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Abstract: Distribution system fault signals contain severe noise components. In order to solve the
problem of distribution network fault-line selection, a fault-line selection method based on modifying
the Improved Complete Ensemble Empirical Mode Decomposition Adaptive Noise (MICEEMDAN)
algorithm, Recurrence Plot, and Yolov5 network is proposed. First, ICEEMDAN is optimized using
multi-scale weighted permutation entropy (MWPE). MICEEMDAN can decompose an electrical
signal into a series of intrinsic mode functions (IMFs). Recurrence Plot transformation of all IMFs,
obtained from decomposition and stitching from top to bottom, realizes the conversion of 1D time
series to 2D images. Then, the recurrence maps obtained from all lines in the distribution network
are stitched to obtain the distribution network recurrence map, realizing the mining of the fault-
signal features of the whole distribution network. Finally, the Yolov5 network is used to mine
the fault features of the recurrence map of the distribution network autonomously to realize the
fault-line selection. The experiments show that the method has a good noise immunity and 99.98%
fault-selection accuracy, which can effectively complete the distribution network fault selection.

Keywords: multi-scale weighted permutation entropy; MICEEMDAN; Recurrence Plot; Yolov5
network; fault-line selection

1. Introduction

The distribution network topology is becoming increasingly complex, and the oc-
currence of faults is unavoidable. If faults are not recovered in time, it will impact users’
electricity safety. Therefore, it is essential to remove faults in time to ensure the safe and
stable operation of the power system [1]. Eighty percent of the faults in medium- and
low-voltage distribution networks are caused by single-phase grounding, and fault-line
selection is a crucial link in distribution network fault recovery [2]. In recent years, fault-line
selection algorithms have received much attention. However, these algorithms are easily af-
fected by neutral grounding methods, transition resistance, and other factors, which make
the fault-line selection algorithm for distribution networks have certain limitations [3].
Therefore, studying a more general fault-line selection algorithm for distribution networks
is vital.

Currently, there are three main methods of fault-line selection: passive line selection,
active line selection, and integrated line selection [4]. The passive line-selection method
mainly uses signal characteristics for line selection, including the steady-state component
method, transient component method, traveling wave component method, etc. [5]. The ac-
tive line-selection method mainly uses a sudden change signal or injection signal to achieve
fault-line selection, including the small disturbance method, signal injection method, resid-
ual flow increment method, etc. [6]. The integrated line-selection method is a combination
of the line-selection methods, using more than two different principles, including the use
of artificial intelligence and other algorithms, for fault-wire selection [7].

The authors in [8] decomposed the zero-sequence conductance to detect faulty feeders
by comparing the spectral characteristics of the calculated zero-sequence conductance.
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However, different grounding types, line parameters, transition resistances, fault locations,
and other factors can lead to different spectral characteristics, making the detection strategy
based on spectral fault characteristics ineffective. Reference [9] proposed a method for
fault-line selection based on the correlation coefficient of phase current fault component
waveforms. However, its actual line-selection accuracy is unsatisfactory due to the virtual
environment’s load fluctuation. In [10], the authors use the intrinsic mode energy of the
phase current fault component to select the line, but its fault rate is higher for different fault
initial phase angles. Reference [11] uses a projection relationship between the line current
and the neutral branch current in the same direction to select the line which is not affected
by the transition resistance. However, the error is more significant in practical applications
because the amplitude and phase information must be used simultaneously. The authors
of [12] proposed a method for line selection by extracting the amplitude coefficients of the
high-frequency components of the line’s three-phase voltage through a discrete wavelet
transform. However, the accuracy of this method for line selection is low in the case of high-
resistance grounding, and therefore the applicability is poor. In [13], fault-line selection
is performed by comparing the zero sequence currents’ magnitude, polarity, and energy
value. However, this method is unavailable when grounding the neutral point via the arc
extinguishing coil. The authors of [14] proposed a fault-line selection method based on a
chaotic system, which is not affected by fault type, transition resistance, etc. However, since
the chaotic system is susceptible to abnormal signals, and the actual distribution network
contains many noisy signals, inputting the signals directly into the chaotic system will
cause misclassification, and the system’s robustness is poor.

In recent years, artificial intelligence algorithms have developed rapidly, with the
advantages of fast processing speed and high fault tolerance. Applying AI algorithms
to distribution network fault diagnosis is a significant trend for future development [15].
Deep learning, as a method to achieve artificial intelligence, can autonomously mine the
feature information of the input quantity and has superior performance in the field of image
recognition and classification. Scholars have used the power signal features of distribution
networks as the input of neural networks for fault-line selection, but the advantages of
deep learning in image recognition have not been fully utilized.

