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Abstract: Background: The bacterial destructing activity toward pesticides has been the focus of
research in the last few decades. Hexachlorobenzene is included in the organochlorine pesticides
group that are prohibited for use. However, large hexachlorobenzene amounts are still concentrated in
the soil, stressing the relevance of research on hexachlorobenzene-destroying bacteria. Methods: The
ability to destroy hexachlorobenzene by Comamonas testosteroni UCM B-400, B-401, B-213 strains was
investigated and established. Bacteria were cultivated (7 days at 28 ◦C) in mineral Luria-Bertrani (LB)
medium with three hexachlorobenzene doses: 10, 20, 50 mg/L. The hexachlorobenzene concentrations
were recorded by a gas chromatography method. Results: The results showed that C. testosteroni UCM
B-400, B-401 have high destructive activity toward hexachlorobenzene. The highest (50 mg/L) initial
concentration decreased to 41.5 and 43.8%, respectively, for C. testosteroni UCM B-400, B-401. The
unadapted C. testosteroni UCM B-213 was tolerant to hexachlorobenzene (cell titers after cultivating
with 10.0, 20.0, 50.0 mg/mL were higher compared to initial titer), but had a low-destructing activity
level (two times less than B-400 and B-401). Conclusions: Bacterial strains C. testosteroni UCM B-400,
B-401 can be seen as a potential soil bioremediation from hexachlorobenzene pollution.

Keywords: hexachlorobenzene; toxicity; microbial metabolism; destroying activity; bacterial decom-
position; destruction potential

1. Introduction

The last century is defined as a period of active use of pesticides against pests to
increase agricultural crop yield. Organochlorines are a group of pesticides accumulating in
the environment as a result of their widespread use in previous years, starting from the 40s
to the end of the 20th century [1,2]. Due to the particular safety hazards, these pesticides
were prohibited for use by Stockholm Convention [3]. Organochlorine pesticides are the
most persistent in the environment containing five or more chlorine atoms per molecule,
so they have a long half-life. Depending on the half-life, pesticides are assigned different
levels of persistence in soil, ranging from low persistence (half-life < 30 days) to very high
(half-life > 100 days) [4,5].

According to the EPA (Environmental Protection Association) classification, many
organochlorine pesticides, including hexachlorodimethanonaphthalene (aldrin or HCDN),
hexachloro-octachlorohexahydromethanoindene (chlordane), p,p-dichloro-diphenyltrichlor
oethane (DDT), hexachlorobenzene (HCB), hexachlorocyclohexane (HCCH), heptachlor
(tetrohydromethane heptachloroindene) are classified as persistent bioaccumulative and
toxic (PBT) chemicals that persist in the environment and bioaccumulate in food chains, and
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thus, pose a risk to human health and ecosystems [4]. These pesticides tend to bind strongly
to soil particles and can remain on the soil surface for months to years. Hexachlorobenzene
is one of the widely used organochlorine pesticides in the past, due to fungicidal activity [6].

HCB is formed as a byproduct of chemical processes due to incomplete combustion,
and is also used as an additive in pesticide preparations for agriculture. Thus, large
HCB amounts are still concentrated in the ecosystem [7,8]. Currently, HCB is banned
in the USA and Europe due to its proven negative impact on human health and the
environment [9,10]. Thus, HCB was detected in soils and animal remains from the most
remote Arctic and Antarctic regions, namely in the tissues of polar bears, penguins, foxes,
etc., [11–14]. Getting into the human body, orhanochlorine pesticides (OCP) can cause the
disease series. Hexachlorobenzene is able to cause cysts on the hands, itching, psoriasis,
eczema, leukoderma and skin rashes in humans [15]. The occurrence of liver and kidney
cancer and immune and reproductive systems diseases in the human body were also
reported [16]. The OCP, including HCB, have been identified in the breast milk of women
in Mexico [17].

