
Citation: Waseem, K.H.; Mushtaq, H.;

Abid, F.; Abu-Mahfouz, A.M.; Shaikh,

A.; Turan, M.; Rasheed, J. Forecasting

of Air Quality Using an Optimized

Recurrent Neural Network. Processes

2022, 10, 2117. https://doi.org/

10.3390/pr10102117

Academic Editors: Marcin Banach,

Olga Długosz and Jolanta

Pulit-Prociak

Received: 28 August 2022

Accepted: 12 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Forecasting of Air Quality Using an Optimized Recurrent
Neural Network
Khawaja Hassan Waseem 1, Hammad Mushtaq 1, Fazeel Abid 1, Adnan M. Abu-Mahfouz 2,3 ,
Asadullah Shaikh 4 , Mehmet Turan 5 and Jawad Rasheed 6,*

1 Department of Information Systems, University of Management and Technology, Lahore 54770, Pakistan
2 Council for Scientific and Industrial Research (CSIR), Pretoria 0184, South Africa
3 Department of Electrical and Electronic Engineering Science, University of Johannesburg,

Johannesburg 2006, South Africa
4 College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia
5 Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34342, Turkey
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Abstract: Clean air is necessary for leading a healthy life. Many respiratory illnesses have their root
in the poor quality of air across regions. Due to the tremendous impact of air quality on people’s lives,
it is essential to devise a mechanism through which air pollutants (PM2.5, NOx, COx, SOx) can be
forecasted. However, forecasting air quality and its pollutants is complicated as air quality depends
on several factors such as weather, vehicular, and power plant emissions. This aim of this research
was to find the impact of weather on PM2.5 concentrations and to forecast the daily and hourly
PM2.5 concentration for the next 30 days and 72 h in Pakistan. This forecasting was done through
state-of-the-art deep learning and machine learning models such as FbProphet, LSTM, and LSTM
encoder–decoder. This research also successfully forecasted the proposed daily and hourly PM2.5

concentration. The LSTM encoder–decoder had the best performance and successfully forecasted
PM2.5 concentration with a mean absolute percentage error (MAPE) of 28.2%, 15.07%, and 42.1%
daily, and 11.75%, 9.5%, and 7.4% hourly for different cities in Pakistan. This research proves that a
data-driven approach is essential for resolving air pollution in Pakistan.

Keywords: air quality; forecasting; PM2.5; forecasting; time series models; FbProphet; neural network

1. Introduction

Clean air is paramount for healthy human life, thus making air quality maintenance
an integral part of public health policy. However, in recent years due to increasing urban-
ization, industrialization, and deforestation, the issue of air pollution is becoming more
and more potent. Air pollution is caused primarily due to the introduction of harmful
chemical, biological, and particulate matter into our atmosphere. Among these dangerous
materials, the most common and abundant is particulate matter 2.5 (PM2.5). This fine
particulate matter is composed of a mixture of solid and liquid particles in the air. Their
abundance above a certain threshold leads to smog and a hazy environment. When inhaled
into the human body, these result in various cardiac and pulmonary problems. There exists
a correlation between air pollution and meteorological conditions. Factors such as wind,
rain, temperature, pressure, ultraviolet radiation, and humidity can impact air pollution in
a region. Therefore, a thorough understanding of the weather is pertinent when analyzing
a region’s air quality properly.

Pakistan especially has suffered the full brunt of this crisis. Many megacities have
been suffering from smog and haze, resulting in various health problems for the residents.
According to the World Health Organization, the air quality inside Pakistan is generally
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considered unsafe. The most recent data published by the WHO indicates that PM2.5 con-
centration across the region is, on average, 58 µg/m3, which is higher than the prescribed
safety factor of 10 µg/m3 [1]. PM2.5 concentration is exceptionally high in urban centers
such as Lahore, Karachi, and Islamabad. In 2019, with an extremely high PM2.5 concen-
tration of 68 µg/m3, Pakistan was declared the world’s 2nd most polluted country by the
world air quality report published by IQAir [2]. Figures 1–3 depict the PM2.5 concentration
from 2019 to 2021.

Figure 1. Lahore daily and hourly PM2.5 concentrations between 2019–2021.

Figure 2. Islamabad daily and hourly PM2.5 concentrations between 2019–2021.

Figure 3. Karachi daily and hourly PM2.5 concentrations between 2019–2021.

