results. For example, failure prediction can be supported by
decision-making algorithms, whereas more responsive information systems can support
the decision-making process by increasing the availability of sensory systems and big data
technologies [106]. Therefore, to select the appropriate maintenance strategy in an Industry
4.0 environment, Caterino et al. [101] presented a new maintenance framework to automate
the decision-making process and choose the optimum maintenance strategy for preventive
or opportunistic maintenance. This framework was enhanced by Industry 4.0 technologies,
such as CPS and IoT. The framework was tested, and it was able to select the optimum
maintenance strategy to reduce the maintenance costs associated with the selected strategy.

In a related context, Li et al. [86] presented a framework for so-called cognitive main-
tenance, which integrates CPSs and advanced AI techniques (deep learning) to support the
decision-making processes of maintenance systems and provide technical solutions and
real-time monitoring of maintenance tasks. CPSs, IoT, data mining using deep-learning
techniques, and the Internet of Services are the main modules in cognitive maintenance.

To synchronise production and maintenance planning and scheduling problems, hybrid
approaches have been proposed. Alves and Ravetti used two concepts to develop such a
hybrid approach, namely, robustness and semi-heuristics, considering three types of main-
tenance strategies (predictive, preventive, and corrective maintenance) in a production line
composed of parallel machines within an Industry 4.0 environment [91]. In the same way, a
predictive maintenance approach was suggested by Spendla et al. [68] to increase the quality
of production processes in accordance with Industry 4.0 by increasing the operability of
manufacturing systems through predicting faults in production processes using ANNs. Big
data and IoT can be used along with predictive maintenance to deal with the large numbers
of data collected in manufacturing processes. The results of this study were used not only to
determine the maintenance intervals (scheduling) and predict failures but also to enhance the
quality of the whole manufacturing process and the final products.

“PdM4.0” is a new concept defined by researchers using different approaches to
implement PdM in Industry 4.0 environments. Sahba et al. [76] proposed a novel framework
for PdM based on the advanced Reference Architecture Model Industry 4.0 (RAMI 4.0) that
aims at reducing the maintenance and operation-associated costs in broadcasting chains.
RAMI 4.0 is a model demonstrating features of technical assets and the concepts of Industry
4.0. The proposed framework, called PdM4.0, succeeded in increasing the stability of the
broadcasting system and decreasing maintenance costs. Similarly, RAMI 4.0 architecture
was used by Sang et al. [78] to support the PdM strategy in an Industry 4.0 environment
using a unique framework called FIWARE for data exchange between various organisations
and considering security requirements. This integrated PdM model provided an effective
method for optimising the processes and monitoring equipment conditions using different
machine-learning models and big data technologies.

Finally, in terms of reducing associated maintenance costs, various studies have fo-
cused on developing low-cost PdM models. Sezer et al. [71] developed an Industry 4.0
(CPS) architecture for low-cost predictive maintenance for small and medium manufactur-
ing enterprises. In the developed CPS architecture, the temperature and vibration variables
of a CNC machining process were measured. Accordingly, a regression tree model was
used to predict the quality of the machined parts and then to reject or accept them based on
the quality threshold and the correlations between temperature, vibration, and roughness.
Furthermore, Alarcón et al. [74] presented a low-cost integration model for energy manage-
ment systems (EMSs) and maintenance management systems (MMSs) in a manufacturing
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firm. Several technologies and tools that support work in an Industry 4.0 environment were
used in the model, such as ERP, distributed control systems (DCSs), and manufacturing
execution systems (MESs), to collect and analyse data on, control, detect failure in, and
monitor the conditions of machinery, including the electrical energy consumed. The results
showed a significant reduction in energy consumption, the number of required mainte-
nance events, and the time taken for component replacements. Similarly, for small and
medium manufacturing enterprises, Adu-Amankwa et al. [77] proposed a cost-effective
PdM architecture for a CNC machine which could reduce maintenance costs.