The prenatal exposure to DDT, β-BHC, and HCB leads to a decrease in the infant’s body
weight, i.e., OCPs are able to overcome the blood–brain barrier shown by a study conducted
in China [18]. It has been reported that β-HCG, HCB and DDT residues can accumulate in
maternal and umbilical cord serum, and from maternal blood can be transferred through
the placenta and affect the thyroid hormone level in newborns [19].

Despite the ban on HCB production in many countries, it is a by-product or interme-
diate in the manufacturing process of some pesticides [10]. A significant HCB amount is
concentrated in soils [20] and due to evaporation from them enters the atmosphere [14].

Organochlorine pesticides influencing studies on the microbial community structure
make it possible to note that microbial communities have a unique reaction to various
toxic compounds [1,21–26]. OCP were reported to cause a quantity decrease in bacte-
ria, micromycetes, actinomycetes, and are also capable of inhibiting N2 fixation by soil
microorganisms [27–29].

Hexachlorobenzene is a persistent organic pollutant; nevertheless, in the last two
decades, there have been published research reports about microbial HCB biodegradation
(in anaerobic conditions) as a mechanism to reduce HCB toxicity [30,31]. For example,
Dehalococcoides sp. CBDB1 [32] was able to reduce HCB under anaerobic conditions by
dechlorination to less chlorinated benzenes such as 1,3,5-trichlorobenzene and 1,2-, 1,3-
and 1,4-dichlorobenzene. However, these products can not be decomposed further and, in
addition, they can lead to serious secondary pollution of the environment. Hexachloroben-
zene limits are also regulated in the regulation of the European Union (Regulation (EU)
2019/1021 of the European Parliament and of the Council of 20 June 2019) [33]. Studying
the microbial ability to decompose toxic compounds is also necessary. Aerobic degradation
of pollutants is characteristic of the surface layers in the soil, into which chlorobenzenes and
other toxic compounds enter with groundwater. In this regard, the results of a comparative
study of the effectiveness of trichlorobenzene decomposition in aerobic and anaerobic
conditions have been published [34]. Microbial degradation of HCB in soils was stud-
ied mainly under anaerobic conditions [6,35]. HCB-degrading aerobes obtained from
natural sources are still needed for HCB-contaminated areas remediation. According to
the literature, HCB is decomposed by microorganisms under aerobic conditions due to
the formation of pentachlorophenol [36]. The ability of Comamonas to decompose pen-
tachlorophenol was previously reported. Therefore, it is important that HCB destruction
is studied under aerobic conditions. There are particular data concerning Nocardioides sp.
PD653’s ability to mineralize HCB [37]. The microbial metabolism of HCB under aerobic
conditions is insufficiently described in the literature. The search for strains to be able to
destroy HCB in aerobic conditions is promising, and consequently, the aim of the study
was to determine the possible ability of Comamonas testosteroni bacterial strains to degrade
hexachlorobenzene.
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2. Materials and Methods

The study of the ability to decompose hexachlorobenzene in C. testosteroni UCM B-400
and B-401, B-213 was carried out. C. testosteroni UCM B-400 and B-401 were isolated from
Kalush’s organochlorine pesticides landfill (Ivano-Frankivsk region, Ukraine). In previous
studies, these strains are established to be resistant to high HCB doses (50–100 mg/L) [38].
C. testosteroni UCM B-213 from the Ukrainian Collection of Microorganisms, which was
not adapted to high HCB doses, was included in the experiment as the comparison. The
laboratory experiment was conducted according to Table 1.

Table 1. Cultivation conditions of Comamonas testosteroni strains in a mineral medium LB with the
HCB addition.