An efficient and streamlined monitoring system needs to be developed through which
the government can record and forecast air quality levels. This intervention would allow
the local populace to take precautionary measures in the event of deterioration in air quality
levels. At the same time, it would help the government bodies in terms of evidence-based
policymaking for air pollution abatement. However, such a robust system requires a highly
efficient forecasting model, which can accurately predict air quality over time. We tried to
fill this gap using machine learning algorithms to develop an air quality prediction model.
The main contributions of this work are as follows.

• Data on air quality, air pollutants (PM2.5), and meteorological conditions for multiple
cities in Pakistan were combined to produce a novel dataset.

• The impact of different meteorological conditions such as temperature, humidity,
precipitation, wind speed, dew point, and pressure on the daily PM2.5 concentration
in multiple Pakistani cities was found.
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• Several machine and deep learning models, including multivariate FbProphet, LSTM,
and LSTM encoder–decoder, were used for the daily and hourly forecasting of PM2.5
levels across numerous cities in Pakistan.

2. Related Work

Various Environmental Protection Agencies (EPA) have offered a variety of method-
ologies for calculating the air quality index. While most of these agencies have shifted
toward the state of art machine learning techniques for forecasting the AQI, many agencies
still rely on mathematical calculation. In [3], the author employed the popular machine
learning method of support vector regression (SVR) to forecast the pollutant and particulate
levels and predict the resulting value of the AQI in California, USA. The author employed
the radial base function (RBF) and SVR to obtain the most accurate prediction. In the six
AQI categories defined by the US Environmental Protection Agency, the proposed model
was able to perform at a high accuracy of 94.5%. The proposed approach’s limitation
was its limited amount of data and parameters, especially for NO2 and PM2.5. In [4], the
author suggested an AQI and NOx forecasting method using SVR and the random forest
method. Their proposed study showed that the SVR-based model performed better than
the random forest model for forecasting AQI and NOx. In [5], the author proposed using
multinominal regression and K nearest neighbor to predict different AQI buckets. These
buckets contained the overall classification of the AQI as good, moderate, and severe.

Environmental Protection Agencies have proposed various methods for measuring
the air quality index. While most of these agencies have shifted towards state-of-the-art ma-
chine learning techniques for forecasting the AQI, many agencies still rely on mathematical
calculation.

In [6], the author used the previous day’s temperature, humidity, dew point, wind
speed, pressure, visibility, and precipitation as predictors in their ANFIS model. The author
employed techniques such as collinearity tests and forward selection (FS) to minimize the
cost and time of calculation. These techniques removed the redundant input variables and
selected different input variable combinations. This method produced a different model
for the different constituents of pollutant prediction with a better accuracy and reduced the
computational time.

In [7], the author proposed the use of hybrid single decomposition (HSD) and hybrid
two-phase decomposition (HTPD) for predicting the AQI a day before the next day in
advance. Among all the models, the performance of HTSD was the most accurate. Their
model successfully reduced the raw data instability and simplified the intrinsic complexities
of daily AQI prediction.

In [8], the author found a clear relationship between visibility and the AQI. The author
concluded that the AQI and image visibility were negatively correlated. As visibility
increased, the AQI value decreased and vice versa. The author employed these images
with high and low PM2.5 concentrations to obtain high-frequency information. The SVR
model was then updated using this data. This approach provided a rapid and cost-effective
method for the prediction of the AQI. In [9], the author conducted a comparative analysis of
air quality in Taiwan and London. The author analyzed the air quality in multiple stations
in Taiwan and proposed an enhanced decision tree model that could predict air quality
levels with an R2 value of 0.71 and root mean squared error (RMSE) of 7.06.

To improve the accuracy of forecasting air pollutants in Shenzen, China, ref. [10]
proposed a hybrid method consisting of ARIMA and the prophet method. They applied
this hybrid model to 11 stations in the city and performed an error evaluation. They
found that these hybrid methods improved the prediction result. However, the proposed
method’s processing speed was slow compared to other machine learning approaches.
Similarly, in [11], the author proposed using the ARIMA model to forecast the air pollutant
(NOx, SO2, SPM, and RSPM) levels for the next five years in Nanded city, Maharastra, India.

It is necessary to conduct a complete analysis of all the factors that influence the
air pollution in a region. However, most research has been limited to the relationship
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between the weather and air pollution. In contrast to conventional methods, ref. [12] used
XGboost and Bayesian optimization to investigate environmental, demographic, economic,
and meteorological causes. This case study, which was conducted in the USA, provided
excellent results.