4.1.2. Maintenance 4.0

Recent studies have investigated “Maintenance 4.0”, which term is used to describe
the latest trends in maintenance management to meet the integration requirements of
Industry 4.0 and the sustainable development aspects [98]. It was found that Maintenance
4.0 involves the use of advanced analytic methods not only to predict failure (predictive
maintenance) but also to avoid such failures and optimise maintenance schedules and
resources (prescriptive maintenance). In other words, Kumar and Galar [99] stated that
Maintenance 4.0 uses advanced technologies to perform predictive analytics and generate
solutions through the integration of maintenance practices that deal with data collection,
processing, analysis, visualisation, decision making, and Industry 4.0 technologies and
features. On the other hand, Maintenance 4.0 enables the effective use of ICT platforms,
such as ERP and CMMS, to manage the whole maintenance management system at all
levels [118]. Smart and sustainable maintenance is the key element in maintenance 4.0,
where the integration of digital technologies enables instant access to the real-time detailed
information required and manages asset life cycles [119]. Similarly, Giacotto et al. [100]
discussed two related terms in the context of the integration process of Industry 4.0. They
defined “Maintenance 4.0” as a smart or intelligent maintenance framework along with
its technological enablers, while “ecosystem 4.0”, also associated with Maintenance 4.0,
refers to a situation where the applied maintenance technologies for different machines
are supported by and in harmony with a production system; meanwhile, ecosystem 4.0
facilitates the integration process between machines and their operators in an Industry 4.0
environment. In a case study of an aircraft assembly line, Giacotto et al. [100] designed and
tested a framework-based ecosystem 4.0 and maintenance activities integration using the
smart prescriptive maintenance framework (SPMF) as a key reference. The SPMF was built
at different levels, including the system’s reliability, availability, maintainability, and safety
(RAMS) factors, the operational environment, and the available maintenance resources.

4.2. Applications

The integration process of Industry 4.0 technologies and maintenance systems can be
found in many application areas in the automotive, aerospace, and machining industries.
In addition, chemical industries, including oil and gas, services such as broadcasting
chains, and transportation and wind energy industries are also involved in such integration.
The main applications of such integration in the 23 papers reviewed are summarised in
Table 2. Tools, technologies, and other integration tools of such applications were discussed
thoroughly in Section 4.1.

Table 2. Classification results of the “Applications” category. Source: Authors’ elaboration.

Article Automotive
Industry

Chemicals,
Oil, and Gas Machining Aircraft

Industry
Railway Transportation

and Wind Energy Services

[66] X

[67] X

[71] X
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Table 2. Cont.

Article Automotive
Industry

Chemicals,
Oil, and Gas Machining Aircraft

Industry
Railway Transportation

and Wind Energy Services

[73] X

[74] X

[76] X

[77] X

[79] X

[80] X

[82] X

[83] X

[85] X

[87] X

[88] X

[90] X

[92] X

[94] X

[95] X

[96] X

[97] X

[100] X

[114] X

[116] X X

Total 23

4.3. Challenges

Maintenance management and engineering play key roles in modern manufacturing
systems, where the main objective is to plan, organise, and control all materials, processes,
and information [102]. In order to integrate these objectives within an Industry 4.0 envi-
ronment, all maintenance management levels must be connected with the other related
production management levels to ensure overall harmony in an intelligent way [110]. The
main challenge in changing existing maintenance management systems into intelligent
ones is upgrading them to use the three main technologies: IoT, big data, and cloud
computing [88].

Table 3 summarises the investigated papers which address the main challenge regard-
ing Industry 4.0: maintenance management system integration.

The use of such tools is feasible wherever it is technically possible and economically
advantageous. Pavlu et al. [102] concluded that maintenance management of manufactur-
ing systems has many challenges and is not ready yet to integrate Industry 4.0 tools into
existing systems, especially when we talk about designing embedded smart systems to
monitor and predict the conditions of machines, except for the automotive sector, which
moves in quick steps toward Industry 4.0 integration. Further development at all levels is
required in the future, in which the selection of proper Industry 4.0 technologies is essential;
otherwise, negative effects might result from the integration process [112].