The authors of [16] constructed a switching and evaluation function to convert the
line-selection problem into a Traveling Salesman Problem (TSP). It performs a global search
for distribution network faults by improving the ant colony algorithm, which improves
the efficiency of the line selection to a certain extent. However, it is easy to fall into a local
optimum. Reference [17] proposes a combination of traveling wave and support vector
machine methods for fault-line selection, but the accuracy is poor in warhead calibration.
The authors in [18] use wavelet transform to capture the amount of current feature varia-
tion and use artificial neural networks for fault-line selection. However, traditional neural
networks suffer from overfitting and slow convergence during training and cannot fully
use the data feature information. In [19], PMU is used to measure the power at each node
of the distribution network synchronously, using DBN networks for training models for
fault selection, although performing poorly in the case of high-resistance grounding. Refer-
ence [20] achieves fault-line selection by superimposing zero-sequence currents to fuse fault
features and using entire convolutional networks for feature extraction. However, excessive
superimposition of zero-sequence currents for complex distribution networks can cause
fault features to be obscured, resulting in features that cannot be extracted accurately, so the
method has some limitations. Reference [21] proposed a fault-line selection method based
on variational modal decomposition (VMD) and convolutional neural network (CNN),
which decomposes the electrical signal by variational modal decomposition, and then
up-dimensionalize the electrical signal into an image by the compression coding method,
using a convolutional network for classification, which has a high recognition accuracy and
is robust. However, it ignores the physical connection between the distribution and neural
networks. There is a large amount of redundancy in the input.
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This paper proposes a distribution network fault-line selection method to address
the above problems based on an improved ICEEMDAN–Recurrence Plot–Yolov5 network.
The noise components in the intrinsic modal functions (IMFs) obtained from ICEEMDAN
decomposition are eliminated using multi-scale weighted permutation entropy (MWPE).
Then the noisy signals are removed by EMD decomposition. The decomposed IMFs are
arranged from high to low frequencies. The MICEEMDAN algorithm can effectively
reduce noise and suppress the appearance of modal confusion and pseudo-components.
The Recurrence Plot algorithm converts the decomposed 1D signals into 2D images and
enhances the invisible information of the 1D signals. The Recurrence Plot is stitched to
construct a Recurrence Plot of the distribution network, which reduces the redundancy
of the training data set and facilitates in-depth learning training. The Yolov5 network
is used to train the data set, and the CA attention mechanism is added to speed up the
training convergence and improve the accuracy rate. The model obtained from the training
can be used to realize distribution network fault-line selection. The method achieves the
extraction of fault features and line selection in a data-driven manner, with good accuracy
and robustness.

This paper focuses on the distribution network fault feature extraction and autonomous
mining problems, and the main work is summarized as follows.

(1) Improvement of ICEEMDAN by using MWPE; the improved method can effectively
suppress the appearance of modal confusion and pseudo-components.

(2) The Recurrence Plot algorithm is used to convert a one-dimensional time series into
two-dimensional images, fully exploit the minute features in the one-dimensional signal,
and stitch the Recurrence Plot to reduce the input redundancy of the neural network, which
is conducive to improving the training efficiency.

(3) Adding a CA attention mechanism to the Yolov5 network to speed up the conver-
gence of the model while improving the recognition accuracy.

This paper can be divided into the following sections: Section 1 introduces multi-scale
weighted permutation entropy (MWPE); Section 2 introduces the MICEEMDAN algorithm;
Section 3 introduces the signal feature-extraction methods, including the Recurrence Plot
algorithm and neural network; Section 4 introduces the fault-line selection process; and
Section 5 show the experimental results and comparative analysis.

2. Multi-Scale Weighted Permutation Entropy
2.1. Multi-Scale Permutation Entropy

The permutation entropy is a method to detect the randomness and dynamical muta-
tions of the system, which is simple to calculate, noise-resistant, and has good robustness,
as only a short time series is required to obtain a stable system characteristic quantity [22].
For a given time series x = {x(i), i = 1, 2, . . . , n}, the following matrix is obtained after the
phase space reconstruction.

x(1) x(1 + Γ) . . . x(1 + (m− 1)Γ)
x(2) x(2 + Γ) . . . x(2 + (m− 1)Γ)

...
...

. . .
...

x(k) x(k + Γ) · · · x(k + (m− 1)Γ)

 (1)

where m is the embedding dimension and Γ is the delay factor. k = n − (m − 1), and
there are k reconstructed components of the matrix, and each reconstructed component has
m-dimensional embedding elements.

Arrange the jth component x(j), x(j + Γ), . . . x(j + (m − 1) Γ), j = 1, 2, . . . , k of the matrix
in ascending order of numerical magnitude to obtain

x(i + (j1 − 1)Γ) ≤ x(i + (j1 − 1)Γ) ≤ . . .
≤ x(i + (jm − 1)Γ)

(2)
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where j1, j2, . . . , and jm represent the subscript index value of each element in the recon-
structed component. If there are two or more equal values in the reconstructed component,
such as x(i + (j1 − 1)Γ) = x(i + (j2 − 1)Γ), then it is necessary to sort according to the size of j1
and j2. Satisfying j1 < j2 is sufficient, at which point we have x(i + (j1 − 1)Γ) ≤ x(i + (j2 − 1)Γ).

A sequence of reconstructed symbols can be obtained for each component.

S(l) = (j1, j2, . . . , jm) (3)

where l = 1, 2, . . . , k, satisfying k ≤ m!. Each reconstructed component is an m-dimensional
space mapped to an m-dimensional sequence of symbols with a total of m! permutations.

Calculate the probability of each m-dimensional sequence of symbols, P1, P2, . . . , Pk.

Pj =
cj

sum(c)
(4)

where j = 1, 2, . . . , k, sum(c) is the sum of the number of occurrences of each ranking result
after ranking all reconstructed components, and cj is the number of occurrences of the jth
ranking result after ranking all reconstructed components.

According to the definition of Shannon’s entropy, the permutation entropy of the
signal sequence x(i) is defined as

PE(x, m, Γ) = −(
k

∑
j=1

Pj ln Pj) (5)

The permutation entropy reaches a maximum value of ln(m!) when Pj = 1/m!
In practice, PE is usually normalized.