In [13], the author proposed forecasting air quality for the next 48 h using a combina-
tion of neural network models. These models included artificial neural networks (ANN),
convolutional neural networks (CNN), and long short-term memory (LSTM). They made
use of this model to extract spatial–temporal relations. Their model outperformed many
state-of-the-art models. The only weakness in their approach was the noise in their data.
This noise was due to the use of different machines for data collection, which decreased the
accuracy of the results.

In [14], the author proposed using a hybrid ensemble model, CERL, for forecasting the
hourly air quality in northwest China. The advantage of using CERL was that it exploited
the benefits of both feed-forward and recurrent neural networks. Through this model, they
forecasted the air pollutants from 1 to 8 h ahead with a relatively high accuracy from 1 to
20% concerning the step size.

In [15], the author used a novel deep learning method for forecasting PM2.5 concen-
trations in Beijing, China. The proposed architecture consisted of a hybrid deep learning
model, which was a combination of a one-dimensional convolutional neural network
(1D-CNN) and a bi-directional long short-term memory (Bi-LSTM). A 1D-CNN was used
to extract local trends and spatial features, while a Bi-LSTM was used to learn spatial–
temporal dependencies. The author conducted extensive experiments and achieved a
satisfactory accuracy with this model.

Air pollutant concentration is dependent on various factors. These factors are usually
either left unexplored or used in their entirety to forecast pollutants. In [16], the author
suggested a new feature extraction method for air pollutant prediction, especially for PM2.5.
The author proposed a causality-based linear method to extract the most relevant features
for predicting PM2.5. Their findings proved that the proposed feature extraction had vastly
improved prediction results.

In [17], the author proposed using a combination of RNN and LSTM to forecast O3
levels for the next 8 to 72 h. The author used a decision tree to identify input variables of
the highest importance and then used these features for training the model. The proposed
model was able to achieve a satisfactory accuracy, and the mean absolute error was less
than 2 for the 72-h sequence for forecasting. The disadvantage of this approach was that it
utilized a limited number of features for training the model, which might lead to optional
bias in the results. Similarly, the author analyzed the AQI and PM2.5 concentration in the
Chinese city of Fuzhou. The author applied the ARIMA model to analyze and forecast
the PM2.5 concentration between 2014–2016. The results of the study concluded that the
PM2.5 concentration had an intricate relation between seasons and that the concentration
was sufficiently more significant in winter compared to summer. This study was unique as
it was conducted on new data as well as it being able to analyze the seasonality of PM2.5
over time.

This study consists of five sections. Section 2 discusses the methodology employed for
forecasting the hourly and daily forecasting of PM2.5. Section 3 presents the results and
analyzes them. Section 4 discusses the research findings. Finally, Section 5 concludes the
study and discusses the limitations and future work in this domain.

3. Materials and Methods

This section describes the system architecture and all the models used to solve the
problems highlighted in the objectives. This section consists of 4 subsections. Section 3.1
defines the system architecture for the solution of the problem state. Section 3.2 explains
the process for the collection of data from multiple sources. Section 3.3 deals with the
preprocessing of data. Section 3.4 describes the methodology of implementing proposed
models to obtain the required forecast.
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3.1. Model Architecture

The model architecture describes the overall steps taken to derive results from a sys-
tem. Figure 4 depicts the model architecture for the proposed system. In the first step,
the air quality and weather data are collected from the required sources, as illustrated
in Figure 4. Then, this data undergoes the required data preprocessing and feature en-
gineering. Then, the data is split and scaled and passed over the proposed models, i.e.,
multivariate FbProphet, LSTM, and LSTM encoder and decoder, to forecast the future
PM2.5 levels. Finally, the proposed models are tested and compared after undergoing hyper
parameterization.

Figure 4. Model architecture for the analysis.

3.2. Data Collection

The data in this study was collected primarily from two sources: air quality data
from sensors located at US embassies across Pakistan [18] and meteorological data from
the World Weather website [19]. Data was recorded at hourly intervals from mid 2019 to
Feb 2021. The meteorological data consisted of hourly features such as time, humidity,
temperature, precipitation (in inches), UV index, wind speed, cloud cover, visibility, dew
point, and pressure. Similarly, the air quality consisted of hourly features such as time,
AQI, and PM2.5 concentration. Table 1 displays the statistical distribution of the Lahore,
Islamabad, and Karachi datasets.

Table 1. Statistical distribution of the datasets.

Sr.
No. City Features Count Mean Std Min 25% 50% 75% Max Unique Top Freq.