On the other hand, Compare et al. [104] indicated that new Industry 4.0 technolo-
gies, including IoT, are great enablers of PdM, which needs considerable investment in
the required software and hardware to track and monitor the health of machinery and
equipment. Thus, cost–benefit models that clarify the impact of implementing PdM in the
entire production management system must be built and integrated into the system. Hence,
a trade-off between the opportunities for implementing PdM and the required expenditures
is needed. Lack of available data, especially for new systems, is another challenge that
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may dissuade companies from investing in PdM [84,104]. However, the vast numbers
of generated data are another big challenge for engineers and data scientists in finding
the proper ways to understand, analyse, use, and store them [73,111]. Moreover, to reach
“maintenance 4.0”, not only are there technological challenges related to integration with
Industry 4.0 that must be overcome, there are other challenges that must also be taken into
consideration, such as sustainability, including social, economic, and environmental chal-
lenges, to ensure sustainable production, which is strognly affected by maintenance [98].
Kumar and Galar [98] addressed five main challenges in designing a maintenance system
that complies with Industry 4.0 requirements at the maintenance management system level.
The first is an organisational challenge, which refers to enterprise resource management,
such as resource planning (i.e., spare parts and materials), as well as information and
knowledge management. Another challenge deals with the issues resulting from the devel-
oped architecture of the required smart or intelligent maintenance solutions; these include
the development of frameworks and models for data processing and analysis, business
models, and the development of prognostic tools and models, such as PdM. Providing a
proper infrastructure to meet the integration requirement, such as tools and technologies,
raises another challenge. These could be related to service management and interaction
and management configuration to enable integration capabilities through complex plat-
forms and technologies. Dalzochio et al. [105] indicated that the main challenges involving
PdM in Industry 4.0 through applying different ML techniques are the digitalisation and
automation of factories using CPSs or digital twins to provide early failure detection. The
lack of failure-related data from the CMMS is another challenge that data scientists face.
Another problem that needs to be resolved by decision makers is the identification of the
required goals of prediction models, which may be the reduction of maintenance costs
or the improvement of the efficiency of production systems [116]. Another challenge in
implementing PdM is the fact that most studies deal with PdM as a preventive maintenance
action, and actual use of PdM in real time applications is rare [113].

Table 3. Classification results of “Challenges” category. Source: Authors’ elaboration.

Article
Challenges

Economical Technical Organisational Sustainability

[73] X

[84] X

[88] X

[98] X X X X

[99] X X

[102] X

[104] X X

[105] X

[110] X X

[111] X

[112] X

[113] X

[116] X

Total 13

Lastly, cyber security is considered an essential factor that manufacturers should
consider if more and more devices and machines are to be integrated and included in
the IoT [103]. Security considerations represent another challenge that could burden the
integration process.
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5. Discussion

In the examined articles, all of the authors concluded that Industry 4.0 features and
technologies support the modern maintenance concepts, resulting in “digitalised main-
tenance”, “smart maintenance”, “self-maintenance”, and “remote maintenance”, even
“Maintenance 4.0”, based on the driving force of predictive maintenance strategies and
other types of maintenance strategies, such as corrective, preventive, and prescriptive
maintenance. The optimum maintenance strategy is affected by different factors in an
Industry 4.0 environment, mainly the complexity of the technologies used, which can be
evaluated and selected according to specific objectives and constraints (e.g., maximisa-
tion of availability, maximisation of reliability, minimisation of life cycle costs), using an
appropriate multi-objective optimisation method.

Figure 5 summarises the connections between Industry 4.0 technologies and features
and maintenance integration concepts found in the examined literature and the mainte-
nance management system model adopted in this study. The overall integration concept is
discussed thoroughly below.

Processes 2022, 10, x FOR PEER REVIEW 19 of 29 
 

 

 

Figure 5. Summary of Integration of Industry 4.0 features and technologies and the adopted 

maintenance management system. Source: Authors’ elaboration. 

Simulation, a key technology in Industry 4.0 [120], can provide optimised short- and 

long-term decision support for maintenance planning and scheduling tasks. Additionally, 

simulation can help in risk evaluation, cost reduction, and performance improvement and 

provide a roadmap for better integration. Using simulation, advanced sensory systems 

and IoT can immensely support the formulation of digital twins, with which more 

accurate predictions can be made in cyber–physical systems. Optimal maintenance 

scenarios, including maintenance strategies, schedules, and load forecasting, are 

suggested based on the analysis of data gathered by sensory systems and transferred from 

shopfloor level to big data systems. Such data could include machine health conditions 

and other information on the surrounding environment. Data are analysed using AI 

algorithms, and degradation processes, failures and the remaining useful life of 

equipment are predicted. Prediction results are then sent away for further planning and 

organisation of maintenance tasks, such as updating maintenance plans and schedules 

and allocating maintenance technicians and spare parts; credit goes to the IIoT for making 

it possible to improve quality and performance based on prediction results. Opportunistic 

maintenance implementation based on advanced prediction, simulation tools, and/or 

digital twins and multi-objective optimisation, along with IIoT, can also be an ideal 

approach for better integration, with highly mitigated integration risks and costs, and, on 

the other hand, highly increased performance, productivity, resource utilisation, and 

planning and scheduling. Table 4 identifies the aligned relationships between the 

examined Industry 4.0 technologies and the main functions of the adopted maintenance 

management model. 

  

Figure 5. Summary of Integration of Industry 4.0 features and technologies and the adopted mainte-
nance management system. Source: Authors’ elaboration.