0 ≤ PE =
PE

ln(m!)
≤ 1 (6)

A more significant value of the ranking entropy (PE) indicates a more random signal
time series and a more complex signal; conversely, a more regular signal sequence and a
less complex signal.

The permutation entropy can only detect the complexity and randomness of the time
series on a single scale. Moreover, the output time series of complex systems contain
characteristic information on multiple scales when the permutation entropy analysis is no
longer satisfied [23]. In order to study the multi-scale complexity variation of a time series,
multi-scale permutation entropy is proposed.

A time series x = {xi, i = 1, 2, . . . , N} of length N is coarsely granularized to obtain the
coarsely granularized sequence yj(s), whose expression is

y(s)j =
1
s

js

∑
i=(j−1)s+1

xi, j = 1, 2, . . . , [N/s] (7)

where s is the scale factor, s = 1, 2, . . . ; and [N/s] means rounding N/s and calculating
the permutation entropy for each coarse-grained sequence yj(s) to obtain the multi-scale
permutation entropy. It can be expressed as follows:

MPE(X, m, Γ, s) = PE(y(s)j , m, Γ) (8)

Although the multi-scale permutation entropy solves the single problem of permu-
tation entropy at the time scale, the method still has some problems: for example, for the
following two reconstructed components.

S(1) = (1, 2, 3, 4)
S(2) = (1, 2, 3, 10000)

(9)
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After sorting them, the results are all (1, 2, 3, 4) with corresponding weights of 1.
However, it is evident that the nature of 3 to 4 and 3 to 10,000 of them are very different,
leading to the use of multi-scale permutation entropy, and cannot correctly reflect the
characteristics of specific mutation signals.

2.2. Multi-Scale Weighted Permutation Entropy

In order to solve the problem that multi-scale permutation entropy cannot correctly
reflect the characteristics of specific mutant signals, a multi-scale weighted permutation
entropy is proposed. For each reconstructed component, its second-order central moment
is calculated as the weight.

Var =
1
m

m

∑
i=1

(ji − j)
2

(10)

where j = 1
m

m
∑

i=1
ji at this point, with Equation (5) becoming

Pj =
Varj

sum(Var)
(11)

where sum(Var) is the sum of the second-order centroids of all reconstructed components,
and Varj is the second-order centroid of the reconstructed component corresponding to the
jth ranking result after sorting all reconstructed components.

2.3. Parameter Selection and Analysis Comparison

In order to study the influence of embedding dimension and scale factor on the
permutation entropy results, multi-scale permutation entropy and multi-scale weighted
permutation entropy are used to analyze Gaussian white noise with embedding dimension
m = 3, 4, 5, 6, 7 and scale factor s = 1, 2, . . . , 20, and the experimental results are shown in
Figure 1. From Figure 1, it can be seen that when the embedding dimension m is small,
the change in the permutation entropy value is not apparent, which cannot reflect the
advantage of multi-scale analysis. When the embedding dimension m is large, the internal
details of the permutation entropy reconstruction component are homogenized, resulting in
a lack of details [24]. After careful consideration, this paper sets the embedding dimension
m = 6. When the embedding dimension m = 6 and the scale factor s > 6, the decreasing trend
in the permutation entropy is accelerated, which indicates that, at this time, the scale factor
s = 5. The delay factor has less influence on the final calculation result of the permutation
entropy, and the delay factor is set to Γ = 1. In summary, we set the embedding dimension
m = 6, the scale factor s = 5, and the delay factor Γ = 1.
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Figure 1. Multi-scale permutation entropy and multi-scale weighted permutation entropy of white
noise with different scale factors and embedding dimensions.
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Under the above parameter conditions, a pulse signal is added to the Gaussian white
noise to obtain the signal shown in Figure 2, where the sampling frequency is 1000 Hz, and
the pulse signal is added at 0.5 s to collect a total of 1000 points.
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Figure 2. Adding pulses to white noise.

The collected 1000 points were grouped into 200 points in each group. The third
group contains the impulse signal, and the entropy values are calculated using multi−scale
permutation entropy and multi−scale weighted permutation entropy, respectively. The
results are shown in Figure 3.
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It is evident from Figure 3 that the entropy value of multi-scale permutation entropy
does not change significantly under different groups, which indicates that multi-scale
permutation entropy is not sensitive to the mutation signal. In contrast, the entropy value
of multi-scale weighted permutation entropy has a significant change in the third group
signal, which indicates that it is susceptible to the mutation signal, so multi-scale weighted
permutation entropy can better reflect the actual situation of the signal.

2.4. Noise Signal Detection

The entropy values of the white noise, Gaussian white noise, high-frequency sinusoidal
signal, fundamental frequency sinusoidal signal, amplitude-modulated signal (AM signal),
frequency-modulated signal (FM signal), AM/FM signal, and intermittent signal were
calculated by multi-scale permutation entropy and multi-scale weighted permutation
entropy, respectively, and the results are shown in Table 1.
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Table 1. Multi-scale permutation entropy and multi-scale weighted permutation entropy of each signal.