1 Lahore

Temp (◦C) 15,500.0 28.7 9.8 5.0 20.0 30.0 37.0 52.0

Wind speed (kmph) 15,500.0 8.6 4.2 0.0 6.0 8.0 11.0 40.0

Precipitation (mm) 15,500.0 0.1 0.3 0.0 0.0 0.0 0.0 15.6

Humidity 15,500.0 37.4 19.6 4.0 22.0 34.0 50.0 97.0

Visibility (km) 15,500.0 10.1 1.5 2.0 10.0 10.0 10.0 20.0

Pressure (in) 15,500.0 30.1 0.3 30.0 30.0 30.0 30.0 31.0

Cloud cover 15,500.0 20.8 25.5 0.0 1.0 8.0 34.0 100.0

Dew point (◦C) 15,500.0 10.1 8.4 −13.0 4.0 10.0 17.0 26.0

UV index 15,500.0 4.0 3.5 1.0 1.0 7.0 11.0

PM2.5 conc. 15,500.0 118.9 108.3 2.6 44.3 78.4 161.6 735.5

Is daytime 15,500.0 2.0 no 8405.0

Wind direction (16 points) 15,500.0 16.0 ESE 1994.0

Weather description 15,500.0 21.0 Partly cloudy 8836.0
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Table 1. Cont.

Sr.
No. City Features Count Mean Std Min 25% 50% 75% Max Unique Top Freq.

2 Islamabad

Temp (◦C) 15,769.0 25.1 9.3 4.0 17.0 26.0 32.0 48.0

Wind speed (kmph) 15,769.0 8.8 3.4 1.0 6.0 8.0 10.0 29.0

Precipitation (mm) 15,769.0 0.1 0.5 0.0 0.0 0.0 0.0 13.8

Humidity 15,769.0 40.5 17.8 6.0 27.0 38.0 53.0 95.0

Visibility (km) 15,769.0 10.0 1.9 2.0 10.0 10.0 10.0 20.0

Pressure (in) 15,769.0 30.2 0.4 30.0 30.0 30.0 30.0 31.0

Cloud cover 15,769.0 28.8 31.2 0.0 2.0 13.0 58.0 100.0

Dew point (◦C) 15,769.0 9.0 8.5 −12.0 3.0 9.0 16.0 25.0

UV index 15,769.0 3.6 3.1 1.0 1.0 1.0 7.0 11.0

PM2.5 conc. 15,769.0 49.7 36.9 0.0 25.9 37.5 61.2 304.0

Is daytime 15,769.0 2.0 no 8550.0

Wind direction (16 points) 15,769.0 16.0 NE 1871.0

Weather description 15,769.0 20.0 Partly cloudy 7931.0

3 Karachi

Temp (◦C) 14,852.0 27.7 4.6 12.0 25.0 29.0 31.0 41.0

Wind speed (kmph) 14,852.0 19.8 8.3 1.0 13.0 19.0 25.0 52.0

Precipitation (mm) 14,852.0 0.0 0.2 0.0 0.0 0.0 0.0 8.7

Humidity 14,852.0 53.3 21.4 7.0 34.0 58.0 72.0 92.0

Visibility (km) 14,852.0 10.2 1.4 3.0 10.0 10.0 10.0 20.0

Pressure (in) 14,852.0 30.1 0.3 30.0 30.0 30.0 30.0 31.0

Cloud cover 14,852.0 21.2 28.5 0.0 0.0 5.0 38.0 100.0

Dew Point (◦C) 14,852.0 15.9 9.8 −14.0 8.0 20.0 24.0 28.0

UV index 14,852.0 3.9 3.2 1.0 1.0 1.0 7.0 10.0

PM2.5 conc. 14,852.0 51.3 43.9 0.0 24.3 34.0 64.4 486.3

Is daytime 14,852.0 2.0 no 8037.0

Wind direction (16 points) 14,852.0 16.0 WSW 4155.0

Weather description 14,852.0 19.0 Partly cloudy 6065.0

The dataset was divided into training and testing datasets. For the daily PM2.5
prediction, the training dataset was from mid 2019 to Jan 2019, while the testing dataset
was from Jan 2021 to Feb 2021 (30 Days). Similarly, for the hourly PM2.5 prediction, the
training dataset was from mid 2019 to Feb 2019, while the testing dataset was from the last
72 h (72 H).

3.3. Data Preprocessing and Feature Extraction

Data preprocessing is a process through which the raw data undergoes a rigorous
transformation to make it understandable and implementable for the end user. Data
preprocessing is essential for any analysis, as uncleaned unprocessed data will only lead to
terrible results. Data quality directly influences the overall quality of information derived
from results.