Simulation, a key technology in Industry 4.0 [120], can provide optimised short- and
long-term decision support for maintenance planning and scheduling tasks. Additionally,
simulation can help in risk evaluation, cost reduction, and performance improvement and
provide a roadmap for better integration. Using simulation, advanced sensory systems
and IoT can immensely support the formulation of digital twins, with which more accurate
predictions can be made in cyber–physical systems. Optimal maintenance scenarios, includ-
ing maintenance strategies, schedules, and load forecasting, are suggested based on the
analysis of data gathered by sensory systems and transferred from shopfloor level to big
data systems. Such data could include machine health conditions and other information on
the surrounding environment. Data are analysed using AI algorithms, and degradation
processes, failures and the remaining useful life of equipment are predicted. Prediction
results are then sent away for further planning and organisation of maintenance tasks,
such as updating maintenance plans and schedules and allocating maintenance techni-
cians and spare parts; credit goes to the IIoT for making it possible to improve quality
and performance based on prediction results. Opportunistic maintenance implementation
based on advanced prediction, simulation tools, and/or digital twins and multi-objective
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optimisation, along with IIoT, can also be an ideal approach for better integration, with
highly mitigated integration risks and costs, and, on the other hand, highly increased
performance, productivity, resource utilisation, and planning and scheduling. Table 4
identifies the aligned relationships between the examined Industry 4.0 technologies and
the main functions of the adopted maintenance management model.

Table 4. Relationships between Industry 4.0 technologies and maintenance management system
functions. Source: Authors’ elaboration.

Maintenance
Management System

Functions

Industry 4.0
Technologies

AI CPS Big
Data IoT Simulation

Cloud
Computing

Additive
Manufac-

turing
AR

Pl
an

ni
ng

Strategic system alliances X X X X

Maintenance strategies X X X X X X X

Maintenance load forecasting X X

Maintenance capacity X X X X X

Maintenance organisation X X

Maintenance scheduling X X X X X

O
rg

an
is

in
g Job design X X

Standards X

Work measurement X X

Project management X X X X X

C
on

tr
ol

lin
g

Work control X X

Material control X X

Inventory and spare parts control X X

Cost control X X

Managing for quality X X X

Maintenance organisation requires high levels of coordination and resource allocation.
Accordingly, maintenance organisation is aided by monitoring tools, such as supervisory
control and data acquisition (SCADA) systems, ERP systems, and computerised mainte-
nance management systems (CMMSs), which are considered some of the most important
integration-assisting tools in Industry 4.0 due to their substantial influence on operations
and maintenance processes and their associated costs [118]. Resources and spare parts
allocation are managed effectively in the cloud by the ERP system.

Maintenance control is handled using computerised systems and knowledge dash-
boards. Maintenance effectiveness can be monitored and enhanced at different levels,
starting at the machine level and ending with the overall plant. Many applications of
Industry 4.0 technologies can enhance maintenance control through data modelling, opti-
misation, and behaviour-pattern detection. AI techniques, such as machine learning, can
detect unseen factors affecting machine performance, product quality, and productivity.

Feedback is carried out through software support systems, passing through mainte-
nance control and resulting in maintenance planning and rescheduling activities. Overall
system performance is evaluated and governed based on the traditional evaluation metrics
of maintenance management systems. Using an integrated sensory system and SCADA pro-
vides industrial organisations with a new method for information collection for monitoring
and control of the performance of manufacturing systems. AI-based predictive maintenance
modules process the data. Graphical user interfaces (GUIs) show the real-time measure-
ments and information communicated between the CMMSs, ERPs, integration-assisting
tools, and SCADA systems.

Interoperability enables seamless maintenance management by providing common
means of communication between machines and operators, production departments, and
different maintenance systems at the other locations of companies’ plants. Conditions and
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operational performance data are transmitted and pipelined in a standard format, and
therefore provide the various maintenance management systems with software support,
such as ERP, CMMS, and SCADA, with further compatibility. Such compatibility results in
smooth report generation and data exchange.

For more details, refer to Table A1 in Appendix A, which classifies the investigated
articles according to the integration concepts, Industry 4.0 technologies, and integration-
assisting tools.

Integrating all elements in a value chain supports maintenance by integrating main-
tenance activities with other key contributors. For example, spare part orders can be
automatically sent to spare part suppliers or warehouses once a failure is predicted and
can be carried out optimally considering multiple objective functions. Moreover, the re-
placement process can be effectively planned considering production capacity, stability,
customer orders, and market demand.