Signal Multi-Scale Permutation
Entropy

Multi-Scale Weighted
Permutation Entropy

White noise 0.9087 0.8918
Gaussian white noise 0.9112 0.8896

High-frequency sinusoidal signal 0.4310 0.4162
Fundamental frequency sinusoidal signal 0.1176 0.1053

AM signal 0.5152 0.4541
FM signal 0.3753 0.3809

AM/FM signal 0.5371 0.4981
Intermittent signal 0.5888 0.8402

It is necessary to give a reference value β to determine whether the signal is noisy or
not according to the entropy value of the permutation entropy, and Zheng J et al. concluded
through several experiments that it is best to take 0.55~0.6 [25], which is taken as β = 0.6 in
this paper. From Table 1, it can be seen that the use of multi-scale permutation entropy will
produce false judgments for intermittent signals. This is due to the mutation phenomenon
in intermittent signals, and the multi-scale permutation entropy is not sensitive to the
mutation phenomenon. The multi-scale weighted permutation entropy is sensitive to
the mutation phenomenon, so it will not misjudge the intermittent signal. In summary,
multi-scale weighted permutation entropy can complete the detection of noisy signals.

3. MICEEMDAN Signal Decomposition
3.1. ICEEMDAN Signal Decomposition

The ICEEMDAN signal processing method proposed by Colominas et al. [26]. was
developed from the Complete Ensemble Empirical Mode Decomposition Adaptive Noise
(CEEMDAN) [27]. The improved method differs from CEEMDAN in that Gaussian white
noise is added directly during decomposition. However, the Kth IMF component of the
white noise is selected after EMD decomposes it. The specific steps are as follows:

(1) Add Group I white noise to the original signal; i.e.,

x(i) = x + β0E(w(i)) (12)

where x is the signal to be decomposed; β0 is the intensity factor of the white noise;
E(·) denotes the kth order modal component generated by the EMD decomposition;
and w(i) is the Gaussian noise.

(2) The first set of residuals is obtained.

R1 = (N(x(i))) (13)

where N(·) denotes the local mean value of the generated signal.
(3) Calculate the first modal component d1 = x − R1.
(4) Continuing with the addition of white noise, the second set of residuals R2 = R1 + β1E(w(i))

is calculated using the local mean decomposition, and the second modal component
d2 = R1 − R2 is defined.

(5) Calculate the Kth residual RK = (N(RK−1 + βK−1E(w(i)))) and the modal component
dK = RK−1 − RK.

(6) All modalities and residual numbers are obtained until the end of the computational
decomposition.

3.2. ICEEMDAN Signal Decomposition

For the fault signal of the distribution network, the noise will affect the accuracy
of the judgment. It is not necessary to use the EMD algorithm to decompose the noisy
signal, so the MWPE algorithm can be used in combination with ICEEMDAN to design the
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MICEEMDAN algorithm for noise filtering of the original signal and decomposition of the
signal after noise reduction.

The specific steps of the MICEEMDAN decomposition are as follows.

(1) The ICEEMDAN decomposition of the original signal I(t) is performed to obtain the
K modal components IMF.

(2) The MWPE calculation is performed for each decomposition of the resulting modal
component IMF to obtain the entropy value PE for each modal component.

PEi = MWPE(IMFi, m, Γ, s) (14)

where, i = 1, 2, . . . , K.
(3) When the entropy value obtained from the MWPE calculation is more significant than

0.6, the decomposition signal is considered a noisy signal and is removed from the
original signal.

R(t) = I(t)−
p

∑
j=1

IMFj (15)

where R(t) is the remaining signal after noise removal and IMFj, j = 1, 2, . . . , p is the
noise component obtained by decomposition.

(4) The IMF of MICEEMDAN is obtained by decomposing R(t) using EMD, and the
results are arranged in high to low frequencies.

3.3. Decomposition of Simulation Signals Using ICEEMDAN and MICEEMDAN

To illustrate the advantages of the MICEEMDAN decomposition, simulation experi-
ments are conducted in this section. The original signal is shown in Equation (16), where
(16) consists of x1, x2, x3, and x4, with a sampling frequency of 1000 Hz and a sampling
time of 2 s. The original signal is shown in Figure 4.

x1 = 6 sin(120πt + π/4)
x2 = sin(10πt + π/3)
x3 = (t + 1.5) sin(20πt + π/2)
x4 = [zero(1, 300), 0.2·randn(1, 600),

zero(1, 300), 0.2·randn(1, 500),
zero(1, 300)]

x = x1 + x2 + x3 + x4

(16)
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The original signal x is decomposed using ICEEMDAN and MICEEMDAN, respec-
tively, and the decomposed modal components are shown in Figure 5. From Figure 5a,
it is evident that the ICEEMDAN algorithm has the problem of modal confusion, the
decomposition is not complete, and pseudo-components appear. From Figure 5b, it can be
seen that MICEEMDAN has no modal confusion and no pseudo-component, and the noise
component is removed.
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The concept of the correlation coefficient is introduced to measure the effect of the
two decompositions further. The correlation coefficient can be used to analyze the correlation
between two signals; the smaller the correlation coefficient, the weaker the correlation between
the two signals, and, vice versa, the stronger the correlation between the two signals. It is
usually considered that a correlation coefficient greater than 0.8 indicates that the two signals
are highly correlated [28]. The correlation coefficients of the two decompositions are shown
in Figure 6. The figure shows that in the IMF2 and IMF3, IMF4, and IMF5 obtained by
ICEEMDAN decomposition appear modal confusion, and there are pseudo-components.
MICEEMDAN can effectively extract x1, x2, and x3 and suppress the modal confusion. The
results show that the proposed method in this paper can effectively extract the practical
components in the original signal and suppress the modal confusion to some extent.
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two methods.
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The Hilbert–Huang spectrum is a standard method for analyzing the time-frequency
characteristics of signals [29]. Figure 7 reflects the Hilbert–Huang plots of the two de-
composition methods. Figure 7a shows that the ICEEMDAN decomposition extracts the
signals at 5 Hz and 10 Hz, but there are many pseudo-components and modal confusion at
60 Hz. From Figure 7b, it can be seen that MICEEMDAN can effectively extract the practical
components of the original signal without pseudo-components, and the instantaneous
frequency is relatively stable. In summary, the algorithm has a good decomposition effect
and overcomes the problems of modal confusion and pseudo-components.
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4. Signal Feature Extraction
4.1. Recurrence Plot