Conditions Cultivations Acetone Volume
(mL)

Hexachlorobenzene
(mg/L)

(a) control cultivating the strain in LB
medium contained acetone
volume required to dissolve

no Pure control
(b) control (10) 20 10
(c) control (20) 40 20
(d) control (50) 100 50

(e) cultivating
in LB medium contained

20 10
(f) cultivating 40 20
(g) cultivating 100 50

Cultivation of bacteria was carried out by the deep method in a liquid-mineral medium
LB by the following composition in g/L: (NH4)2SO4—5; KH2PO4—2.93; K2HPO4—5.87;
MgSO4 × 7H2O—0.3; NaCl—2; CaCl2—0.01; FeSO4—0.01 [39]. Sodium succinate (4 g/L),
as a carbon source for C. testosteroni, was recommended [40]. Cultivation conditions:
shaking (121 rpm), 7 days at 28 ◦C. The ability to grow C. testosteroni UCM B-400, B-401,
B-213 in a mineral medium containing HCB was studied by cultivating the noted strains
in a liquid LB medium, and three HCB concentrations were added: 10, 20, 50 mg/L. The
initial titer was 1 × 106 CFU/mL. The destruction level was determined by the residual
HCB concentration in the culture liquid after cultivation, the cell biomass from the culture
liquid was separated by centrifugation (5000 rpm, 30 min).

Chemical analysis of the hexachlorobenzene content in the samples was performed by
gas chromatography (Agilent 6890 N chromatograph in combination with HP Chemstation
software (Santa Clara, CA, USA), version 4.03.016). The experiment used hexachloroben-
zene (0.100 mg/mL in hexane) from the analytical standard DSZU 042.32-97.

Statistical analysis of the data was performed by GraphPad Prism 8.0.1 software using
one-way ANOVA to determine reliable differences between mean values of samplings; the
post-test comparison was made using Tukey’s multiple comparisons test with alpha = 0.05.
All values were shown as Mean ± SD (standard deviation).

3. Results

The bacterial strains of C. testosteroni UCM B-400, B-401, B-213 titers were the highest
in samples with pure cultures of the strains since they were cultivated in the medium
without the addition of solvent and HCB. After the cultivation completion, the initial titer
was 1 × 106 CFU/mL (Table 2). Compared to the pure culture control under cultivation
conditions with 10 mg/L HCB, the C. testosteroni B-400 and B-401 cells titer decreased to
1 magnitude order, with 20 mg/L HCB to 2 magnitude orders. Relative to the initial titer
(1 × 106 CFU/mL), an increase was noted. The C. testosteroni B-213 cells titer also increased
in all cultivation options, but under 50 mg/L HCB presence, its indicator was lowered to
2 magnitude orders compared to the pure culture control. Thus, according to the cell titer,
tolerance to HCB of all studied strains was noted. We can assume the probability to use
this pesticide as a source of carbon.
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Table 2. C. testosteroni cells titer after adding HCB to the culture medium (CFU/mL).

Variants
C. testosteroni Strains

UCM B-400 UCM B-401 UCM B-213

Control 1.50 ± 0.30 × 109 a 1.77 ± 0.21 × 109 a 9.03 ± 0.35 × 108 a

Control (10) 7.67 ± 1.50 × 108 ab 1.00 ± 0.10 × 109 a 7.93 ± 0.15 × 108 ab

Control (20) 4.53 ± 0.59 × 108 ab 4.93 ± 0.61 × 108 ab 3.80 ± 0.25 × 108 b

Control (50) 2.67 ± 0.35 × 108 b 2.70 ± 0.36 × 108 b 8.40 ± 0.30 × 107 bc

10 mg/L 1.23 ± 0.32 × 108 b 1.70 ± 0.20 × 108 b 6.87 ± 0.35 × 107 bc

20 mg/L 7.43 ± 0.45 × 107 bc 7.43 ± 0.36 × 107 bc 4.07 ± 0.47 × 107 bc

50 mg/L 1.73 ± 0.25 × 107 c 1.80 ± 0.30 × 107 c 1.10 ± 0.33 × 107 c

Note: various letters of upper indices a, b, c in Table indicate values that significantly (p < 0.05) differ one from
another within one column, which indicates growing activity of studied strains as a result of comparison using
the Tukey’s test (p < 0.05). M ± the standard deviation (SD).