Smart machines (called augmented operators) can recommend instructions to oper-
ators to avoid downtime. Additionally, maintenance monitoring can be available and
visualised at single-component, machine, or production-system levels.

Effective integration of Industry 4.0 features and technologies with maintenance
management systems can improve whole systems through decentralisation, integration,
interoperability, and interconnection. Table 5 summarises the possible impacts of Industry
4.0 features on maintenance management systems. For instance, the Industry 4.0 feature
“Interconnection” promotes real-time measurements and data flow along a value chain and
between stakeholders. Interconnection enhances responsiveness and the coordination of all
contributors in maintenance tasks. Moreover, equipment and machine manufacturers can
monitor the performance of their machines under different operational conditions; therefore,
they can enhance future generations of machines or improve the performance of current
machines remotely. Smart machines can communicate with their original manufacturers
periodically, receive software updates, and improve machine performance.

Table 5. Impact of Industry 4.0 features on maintenance management systems. Source: Authors’ elaboration.

Industry 4.0 Features Impact on Maintenance Management Systems

Interconnection

Real-time measurements and data flow along a value chain
Enhanced coordination of all contributors to the maintenance tasks
Enhanced responsiveness to maintenance actions and failure modes

Involvement of machine manufacturers in the maintenance process by improving the software functions
released in new updates and operational recommendations

Interoperability

Standard communication modules between machines and maintenance systems
Standard reporting for maintenance activities at the micro-level (component, machine, and system) and

macro-level (enterprise)
Compatibility with different software systems, such as ERP, CMMS, and SCADA

Integration

Involvement of all departments within a company in the maintenance activities and vice versa: involvement
of the maintenance department in the activities of the other departments (vertical integration)

Involvement of all the stakeholders of the product value chain in the maintenance activities and vice versa
(horizontal integration)

Involvement of all the stakeholders of the product lifecycle in the maintenance activities: warehouses,
production, product design, and equipment manufacturers (end-to-end integration)

Responsive maintenance activities in terms of spare part replacement and resource allocation

Decentralisation
Self-maintenance and self-adaptation capabilities of machines

Unstable operational conditions can be handled smoothly
Machines can communicate and coordinate operational data independently

Despite the significant benefits of the previously discussed integration on the whole
production system, various challenges and disadvantages of such integration must be
taken into consideration and could have unintended negative consequences. The primary
integration problems concern how to finance the transformation process and afford the
necessary infrastructure, which needs huge investment. Numerous studies have also ad-
dressed organisational and technical challenges regarding the ability to afford the necessary
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resources, the lack of vast numbers of required data, the increased complexity of the predic-
tion algorithms used, the proper selection of Industry 4.0 technologies, and cyber-security
issues. Other sustainability challenges have started to be raised in some recent studies.

6. Conclusions, Limitations, and Future Work

In this paper, an intensive literature review has been conducted concerning mainte-
nance management and Industry 4.0, and their synergistic integration has been discussed.
Fifty-four articles published between 2017 and July 2022 were examined. Information from
each examined article was analysed, categorised, and summarised. An adopted mainte-
nance management system model was used to facilitate the alignment of the integration
concepts of Industry 4.0 features and technologies and the main functions of the model,
focusing on predictive maintenance and integration-assisting tools. In conclusion, digitali-
sation is the first step in the integration process. However, the synergistic integration of the
maintenance management system’s functions and Industry 4.0 features and technologies
can result in more efficient production systems. To achieve the full technical efficiency of a
maintenance system in an Industry 4.0 environment, attention must be paid not only to
how to apply PdM, as the central concept of integration and the main enabler of Industry
4.0, but also to look at all levels and components of the maintenance management system.
The mainly used integration concepts, such as PdM, PdM 4.0, Maintenance 4.0, and remote
and smart maintenance, have been investigated and discussed, indicating that successful
integration needs to involve other tools, i.e., “integration-assisting tools”, such as ERP,
SCADA, CMMS, sensors, and real-time condition-monitoring systems, supported by the
necessary software and GUIs to facilitate monitoring and assist technicians in speeding up
decision-making processes. Some data-driven maintenance strategies, such as PdM, might
face difficulties in their full implementation due to the complex equipment required for the
integration, such as sensors, which cannot be installed in all locations.

Based on the findings of this research, it can also be concluded that the integration
of maintenance management systems with Industry 4.0 technologies and features needs
further research to investigate more theoretical and practical areas. The inclusion and
exclusion criteria, as well as the search keywords, could be expanded to include more
concepts and maintenance strategies. For instance, reliability-centred maintenance and
risk-based maintenance integration could be investigated in future work.