A Recurrence Plot is an image representing the distance between trajectories extracted
from the original time series and is an essential method for analyzing the periodicity, chaos,
and smoothness of time series; it can be used to reveal the internal structure of a time series,
giving a priori knowledge of its correlation, informativeness, and predictability. Recurrence
Plots are particularly suitable for short time series data and can examine the smoothness
and intrinsic similarity of a time series [30]. In this paper, the fault signal of the distribution
network is extracted by constructing a Recurrence Plot. The specific steps are as follows.

(1) MICEEMDAN decomposition of the zero-sequence current signal during a distribu-
tion network fault is performed to obtain its modal components IMF1, IMF2 . . .

(2) For a given time series {x(i), i = 1, 2, . . . , n}, the extracted trajectories are

→
xi = (xi, xi+Γ, . . . , xi+(m−1)Γ) (17)

where i = 1, 2, . . . , n − (m − 1), m is the dimension of the trajectory and Γ is the delay;
in this paper, let m = 1, Γ = 1.

(3) Calculate the distance di,j between any two points on the trajectory.

di,j = ‖xi − xj‖ (18)

(4) Calculate the recurrence matrix Ri,j.

Ri,j = Θ(ε− di,j) (19)
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where ε is the threshold value of the minimum distance. The size chosen in this paper
is 15% of the standard deviation of the data, and Θ is the Heaviside function, the
expression of which is

Heaviside(x) =
{

1 x ≥ 0
0 x < 0

(20)

(5) The modal components obtained from the decomposition are all Recurrence Plot
transformed and stitched from top to bottom.

The grounding resistance is 10 Ω, 500 Ω, and 1500 Ω; the grounding phase is the A, B,
and C phase; the initial phase angle of the fault is 0◦, 60◦, and 120◦; and the fault distance
is 2, 4, and 6 km from the first end of the line. The generated Recurrence Plot is shown
in Figure 8. In Figure 8, it can be seen that for different fault types, the Recurrence Plots
obtained by the construction have more obvious differences, and the fault characteristics of
the distribution network are thoroughly extracted.
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(g) initial phase angle 0◦; (h) initial phase angle 60◦; (i) initial phase angle 120◦; (j) fault distance
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4.2. CA Attention Mechanism

This paper introduces the Coordinate Attention (CA) attention mechanism in the
feature-extraction process.

The CA attention mechanism module can enhance the expression ability of the network
learning features and output a tensor of the same size after transforming any intermediate
feature tensor in the network [31]; its module structure is shown in Figure 9. For the input
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feature map, firstly, average pooling is performed on the width and height to obtain the
feature map in both directions; after that, the two feature maps are stitched together and
fed into a shared convolution module; then normalization is performed, and a convolution
operation with a convolution kernel of 1 × 1 is performed; after that, the attention weights
of the feature maps on the height and width are obtained by the sigmoid activation function,
respectively. Finally, the weighting calculation is performed on the original feature map,
and the feature map with attention weights is finally obtained.
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The specific implementation steps are as follows:

(1) Divide the input feature map into two directions, width and height, and perform
global average pooling to obtain the feature maps in both the width and height
directions, as shown in Equation (21).

zh
c (h) =

1
W ∑

0≤i≤W
|xc(h, i)

zh
c (w) = 1

H ∑
0≤j≤H

|xc(j, w)
(21)

(2) The feature maps in the width and height directions of the obtained global perceptual
field are stitched together, after which they are fed into the convolution module
with a shared convolution kernel of 1 × 1 to reduce their dimension to the original
C/r, where C is the channel number and r is the reduction rate, and then the batch
normalized feature map F1 is fed into the Sigmoid activation function to obtain the
feature map shaped as 1 × (W + H) × C/r feature map f, as shown in Equation (22).

f = δ(F1([zh, zw])) (22)

(3) The feature map f is convolved with a convolution kernel of 1 × 1 according to the
original height and width to obtain the feature maps Fh and Fw, with the same number
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of channels as the original one. The attention weights gh for the feature maps in
the height and width and gw in the width direction are obtained after the Sigmoid
activation function, as shown in Equation (23).

gh = σ(Fh( f h))
gw = σ(Fw( f w))

(23)

(4) After the above calculation, the attention weight gh in the height direction and the
attention weight gw in the width direction of the input feature map will be obtained.
Finally, the final feature map with attention weights in the width and height directions
is obtained by multiplying and weighting the original feature map with the formula
shown in (24).

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (24)

4.3. Improved Yolov5 Neural Network

This paper uses the Yolov5 training dataset and adds the CA attention mechanism to
the Yolov5 network. The improved network structure is shown in Figure 10, where the red
wireframe indicates the position of the CA attention mechanism added. The improved Yolo
network is divided into 25 layers, of which the ninth layer is the added CA attention module.
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The Conv module in the Yolov5 network performs convolution, BN, and activation
operations on the input feature maps; the C3 module is the main module for learning
the residual features; the Upsample module has the primary purpose of enlarging the
image and can increase the information of the image; the SPPF module fuses more features
with different resolutions through pooling operations to get more information; the Concat
module performs a fusion of the input feature maps; and detect module can predict the
training results [32].