The collected data in this study was processed and made available for feature extrac-
tion through multiple preprocessing techniques such as missing value imputation, data
cleaning, encoding of categorical features, and data scaling.

Feature engineering and selection is the part of machine learning that predominately
affects the overall efficiency of any proposed model. It requires a complete understanding
of the data and a thorough analysis. This analysis not only helps in understanding the raw
data’s features but also helps to create newer ones. In this study, the feature engineering was
divided into four parts. The first part involved removing irrelevant features whose value
remained the same throughout the data. These features included QC name, Loc ID, weather
code, duration, and weather icon URL. The next part combined a few different features to
produce a new feature, e.g., hour, day, month, and year, to form a DateTime feature. Feature
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engineering also needs to resolve the problem of multicollinearity. Multicollinearity in this
dataset occurred when there was a strong relationship between our dependent variable or
features. It would seriously impact the overall interpretability and generalization of our
model. The solution to this problem was to use Pearson correlation. The models were then
fed this processed data for additional analysis and prediction.

3.4. Modelling

In recent years, neural network models such as LSTM have proven to be extremely
useful in solving such time series problems. LSTM is a modified version of the recurrent
neural network (RNN). Figure 5 illustrates an LSTM block. LSTM work exceptionally well
in solving long-term dependency problems. The core feature of the LSTM is its cell state.
The cell state is a horizontal line running on top of the multiple LSTM block, as shown
in Figure 4. Cell states are similar to conveyor belts that carry information from multiple
LSTM blocks. Besides the cell state, LSTM also consists of three gates, namely (1) forget
gate, (2) input gate (3) output gate. The forget gate is primarily used to remove unwanted
information from the cell state.

Figure 5. LSTM unit with its gates and cell states.

The status of the cell is updated using input gates. First, the sigmoid layer will decide
which value it will update through the following equation:

it = σ(Wt [ht−1, xt] + bi) (1)

Then, the Tanh layer will create a vector of new candidate values to be added through
the following equation:

C~t = tanh(Wc[ht−1, xt] + bc) (2)

The final cell state contains both these values, as shown in the following equation:

Ct = ft × Ct−1 + it × C~t (3)

Output gates are used for calculating the value of the next hidden state. It achieves
this by passing the current hidden and previous state through the sigmoid function. The
new cell state generated is also passed through the Tanh function. Then, these values are
multiplied to acquire the next hidden state used for prediction. These two mathematical
equations are listed as follows:

Ot = σ(Wo [ht−1, xt] + bo) (4)

ht = Ot × tanh(Ct) (5)

In this study, besides incorporating neural network models such as LSTM and LSTM
encoder and decoder, a thorough comparative analysis was also conducted between these
models and a traditional time series model such as FbProphet for the forecasting of PM2.5.
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According to the proposed methods, this study made daily and hourly PM2.5 concen-
tration forecasts for Lahore, Islamabad, and Karachi for 30 days and 72 h. To achieve this
goal, multivariate FbProphet, LSTM, and LSTM encoder–decoder models were utilized,
and models were created separately for each city.

This study used the Keras tuner framework for optimizing hyperparameters. The
parameters were selected based on the grid search mechanism. These parameters were
then optimized based on the MAPE metric. This study used the parameters that achieved
the lowest MAPE value for the models.

Table 2 shows the parameters used by the multivariate FbProphet model for hourly
and daily forecasting. Table 3 displays the LSTM model architecture, and Table 4 illustrates
the parameters used for tuning. Moreover, the time lag used for the LSTM model training
was 3 and 4 for daily and hourly forecasting, respectively.

Table 2. Parameters used for training of the daily and hourly multivariate FbProphet model.

City Forecasting n_Changepoints Changepoints_Prior_Scale Seasonal_Model

1 Lahore
Daily 200 0.1 Multiplicative

Hourly 200 0.3 Additive

2 Islamabad
Daily 200 0.1 Multiplicative

Hourly 200 0.1 Additive

3 Karachi
Daily 100 0.3 Additive

Hourly 100 0.2 Additive

Table 3. The model architecture of the daily and hourly LSTM model.

Forecasting Layer Unit Parameters Dropout Kernel Initializer Activation Function

1 Hourly

LSTM 128 86,528 Glorot_Uniform Tanh

Dropout 0.2

Dense 100 12,900 He_Normal Relu

Dense 75 7575 He_Normal Relu

Dropout 0.2

Dense 50 3800 He_Normal Relu

Dense 25 1275 He_Normal Relu

Dense 1 51

2 Daily

LSTM 128 81,408 Tanh

Dense 75 9675 Relu

Dense 50 3800 Relu

Dense 1 51

Table 4. Parameters used for training of the daily and hourly multivariate LSTM model.