While this research has focused on the technological aspects of integration, other
important issues, such as the human factors in the new industrial paradigms and their roles
in the integration process, could also be considered in further reviews.

Moreover, regarding future opportunities, extending the existing research focuses to
develop new PdM frameworks to include more components and levels of maintenance
management systems could increase the efficiency of the integration process, and the definition
of the concept of “Maintenance 4.0” could be refined. Additionally, including more areas
and applications not only in the manufacturing industry but also in the services sector by
utilising more tools and technologies, such as big data, AI, and IoT, in the main domain of
CPSs is another research opportunity to be investigated. Therefore, further studies are needed
to address the challenges of integration in both sectors. Finally, more attention should be paid
to Industry 4.0 features and their importance in the integration process.
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Appendix A

Table A1. Classification results for “integration concept” categories. Source: Authors’ elaboration.

Article Integration Concept Industry 4.0 Technologies Integration-Assisting Tools

[63] PdM AI-ML Sensory—CM system

[64] Digital maintenance AI-ML Sensory—CM system

[65] Industry 4.0—TPM - CMMS/ERP/SCADA

[66] Combined PdM CPS and AI-ML Sensory—CM system

[67] Intelligent PdM AI-ML Sensory—Real-time CM system

[68] Synchronous
production—PdM AI-ML, big data, and IoT Real-time CM system

[69] Remote maintenance Augmented reality Software support

[70] Intelligent PdM CPS, AI-ML, cloud computing, and IoT Sensory—Real-time CM system

[71] Low-cost PdM AI-ML and CPS Sensory—Real-time CM system

[72] PdM AI-ML SCADA and GUI

[73] PdM AI-ML SCADA and CMMS

[74] Low-cost PdM AI-ML ERP, DCS, and MES

[75] PdM AI-ML Sensory—CM system

[76] PdM 4.0 AI-ML and CPS Sensory—CM system

[77] Low-cost PdM AI-ML Sensory—CM system

[78] PdM 4.0 AI-ML, big data, and CPS Sensory—CM system

[79] PdM AI-ML Real-time CM system

[80] PdM AI-ML Sensory system and Microsoft Azure

[81] PdM AI-ML and big data Sensory—CM system

[82] PdM AI-ML Sensory—CM system

[83] PdM AI-ML Sensory—CM system

[84] PdM Big data and AI-ML Sensory—CM system

[85] PdM Big data and AI-ML CM system

[86] Cognitive maintenance CPS, big data, and AI-ML Real-time CM system

[87] Smart PdM AI-ML Real-time CM system

[88] Intelligent maintenance AI-ML, IoT, and big data Real-time CM system, CMMS, and ERP

[89] Intelligent PdM AI-ML, simulation, and cloud computing Sensory—CM system

[90] Industry 4.0—TPM - CMMS/ERP/SCADA

[91] Synchronous
production—PdM AI-ML Real-time CM system

[92] Labour support
maintenance Augmented reality and additive manufacturing Software support
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Table A1. Cont.

Article Integration Concept Industry 4.0 Technologies Integration-Assisting Tools

[93] Labour support
maintenance Augmented reality Software support

[94] Labour support
maintenance Augmented reality and additive manufacturing Software support

[96] PdM AI-ML, big data, and IIoT Real-time CM system

[96] PdM AI-ML Real-time CM system

[97] Intelligent maintenance AI-ML Real-time CM system

[98] Maintenance 4.0 - ERP and CMMS

[99] Maintenance 4.0 - ERP and CMMS

[100] Maintenance 4.0 Simulation ERP and CMMS

[101] Maintenance
decision-making support CPS and IoT ERP and CMMS

[102] - AI-ML GUI, ERP and CMMS

[103] Maintenance
decision-making support - ERP and CMMS

[104] - IoT CMMS

[105] - AI-ML and CPS CMMS

[106] Maintenance
decision-making support AI-ML and big data Sensory system

[107] Self-maintenance/remote
maintenance Big data, AI-ML, and additive manufacturing CMMS and software support

[108] Smart maintenance Sensory—CM system

[109] PdM CPS Real-time CM system

[110] - - -

[111] - AI-ML and big data -

[112] - - -

[113] PdM - -

[114] PdM IoT Real-time CM system

[115] PdM AI-ML and digital twin Real-time CM system

[116] PdM AI-ML Sensory—CM system
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