5. Fault-Line Selection Process

The fault routing process is shown in Figure 11, with the following steps.

Processes 2022, 10, x FOR PEER REVIEW 16 of 27 
 

 

Step 5: The model file generated by the training can be used to complete the single-phase 
ground fault routing in the distribution network. 

 
Figure 11. Fault-line selection process. 

6. Experimental Verification and Analysis 
6.1. Simulation Environment 

The topology of the 110 kV/10 kV distribution network system model, built based on 
MATLAB/Simulink, is shown in Figure 12. It contains four pure cable lines—Line 1, Line 
3, Line 4, and Line 5, with lengths of 8 km, 4 km, 5 km, and 4 km—and four overhead 
lines—Line 2, Line 6, Line 7, and Line 8, with lengths of 10 km, 4 km, 5 km, and 6 km, 
respectively. The line parameters are shown in Table 2. 

Figure 11. Fault-line selection process.

Step 1: MICEEMDAN decomposition of zero-sequence currents is performed to obtain a
series of eigenmodal functions.
Step 2: The decomposed eigenmodal functions are transformed into recurrence diagrams.
All the obtained recurrence diagrams are stitched from top to bottom to obtain line recur-
rence diagrams, and all line recurrence diagrams are stitched to obtain distribution network
recurrence diagrams.
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Step 3: Annotate the obtained distribution network recurrence map to get the correspond-
ing label file and use the image and the corresponding label as the input of the Yolov5
neural network.
Step 4: The Yolov5 neural network is used to train the model, and the model file is obtained.
Step 5: The model file generated by the training can be used to complete the single-phase
ground fault routing in the distribution network.

6. Experimental Verification and Analysis
6.1. Simulation Environment

The topology of the 110 kV/10 kV distribution network system model, built based
on MATLAB/Simulink, is shown in Figure 12. It contains four pure cable lines—Line 1,
Line 3, Line 4, and Line 5, with lengths of 8 km, 4 km, 5 km, and 4 km—and four overhead
lines—Line 2, Line 6, Line 7, and Line 8, with lengths of 10 km, 4 km, 5 km, and 6 km,
respectively. The line parameters are shown in Table 2.
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Figure 12. Distribution network.

Table 2. Simulation model line parameters.

Circuit Type

Resistance/
(Ω·km−1)

Inductance/
(mH·km−1)

Grounding Capacitance/
(µF·km−1)

Positive Phase Zero Phase Positive Phase Zero Phase Positive Phase Zero Phase

Overhead line 0.178 0.25 1.21 5.54 0.015 0.012
Cable line 0.27 2.7 0.255 1.02 0.339 0.28

Using the overcompensation method, with an overcompensation degree of 10%, the
equivalent inductance, LP = 1.907 H, and equivalent resistance, RL = 29.94 Ω, of the arc
extinguishing coil were calculated.

In order to reduce the redundancy of the input neural network image, the recurrence
maps of all lines were stitched together to construct the Recurrence Plot of the distribution
network, as shown in Figure 13.

6.2. Feature Image Acquisition

In order to simulate the operation of the distribution network under actual working
conditions, the fault line, fault phase, fault initial phase angle, fault ground resistance,
and fault distance were set separately. The sampling frequency was 12.8 kHz; the system
running time was 0.2 s; the fault phase was selected between phases A, B, and C; the fault
initial phase angle was set to 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦; the grounding resistance
starts from 0 Ω and increases at an incremental rate of 100 Ω to 1500 Ω; and the fault
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distance starts from 2 km and increases at an incremental rate of 2 km to 2 km from the end
of each line.
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The original signals of one cycle before and two cycles after the fault in each section
were sampled. The distribution network recurrence map and corresponding labels were
generated according to the above fault selection process. In total, 4600 sets of images and
corresponding labels were generated. The data were randomly selected according to the
acquisition ratio of different fault types, 920 sets of which were used as the test set, and
3680 sets of data were used as the training set. In order to verify the robustness of the
training results, 3 × 1000 recurrence maps of the distribution network were randomly
generated by randomly changing the fault types and parameters as the validation set.

6.3. Line Selection Results in Verification and Analysis

After training the model for 120 epochs, the model converged, and the loss function,
accuracy, recall, and average precision mean were stabilized. The training number was set
to 150 times, and the training results are shown in Figure 14. It can be seen from Figure 14
that with the increase in iterations, the box_loss, obj_loss, and cls_loss of both the training
set and test set decreased and converged at 0. The precision, recall, and mAP increased, and
the absolute accuracy of the model stabilized at 99.98%. The confusion matrix can show the
training results more clearly. The confusion matrix obtained by analyzing the validation set
is shown in Figure 15, where the diagonal cell values represent the percentage of correct
selection results and the non-diagonal cell values represent the percentage of incorrect
election results. It can be seen that the single-phase ground fault selection accuracy of the
validation set reached 100%.