City Forecasting Epochs Batch Size Optimizer Learning Rate Loss

1 Lahore
Hourly 50 32 Adam 0.01 MAE

Daily 50 8 Adam 0.01 MAE

2 Islamabad
Hourly 50 32 Adam 0.01 MAE

Daily 50 8 Adam 0.01 MAE

3 Karachi
Hourly 50 32 Adam 0.01 MAE

Daily 50 8 Adam 0.01 MAE
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This study used the MAPE metric to compare the performance of the proposed models.
MAPE is the average percentage error in any forecast. It is handy in the time series model
due to its ability to stop the negative and positive errors from canceling each other out.
Moreover, calculating errors in the form of percentages allows the user to conduct a better
comparative evaluation. Moreover, one of this study’s goals was to conduct a comparative
analysis of different models; this metric appeared to be a perfect fit.

This study used LSTM encoder–decoder for sequence-to-scalar forecasting instead of
conventional sequence-to-sequence forecasting. LSTM encoder–decoder was also applied
to acquire the hourly and daily forecast for the PM2.5 concentration in Lahore, Islamabad,
and Karachi. The lag interval was the only difference between the daily and hourly forecast
processes. The lag value was 4 for hourly forecasting and 3 for daily forecasting. Table 5
illustrates the general architecture for the final model for all three cities. Table 6 shows the
parameters chosen in all the cities for hourly and daily forecasting.

Table 5. The model architecture of the daily and hourly LSTM encoder–decoder model.

Forecasting Layer Unit Activation Function

1 Daily and Hourly

LSTM 100 Tanh

LSTM 100 Tanh

Repeat Vector Tanh

LSTM 100

LSTM 100 Tanh

Time Distributed 1

Table 6. Parameters used for training of the daily and hourly multivariate LSTM encoder–
decoder model.

City Forecasting Epochs Batch Size Optimizer Learning Rate Loss

1 Lahore
Hourly 50 32 Adam 0.01 MAE

Daily 50 8 Adam 0.01 MAE

2 Islamabad
Hourly 50 32 Adam 0.01 MAE

Daily 50 8 Adam 0.01 MAE

3 Karachi
Hourly 50 32 Adam 0.01 MAE

Daily 50 8 Adam 0.01 MAE

4. Results

This section will discuss the impact of the weather on air quality and the overall daily
and hourly forecasting results for PM2.5.

4.1. Lahore

As shown in Figure 6, Lahore had the highest PM2.5 concentration and the most
unhealthy and hazardous days compared to Karachi and Islamabad. Unlike Islamabad
and Karachi, which suffered from a negligible number of hazardous days, Lahore had
almost 12% of days in a year with a PM2.5 concentration of more than 300. The primary
reason for such a high concentration was due to many different weather features such as
temperature, humidity, dew point, wind speed, UV index, visibility, pressure, cloud cover,
and precipitation. All these features negatively correlated with the PM2.5 concentration. A
negative correlation indicated that as the value of these features decreased, the value of
PM2.5 increased. Lahore’s PM2.5 concentration strongly negatively correlated with wind
speed, temperature, and dew point, as shown in Figure 7.
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Figure 6. Depiction of the daily distribution of PM2.5 concentrations according to EPA standards for
Lahore.

Figure 7. Correlation heat map for Lahore.
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As mentioned in the objectives, this study made a daily forecast for the next 30 days
and an hourly forecast for the next 72 h through the multivariate FbProphet, LSTM, and
LSTM encoder–decoder models. The results displayed in Table 7 show that the LSTM
encoder–decoder model performed the best, while multivariate FbProphet performed the
worst for both hourly and daily forecasting. Multivariate FbProphet and LSTM obtained
a MAPE value of 63.9% and 15.6% for hourly and 31.5% and 29.4% for daily forecasting,
respectively. For daily forecasting, the LSTM encoder–decoder model achieved a MAPE
value of 28.2%, while it obtained a value of 11.75% for hourly forecasting. Figures 8–13 com-
pare the predicted and true values for PM2.5 concentration for the multivariate FbProphet,
LSTM, and LSTM encoder–decoder models.

Table 7. Result for hourly and daily forecasting for all the proposed models in the Lahore, Islamabad,
and Karachi datasets.