As a research result, the C. testosteroni UCM B-400, B-401, B-213 abilities to destruct
HCB were revealed, as evidenced by the residual concentrations of this pesticide in the
culture liquid. After the cultivation for 7 days in LB medium containing 10, 20, 50 mg/L
HCB concentrations, the residual HCB concentration in the culture liquid for the first two
strains was significantly (p < 0.05) lower (Figure 1). Thus, as a result of the metabolic
activity of C. testosteroni UCM B-400 in the culture liquid with initial concentrations of 10,
20, 50 mg/L HCB, the decrease was monitored, respectively, by 70%, 64% and 59%.
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Figure 1. HCB destruction by C. testosteroni bacterial strains: UCM B-400, B-401, B-213. M ± the
standard deviation (SD), a, b, c indicated in the graph means the values that significantly differ one
from another within one column, which indicates growing activity of studied strains as a result of
comparison using the Tukey’s test (p < 0.05).

Approximately, the same HCB destruction level was established for C. testosteroni UCM
B-401; however, at 20 mg/L HCB the initial concentration decreased by 69%, which was the
highest HCB destruction level at the noted dose. The collected strain of C. testosteroni UCM
B-213 showed much lower activity towards the HCB destruction. Under 10, 20, 50 mg/L
HCB in the medium LB, the concentrations in the culture liquid decreased by 43, 36, 32%,
respectively.

The confirmation of the study is also achieved by the principal component analysis
(PCA) since, from Figure 2, is possible to see that, according to the eigenvalue, two groups
are formed: group number 1, consisting out of B-400 and B-401 strains and group number
2, consisting out of B-213 strain. These statistical analysis results are in accordance with
the obtained results since no statistically significant (p < 0.05) differences were obtained
between B-400 and B-401 strains.
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Thus, the ability of the researched C. testosteroni strains to destruct HCB was ex-
perimentally confirmed, while the destructing activities of B-400 and B-401 were higher
compared to the collection strain B-213.

4. Discussion

In the literature, there is no data about Comamonas bacteria’s capacity to destroy HCB.
The study results showed that the strains are able to grow in the medium-contained HCB.
This fact gives reason to believe that the studied strains are capable of using HCB as a
carbon source. Nocardioides sp. PD653 bacteria are reported to have a HCB-destructing
ability [37]. During aerobic cultivating of Nocardioides sp. PD 653 in a mineral medium-
containing HCB with an initial 8 µM HCB content, after 9 days its concentration decreased
to 1.5 M and the chloride ions accumulation was observed up to 34 M.

It should be noted that this is a very high HCB concentration, while the destruction
was higher than 80%. In our study, we used much lower doses (less than 1 M), but also
C. testosteroni B-400 and B-401 demonstrated a highly destructive activity. A possible
(hypothetical) scheme (done according to the present literature and obtained results) of
the hexachlorobenzene decomposition by Comamonas testosteroni bacterial strains is shown
in Figure 3.

Moreover, the ability to destroy HCB in aerobic conditions by a microbial group
isolated from a polluted ecotope was revealed, where Azospirillum and Alcaligenes were
dominant bacteria. The HCB degradation efficiency occurred in the following pH order:
7.0 > pH 8.0 > pH 9.0 > pH 6.0. Degradation efficiency was influenced by the incubation
temperature that varied in the following order: 37 ◦C > 30 ◦C > 20 ◦C > 4 ◦C. Depending on
the initial substrate concentrations, the degradation efficiency was 55%, 51%, 51% at initial
concentrations: 5 mg/L, 10 mg/L, and 25 mg/L, respectively [41]. In our study, the initial
concentrations were 10 mg/L, 20 mg/L, 50 mg/L, and the corresponding degradation effi-
ciency was 70.2%, 64.0–69.4%, 56.2–58.5% for C. testosteroni B-400 and B-401, isolated from
HCB-polluted soil. The ability to utilize HCB in aerobic conditions by Methylobacterium
and Pseudomonas bacteria, as the only source of carbon, was shown by adding HCB with
labeled carbon (13C) to the culture medium. The confirmation of metabolic activity was
the detection of bacterial DNA with 13C [42]. In addition to the study of the ability to
degrade HCB by strains isolated from natural ecosystems, genetic engineering methods
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are also used to create bacterial mutants potentially capable of destroying HCB by intro-
ducing a gene encoding the heme monooxygenase CYP101 (cytochrome P450cam) from
P. putida, which is able to oxidize HCB to PCP [43,44]. Using this approach, the mutant
F87W/Y96F/L244A/V247L was created, which is capable of oxidizing pentachlorobenzene
and hexachlorobenzene to pentachlorophenol, which is decomposed by microorganisms.
The authors also recommended the F87W/Y96F/L244A/V247L mutant for use in the
bioremediation of polychlorinated benzenes [44].
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bacterial strains (it was generated according to the following literature data [37,45]).