The optimal model obtained from the training was used to perform fault selection
on the Recurrence Plot of the distribution network obtained from the simulation, and a
rectangular box selected the fault section. In contrast, the fault information is indicated in
the upper left corner. For a Line 1 ground fault, the fault distance of 2 km, 4 km, and 6 km,
respectively, is shown in Figure 16; for a Line 2 ground fault, the initial phase angle of the
fault is 0◦, 60◦, and 120◦, respectively, and is shown in Figure 17. The Line 3 ground fault
occurred at a grounding resistance of 10 Ω, 500 Ω, and 1500 Ω, and the selection results
shown in Figure 18; a Line 4 ground fault occurred where the fault phase were A, B, and C
phase selection, with the results shown in Figure 19.
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Figure 19. Grounding fault that occurred in Line 4: fault phase of (a) A; (b) B; (c) C.

As can be seen from the figure, with the change in fault conditions, some of the image
features change, although there is no change visible to the naked eye; however, the training
results show that the loss of the test set does not increase with the increase in training time,
which is due to the Yolov5 neural network having the ability of autonomous mining of
image features. For the small changes that the human eye cannot detect, the neural network
can identify and extract these change features.

In order to verify that the model has a specific generalization ability, three rounds of
validation were conducted using 1000 × 3 images of the distribution network Recurrence
Plots generated by randomly changing the fault type and parameter way, and the vali-
dation results show that 3, 2, and 2 images of the three sets of images were misclassified,
respectively, which indicates that the model has good generalization ability.
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The experimental results show that the method is effective in different grounding
resistances and fault initial phase angles, and the fault types have good performance and
solid robustness.

The saved weight file of the Yolov5 model is only 14.2 Mb after 150 rounds of training,
and the average recognition time is only 13.4 ms, which shows that the fault routing results
are more satisfactory from various evaluation indexes.

6.4. Comparison Verification
6.4.1. Comparative Verification of Different Neural Networks

The color distribution of the neural network heat map reflects the attention weight
of the neural network to the image. The darker the color, the greater the attention weight
of the neural network, and the lighter the color, the smaller the attention weight of the
neural network. Figure 20 shows the neural network heat map before and after adding
the attention mechanism. It can be seen that when the attention mechanism is not added,
the attention weight of the neural network is more randomly focused on each. After the
attention mechanism is added, the attention points of the neural network are concentrated
in the fault segment, and more attention weights are weighted on the practical part. Table 3
shows the training results before and after adding the attention mechanism. When the
attention mechanism is not added, the convergence speed and accuracy of the network are
decreased, and the results show that the neural network’s performance is improved after
adding the attention mechanism.
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Table 3. Comparison of results before and after adding the CA attention mechanism.

Methods Training Rounds Accuracy/%

Yolov5 300 99.31
Yolov5 + CA 150 99.98

6.4.2. Anti-Noise Comparison Verification

Under the actual working conditions, the raw electrical signal of the distribution
network collected contains a large amount of noise. In order to verify that the proposed
method in this paper has a specific noise immunity, the following methods are used,
respectively.

Method 1: The acquired raw signal is directly transformed by a Recurrence Plot.
Method 2: EMD decomposition is performed on the original signal before Recurrence

Plot transformation.
Method of this paper: The original signal is decomposed by MICEEMDAN and then

transformed by a Recurrence Plot, which is the method proposed in this paper.
The Recurrence Plots obtained from the three methods are trained and tested with

Yolov5 networks, and the results are shown in Table 4. It can be seen that performing
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MICEEMDAN decomposition first and then Recurrence Plot transformation can signifi-
cantly improve the accuracy of the fault routing.

Table 4. Comparison of the noise immunity of the different methods.

Line Number of Samples
Accuracy/%

Method 1 Method 2 Method of This Paper

Line 1 500 92.91 96.89 99.98
Line 2 600 93.18 95.94 99.99
Line 3 800 90.72 93.87 99.97
Line 4 800 91.86 93.89 99.98

To further verify the noise immunity of the method in this paper, Gaussian white
noise with different signal-to-noise ratios was added to the original signal, and the results
are shown in Table 5 by comparing the method in this paper with the methods proposed
in [14,19]. It can be seen that with the increase in the noise percentage, the proposed
method in this paper still maintains a high accuracy of line selection, which indicates that
the proposed method in this paper has good noise immunity.

Table 5. Comparison of line selection accuracy under different signal-to-noise ratios.

Signal-to-Noise Ratio/dB Line Number of Samples
Accuracy/%

Ref. [14] Ref. [19] This Paper

35

Line 1 500 96.91 98.33 99.98
Line 2 600 96.83 98.30 99.99
Line 3 800 94.21 97.51 99.97
Line 4 800 94.73 97.54 99.98

30

Line 1 500 94.71 95.31 99.97
Line 2 600 94.67 95.12 99.98
Line 3 800 93.11 92.78 99.97
Line 4 800 93.02 93.02 99.98

25

Line 1 500 90.67 91.25 99.96
Line 2 600 88.32 91.12 99.98
Line 3 800 87.91 90.42 99.95
Line 4 800 87.05 90.61 99.95

20

Line 1 500 84.84 88.15 99.94
Line 2 600 84.32 88.32 99.95
Line 3 800 82.59 86.89 99.93
Line 4 800 82.51 85.91 99.94

6.4.3. High-Resistance Grounding Comparison Verification

When high-resistance grounding occurs, the fault signal features are not apparent,
which affects the accuracy of the fault-sizing method. The method proposed in this paper
converts one-dimensional data into two-dimensional images to fully extract the features. It
fully exploits the features through neural networks, which has better sizing results in the
case of high-resistance grounding, and the sizing accuracy can reach 99.93%. The method
of this paper was compared with [14,19] by experiments, where the grounding resistance
was set to 1000 and 1500, respectively. The experimental results are shown in Table 6. As
seen in Table 6, the methods proposed in [14,19] both show misclassification in the case of
high-resistance grounding, whereas the method used in this paper was still able to identify
the faulty line correctly.