City Forecasting Models MAPE

Lahore

Hourly

Multivariate FbProphet 63.9%

LSTM 15.6%

LSTM encoder–decoder 11.7%

Daily

Multivariate FbProphet 31.5%

LSTM 29.4%

LSTM encoder–decoder 28.2%

Karachi

Hourly

Multivariate FbProphet 56.2%

LSTM 7.6%

LSTM encoder–decoder 7.4%

Daily

Multivariate FbProphet 52.9%

LSTM 47.2%

LSTM encoder–decoder 42.1%

Islamabad

Hourly

Multivariate FbProphet 17.7%

LSTM 11.6%

LSTM encoder–decoder 9.5%

Daily

Multivariate FbProphet 19.2%

LSTM 15.2%

LSTM encoder–decoder 15.1%

Figure 8. Forecasting for the next month for Lahore using the multivariate FbProphet model.
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Figure 9. Forecasting for the next month for Lahore using the LSTM model.

Figure 10. Forecasting for the next month for Lahore using the LSTM encoder–decoder model.

Figure 11. Forecasting for the next 72 h for Lahore using the multivariate FbProphet model.

Figure 12. Forecasting for the next 72 h for Lahore using the LSTM model.
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Figure 13. Forecasting for the next 72 h for Lahore using the LSTM encoder–decoder model.

4.2. Islamabad

As shown in Figure 14, Islamabad had the lowest PM2.5 concentration and the lowest
number of unhealthy and hazardous days compared to both Lahore and Karachi. These
low numbers were mainly due to the overall impact of different weather features on the
city. All these features had a negative correlation with the PM2.5 concentration. Islamabad’s
PM2.5 concentration strongly negatively correlated with wind speed, temperature, pressure,
visibility, and dew point, as shown in Figure 15.

Figure 14. Depiction of the daily distribution of PM2.5 concentrations according to EPA standards for
Islamabad.

The results displayed in Table 7 show that the LSTM encoder–decoder model per-
formed the best, while multivariate FbProphet performed the worst for both the hourly
and daily forecasting. Multivariate FbProphet and LSTM obtained a MAPE value of 17.7%
and 11.6% for hourly and 19.2% and 15.2% for daily forecasting, respectively. For daily
forecasting, the LSTM encoder–decoder model achieved a MAPE value of 15.1%, while it
obtained a value of 9.5% for hourly forecasting. Figures 16–21 compare the predicted and
true values for PM2.5 concentration for all of the proposed models.
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Figure 15. Correlation heat map for Islamabad.

Figure 16. Forecasting for the next month for Islamabad using the multivariate FbProphet model.

Figure 17. Forecasting for the next month for Islamabad using the LSTM model.
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Figure 18. Forecasting for the next month for Islamabad using the LSTM encoder–decoder model.

Figure 19. Forecasting for the next 72 h for Islamabad using the multivariate FbProphet model.

Figure 20. Forecasting for the next 72 h for Islamabad using the LSTM model.

Figure 21. Forecasting for the next 72 h for Islamabad using the LSTM encoder–decoder model.
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4.3. Karachi

Figure 22 shows that Karachi had a moderate PM2.5 concentration throughout the
year. These moderate numbers were mainly due to the overall impact of different weather
features on the city. All these features had a negative correlation with the PM2.5 concen-
tration. Karachi’s PM2.5 concentration strongly negatively correlated with wind speed,
temperature, pressure, visibility, and dew point, as shown in Figure 23.

Figure 22. Depiction of the daily distribution of PM2.5 concentration according to EPA standards for
Karachi.

Figure 23. Correlation heat map for Karachi.



Processes 2022, 10, 2117 17 of 20

The results displayed in Table 7 show that the LSTM encoder–decoder model per-
formed the best, while multivariate FbProphet performed the worst for both hourly and
daily forecasting. Multivariate FbProphet and LSTM obtained a MAPE value of 56.2%
and 7.6% for hourly and 52.9% and 47.2% for daily forecasting, respectively. For daily
forecasting, the LSTM encoder–decoder model achieved a MAPE value of 42.1%, while it
obtained a value of 7.4% for hourly forecasting. Figures 24–29 compare the predicted and
true values for PM2.5 concentration for all the proposed models.

Figure 24. Forecasting for the next month for Karachi using the multivariate FbProphet model.

Figure 25. Forecasting for the next month for Karachi using the LSTM model.