According to the literature, Comamonas bacteria are known to have degrading ability
to some chlorobenzene compounds [46–48], such as 4-chloronitrobenzene [49]. The product
of the partially reductive biodegradation pathway of 4-CHNB is 5-chloro-4-hydroxy-2-
oxoacetate, which participates in the tricarboxylic acid cycle or other metabolic processes [50].

Nocardioides sp. PD653 was the first strain reported in the literature capable of de-
grading HCB under aerobic conditions through the intermediates pentachlorophenol,
2,3,5,6-tetrachloro-p-hydroquinone and 2,6-dichloro-p-hydroquinone [37]. C. testosteroni
and other representatives of Betaproteobacteria are considered microorganisms with a high
destructive potential to xenobiotics. There are reports in the literature about the ability of
Alcaligenes sp. strain K to mineralize pentachlorophenol. Alcaligenes sp. and Comamonas
sp. belong to the same order of Burkholderiales, class Betaproteobacteria [51]. Therefore, it
is expected that C.testosteroni bacteria are capable of HCB degradation [52]. Regarding
the literature, C. testosteroni strains are known to decompose a wide range of aromatic
compounds, but the pathways of metabolism are insufficiently studied (see Figure 3).

C. testosteroni is known to be able to decompose pentachlorophenol, but the metabolic
pathway has not been investigated [53]. However, in the literature are data about in-
termediates of pentachlorophenol metabolized by other Gram-negative bacteria, namely,
Escherichia coli PCP1 and Acinetobacter sp. PCP3 (intermediates: 2,3,5,6-tetrachlorohydroquinone
(TCHQ) and 2-chloro-1,4-benzenediol (DCBE)). Pentachlorophenol metabolized by Gram-
negative bacteria Sphingobium chlorophenolicum ATCC 39723 was studied in detail, the end
decomposition products are acetyl-CoA and succinyl-CoA, which are substrates of the citric
acid cycle [45]. The complete 4-chlorophenol decomposition mechanism by C. testosteroni
bacteria is known [54], where one of the intermediate products is maleylacetate (one of the
benzoate degradation intermediates), which is common to the complete pentachlorophenol
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decomposition mechanism. An interesting fact, C. testosteroni is characterized by the unique-
ness of benzene acid (model aromatic compound) metabolism. Metabolizing benzoate by
C. testosteroni bacteria is carried out by a mechanism peculiar only to this species that is
hydroxylation with the m-oxybenzoate formation, which then passes through the stage
of protocatechuic acid formation. In the end, two molecules of pyruvate and formate are
formed to be substrates for the Krebs cycle enzymes [55–57].

According to our obtained results and the literature data analysis, it should be noted
that Comamonas testosteroni have a high destruction potential to a wide toxic compounds
range. At the same time, they are characterized by individual metabolism features.

5. Conclusions

The ability of C. testosteroni UCM B-400, B-401, B-213 to decompose hexachlorobenzene
was investigated and their destructive activity was confirmed biochemically. It has to be
emphasized that this kind of study was conducted for the first time, according to the
present literature. Hypothetically, the HCB metabolism pathway by C. testosteroni UCM
B-400, B-401, B-213 strains was explained. The initial concentration from 50 mg/L HCB
decreased up to two times due to metabolism by strains UCM B-400, B-401. The destructive
capacity of the strains isolated from contaminated soils was higher compared to the non-
adapted collection strain. C. testosteroni UCM B-400 UCM B-401, at the initial 20 mg/L HCB
concentration, decomposes it by 64 and 69%, respectively. These strains are promising for
further studying the possibility of its use in bioremediation measures.