6.4.4. Distributed Generators Access

When the distribution network contains distributed generators, the following simula-
tion experiments were conducted to verify the method’s feasibility in this paper.

In Figure 12, the distributed generator was connected to the end of Line 1 and Line 6,
as shown in Figure 21. The following two models were tested separately.
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Table 6. Comparison of the experimental results of high-resistance grounding.

Grounding Resistance/Ω Line
Line Selection Results

Ref. [14] Ref. [19] This Paper

1000

Line 1 Line 1 Line 1 Line 1
Line 2 Line 2 Line 2 Line 2
Line 3 Line 2 Line 3 Line 3
Line 4 Line 4 Line 4 Line 4

1500

Line 1 Line 1 Line 1 Line 1
Line 2 Line 2 Line 2 Line 2
Line 3 Line 2 Line 3 Line 3
Line 4 Line 3 Line 3 Line 4
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Figure 21. Distribution network with distributed generators.

(1) The original model is obtained by training when the distributed generator is
not added.

(2) The new model is trained by re-collecting data using the proposed method.
The test results are shown in Table 7. When the distributed generators are connected

to the distribution network, the accuracy of the proposed method for line selection without
retraining the model is reduced. This is due to the change in fault characteristics after
accessing the distributed power supply. The accuracy improves to 99.77% after retraining
the model, indicating that the method in this paper is still applicable when the distributed
generator is connected. The reason for the decrease in line selection accuracy compared
with that before the access to distributed generators is that after the access to distributed
generators, when the fault point is close to the access point of distributed generators, the
attenuation of the non-periodic component of the zero sequence current becomes slower,
which can cause misclassification.

Table 7. Line selection results after distributed generators access.

Line Number of Samples
Accuracy/%

Original Model New Model

Line 1 500 97.93 99.75
Line 2 600 98.19 99.87
Line 3 800 98.12 99.79
Line 4 800 97.86 99.69
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6.4.5. Dynamic Mold Experiment

In order to verify the effectiveness of the proposed method in practical applications,
in this paper we used a dynamic simulation fault diagnosis experimental platform labora-
tory for verification, as shown in Figure 22. The same simulation model as the dynamic
simulation fault diagnosis experimental platform was built using MATLAB/Simulink, as
shown in Figure 23, including three lines: Line 1 is an overhead line; Line 2 is a cable line;
and Line 3 is a mixed overhead and cable line.
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Figure 23. Experimental model of the dynamic fault simulation system.

A simulation model was used to collect the data, train the model, and test the line
selection accuracy of the model using the data collected in the dynamic simulation fault
diagnosis experimental platform. The test results are shown in Table 8. It can be seen from
Table 8 that the method proposed in this paper can accurately select fault lines under actual
working conditions, which confirms the practicality of the method proposed in this paper
in practical scenarios.
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Table 8. Line selection results under the conditions of the dynamic simulation fault diagnosis
experimental platform.

Fault Type Fault Line Fault Point Transition Resistance Fault Close Angle Fault Line
Selection Result

AG Line 1 F1 0 Ω 0◦ Line 1
BG Line 1 F2 500 Ω 30◦ Line 1
CG Line 1 F3 1000 Ω 60◦ Line 1
AG Line 2 F1 400 Ω 60◦ Line 2
BG Line 2 F2 800 Ω 120◦ Line 2
CG Line 2 F3 200 Ω 30◦ Line 2
BG Line 2 F4 500 Ω 150◦ Line 2
AG Line 3 F1 0 Ω 0◦ Line 3
CG Line 3 F2 400 Ω 60◦ Line 3

7. Conclusions

This paper proposes a new distribution network fault routing method using the
MICEEMDAN–Recurrence Plot–Yolov5 network, and the research results are as follows.

(1) MWPE can solve the problem of MPE’s lack of sensitivity to abrupt signals. A new
signal noise reduction and decomposition algorithm, MICEEMDAN, is proposed based
on MWPE and ICEEMDAN. The simulation results show that MICEEMDAN suppresses
modal confusion, reduces the appearance of pseudo-modal components, and has better
decomposition effects than the existing algorithms.

(2) The Recurrence Plot algorithm converts one-dimensional time series into two-
dimensional images. All fault features are concentrated on one image by stitching twice to
fully exploit the minute features of one-dimensional signals.

(3) The addition to the CA attention mechanism, the Yolov5 network makes the neu-
ral network pay more attention to the feature extraction of the fault segment part, which
accelerates the convergence speed of the model and improves the accuracy of the fault routing.

The experimental results show that compared with the traditional fault routing
method, the method is not affected by the fault type, fault moment, and transition re-
sistance; has strong noise immunity and stability; and can accurately determine the fault
line, with the accuracy in fault type identification able to reach 99.98%. This study provides
a new idea for distribution network fault-line selection research.
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Nomenclature

ICEEMDAN Improved Complete Ensemble Empirical Mode Decomposition Adaptive Noise

MICEEMDAN
modifying the Improved Complete Ensemble Empirical Mode Decomposition
Adaptive Noise

PE permutation entropy
MPE multi-scale permutation entropy
MWPE multi-scale weighted permutation entropy
IMFs intrinsic mode functions
VMD variational modal decomposition
CNN convolutional neural network
CA coordinate attention
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