Figure 26. Forecasting for the next month for Karachi using the LSTM encoder–decoder model.
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Figure 27. Forecasting for the next 72 h for Karachi using the multivariate FbProphet model.

Figure 28. Forecasting for the next 72 h for Karachi using the LSTM model.

Figure 29. Forecasting for the next 72 h for Karachi using the LSTM encoder–decoder model.

5. Discussion

The weather significantly impacts the PM2.5 concentration in different regions. A
similar analysis was done by [9], where the author used penalties to find the impact of
weather conditions on PM2.5 concentration. In this analysis, they concluded that a decrease
in temperature and wind speed was the primary reason behind the increase in PM2.5
concentration. However, unlike the research conducted by [9], this research also analyzed
other weather parameters such as humidity, pressure, and cloud cover. Moreover, this
study concluded that besides wind speed and temperature, other parameters shown in
Figures 7, 15 and 23 also had a substantial negative correlation with the PM2.5 concentration
in Pakistan.

The models proposed in this study achieved a very good MAPE value for forecasting
daily and hourly PM2.5 levels in multiple cities in Pakistan. Table 7 displays the combined
results for the proposed models. These results confirmed that the prediction was better for
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hourly forecasting than daily forecasting. This was because hourly forecasting had more
data (11,000 records) than daily forecasting (650 records). Similarly, deep learning tech-
niques, such as LSTM and LSTM encoder–decoder, outperformed the more conventional
machine learning models. This was mainly because deep learning models are more robust
and flexible in handling a sudden peak in PM2.5 concentration. Moreover, from the results,
it could also be seen that the proposed multivariate models (multivariate FbProphet, LSTM,
and LSTM encoder–decoder) performed better than the traditionally used univariate model.
These results highlighted the importance of including more relevant features for forecasting
PM2.5 concentrations.

The author in [13] also used similar deep learning approaches. In [13], the author
proposed forecasting air quality for the next 48 h by utilizing a combination of neural net-
work models, which included ANN, CNN, and LSTM. In this study, the author conducted
forecasting for Taiwanese and Chinese datasets. The author in [13] did not use weather as a
feature, as their primary aim was the spatiotemporal analysis of air pollutants. In contrast,
this research analyzed the data from Pakistan and included weather information as they
significantly impacted the region’s pollutant concentration. In [13], the authors obtained
an MAE value of up to 10 for a 6-h prediction in different regions of China. Similarly, in
terms of accuracy, LSTM encoder and decoder obtained the highest accuracy among the
models employed in this study. In contrast, the multivariate FbProphet model obtained
the lowest accuracy. LSTM encoder and decoder obtained a MAPE value of up to 7.4%
for hourly (72 h) and 15.07% for the daily forecast (30 days). Given the dataset utilized
in this study and the low MAPE value, LSTM encoder–decoder was the ideal model for
forecasting PM2.5 concentrations.

This study should have used statistical tests such as the T-test, ANOVA, and F-test
for a more thorough model comparison. Similarly, instead of only using MAPE, other
metrics such as mean absolute error (MAE) and root mean squared error (RMSE) would
have provided a more in-depth analysis of the research. These tests and metrics would
have provided more conclusive evidence about whether there was any statistical difference
between the results of the proposed models. However, MAPE was sufficient for explaining
the general behavior for an initial model comparison. Not including statistical tests was
one of the limitations of this research and would be the topic of our future research.

6. Conclusions

In conclusion, this research fulfilled all its goals and objectives. This study analyzed the
impact of weather on the PM2.5 concentration across multiple cities in Pakistan. Through
an in-depth exploratory data analysis and feature engineering, this study found that all
the weather parameters negatively correlated with the PM2.5 concentration. This research
also compared different machine learning models for daily and hourly forecasts of PM2.5
concentrations. The study proved that the LSTM encoder–decoder model performed best
for this dataset. Furthermore, this study provided higher-level information to the timeseries
models through a combination of pollutants and weather data. This additional information
was crucial in improving the model’s accuracy, as shown in Table 7, with it ranging from
15.1% to 63.9%

In the future, it is suggested to use additional data for a more in-depth analysis.
Moreover, it is also suggested to add other features, such as emissions data, to acquire a
more comprehensive analysis of the models. Quantitative statistical tests such as the T-test,
ANOVA, and F-test should be utilized going forward in order to obtain more definitive
results. Finally, the latest state-of-the-art time series models, such as the transformers and
attention-based models, could also be incorporated to forecast pollutants. These models,
with their ability to eliminate recurrence and parallelization, can lead to less complex and
more accurate models.
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