Author Contributions: Conceptualization, M.D., N.Y. and G.I.; methodology, M.D., N.Y. and G.I.;
software, M.D. and I.K.; validation, M.D., G.I. and I.K.; formal analysis, D.D. and G.I.; investigation,
M.D., G.I. and N.Y.; resources, M.D.; data curation, I.K. and G.I.; writing—original draft preparation,
M.D.; writing—review and editing, M.D., N.Y., I.K., D.D. and G.I.; visualization, M.D. and I.K.;
supervision, G.I. and I.K.; project administration, G.I.; funding acquisition, I.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the Grant Agency of Masaryk University (MUNI/A/1221/2021).

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to Maksym Harhota, head of the Laboratory of Biological
Polymer Compounds of Zabolotny Institute of Microbiology and Virology of the National Academy
of Sciences of Ukraine for assistance in gas chromatography analyses performance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, G.; Du, Y.; Yin, J.; Jiang, Y.; Zhang, D.; Jiang, B.; Li, G.; Wang, H.; Kong, F.; Su, L.; et al. Response of Microbial Communities

to Different Organochlorine Pesticides (OCPs) Contamination Levels in Contaminated Soils. Chemosphere 2019, 215, 461–469.
[CrossRef]

2. Raffa, C.M.; Chiampo, F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering 2021, 8, 92.
[CrossRef] [PubMed]

3. Stockholm Convention on Persistent Organic Pollutants (POPs); Secretariat of the Stockholm Convention (SSC): Stockholm,
Switzerland, 2020; Volume 2020.

4. EPA—United States Environmental Protection Agency 2022. Available online: https://www.epa.gov/ (accessed on 26 September 2022).
5. Olisah, C.; Okoh, O.O.; Okoh, A.I. Occurrence of Organochlorine Pesticide Residues in Biological and Environmental Matrices in

Africa: A Two-Decade Review. Heliyon 2020, 6, e03518. [CrossRef]
6. Garbou, A.M.; Liu, M.; Zou, S.; Yestrebsky, C.L. Degradation Kinetics of Hexachlorobenzene over Zero-Valent Magne-

sium/Graphite in Protic Solvent System and Modeling of Degradation Pathways Using Density Functional Theory. Chemosphere
2019, 222, 195–204. [CrossRef]

7. Kumar, M.; Dinesh, K.; Kubendran, D.; Kalaichelvan, P.T. Hexachlorobenzene—Sources, Remediation and Future Prospects. Int. J.
Curr. Res. Rev. 2013, 2013, 1–12.

8. Pouch, A.; Zaborska, A.; Pazdro, K. The History of Hexachlorobenzene Accumulation in Svalbard Fjords. Env. Monit Assess 2018,
190, 360. [CrossRef] [PubMed]

9. Lovecka, P.; Pacovska, I.; Stursa, P.; Vrchotova, B.; Kochankova, L.; Demnerova, K. Organochlorinated Pesticide Degrading
Microorganisms Isolated from Contaminated Soil. New Biotechnol. 2015, 32, 26–31. [CrossRef]

http://doi.org/10.1016/j.chemosphere.2018.09.160
http://doi.org/10.3390/bioengineering8070092
http://www.ncbi.nlm.nih.gov/pubmed/34356199
https://www.epa.gov/
http://doi.org/10.1016/j.heliyon.2020.e03518
http://doi.org/10.1016/j.chemosphere.2019.01.134
http://doi.org/10.1007/s10661-018-6722-3
http://www.ncbi.nlm.nih.gov/pubmed/29799069
http://doi.org/10.1016/j.nbt.2014.07.003


Processes 2022, 10, 2170 8 of 9

10. Wang, H.; Cao, X.; Li, L.; Fang, Z.; Li, X. Augmenting Atrazine and Hexachlorobenzene Degradation under Different Soil Redox
Conditions in a Bioelectrochemistry System and an Analysis of the Relevant Microorganisms. Ecotoxicol. Environ. Saf. 2018, 147,
735–741. [CrossRef] [PubMed]

11. Wang, Y.; Claeys, L.; van der Ha, D.; Verstraete, W.; Boon, N. Effects of Chemically and Electrochemically Dosed Chlorine
on Escherichia Coli and Legionella Beliardensis Assessed by Flow Cytometry. Appl. Microbiol. Biotechnol. 2010, 87, 331–341.
[CrossRef]

12. Andersen, M.S.; Fuglei, E.; König, M.; Lipasti, I.; Pedersen, Å.Ø.; Polder, A.; Yoccoz, N.G.; Routti, H. Levels and Temporal Trends
of Persistent Organic Pollutants (POPs) in Arctic Foxes (Vulpes Lagopus) from Svalbard in Relation to Dietary Habits and Food
Availability. Sci. Total Environ. 2015, 511, 112–122. [CrossRef]

13. Corsolini, S. Industrial Contaminants in Antarctic Biota. J. Chromatogr. A 2009, 1216, 598–612. [CrossRef] [PubMed]
14. Song, Y.; Li, Y.; Zhang, W.; Wang, F.; Bian, Y.; Boughner, L.A.; Jiang, X. Novel Biochar-Plant Tandem Approach for Remediating

Hexachlorobenzene Contaminated Soils: Proof-of-Concept and New Insight into the Rhizosphere. J. Agric. Food Chem. 2016, 64,
5464–5471. [CrossRef]

15. Jayaraj, R.; Megha, P.; Sreedev, P. Review Article. Organochlorine Pesticides, Their Toxic Effects on Living Organisms and Their
Fate in the Environment. Interdiscip. Toxicol. 2016, 9, 90–100. [CrossRef]

16. Ashraf, M.A. Persistent Organic Pollutants (POPs): A Global Issue, a Global Challenge. Env. Sci. Pollut. Res. 2017, 24, 4223–4227.
[CrossRef]

17. Chávez-Almazán, L.A.; Diaz-Ortiz, J.; Alarcón-Romero, M.; Dávila-Vazquez, G.; Saldarriaga-Noreña, H.; Waliszewski, S.M.
Organochlorine Pesticide Levels in Breast Milk in Guerrero, Mexico. Bull. Env. Contam. Toxicol. 2014, 93, 294–298. [CrossRef]
[PubMed]

18. Guo, H.; Jin, Y.; Cheng, Y.; Leaderer, B.; Lin, S.; Holford, T.R.; Qiu, J.; Zhang, Y.; Shi, K.; Zhu, Y.; et al. Prenatal Exposure to
Organochlorine Pesticides and Infant Birth Weight in China. Chemosphere 2014, 110, 1–7. [CrossRef]

19. Li, C.; Cheng, Y.; Tang, Q.; Lin, S.; Li, Y.; Hu, X.; Nian, J.; Gu, H.; Lu, Y.; Tang, H.; et al. The Association between Prenatal Exposure
to Organochlorine Pesticides and Thyroid Hormone Levels in Newborns in Yancheng, China. Environ. Res. 2014, 129, 47–51.
[CrossRef]

20. Zhang, C.; Wang, B.; Dai, X.; Li, S.; Lu, G.; Zhou, Y. Structure and Function of the Bacterial Communities during Rhizoremediation
of Hexachlorobenzene in Constructed Wetlands. Env. Sci. Pollut. Res. 2017, 24, 11483–11492. [CrossRef] [PubMed]

21. Feng, Q.; Liang, S.; Jia, H.; Stadlmayr, A.; Tang, L.; Lan, Z.; Zhang, D.; Xia, H.; Xu, X.; Jie, Z.; et al. Gut Microbiome Development
along the Colorectal Adenoma–Carcinoma Sequence. Nat. Commun. 2015, 6, 6528. [CrossRef]
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