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Abstract: Under certain constraints, the optimisation of the position and number of sectional switches
in overhead lines in distribution networks can improve the reliability and economy of the power
supply. Therefore, a global combination criterion is proposed to simultaneously evaluate the combi-
nation performance of multiple switch positions, which avoids the tedious traditional problem of
adjusting only one switch position at a time and that can possibly fall into a local-optimum problem.
We directly determine the optimal solution and ensure a global optimum. Firstly, the optimal switch-
ing position in each line segment is analysed as an alternative switching position. Subsequently,
the optimal installation-position combination that corresponds to a given number of switches is
determined according to the global combination criterion. If the constraints are satisfied, the number
of switches is increased by one, and the optimal installation-position combination is then determined
until the constraints are not satisfied. This process ensures not only the global optimum of the switch
position but also the optimum number of switches. Finally, examples are given to demonstrate that
the proposed method can further optimise the switch configuration. The utility model effectively
improves the device utilisation rate, reduces the influence range of the fault, and improves power
supply reliability.

Keywords: distribution network; segmentation switch; global combination criterion; position
optimisation

1. Introduction

According to statistics, 80% of power-grid failures are caused by distribution network
failures [1], and power outages caused by distribution network failures bring incalcula-
ble economic and social losses to the users. Therefore, the use of segmented switches is
necessary to segment and isolate the distribution network. In the event of a fault, most
users will not be affected by the segmented switches. However, the construction and
maintenance of segment switches requires a large cost; thus, optimising the use of seg-
ment switches has become a critical issue [2,3]. Reference [4] analysed the single-feeder
and multi-feeder respectively based on the reliability index. Reference [5] uses a genetic
algorithm to solve, but because the model is nonlinear, it is difficult to guarantee the global
optimality of this kind of algorithm. References [6,7] proposed a criterion on whether
segmented switches should be installed, but only individually considered a single switch
and did not consider the synergy among switches. Reference [8] summarised the optimal
number of segments where the general expression was quantified. However, it was only
applicable to the case where the users are evenly distributed. Reference [9] converts the
proposed model into a mixed integer linear model, which increases the solution efficiency,
but the accuracy is difficult to guarantee. In [10], a risk-based two-stage mixed integer
linear programming (MILP) model was proposed to improve the flexibility of piecewise
switching. Reference [11] introduced a routing analysis method to analyse the specific
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performance of different deployment scenarios of segment switches with external tie lines
and internal tie lines, but the method is slightly more complicated for systems with fewer
tie lines. Reference [12] considered the resilience improvement measures of the distribution
network with the addition of automatic switches on the distribution lines in the planning
problem, but the model did not consider the impact of manual switching on the power
supply restoration process of the distribution network, and assumed automatic switching.
The state and the reduction in node load can be controlled in real time, which relies on
the highly automated power distribution system, which makes the model have certain
limitations. Reference [13] proposed the concept of average load coefficient of station area
line, established an optimization model for section switch and tie switch in stages, and
obtained the optimal switch configuration scheme from the aspects of quantity, position
and capacity. However, the optimal distribution in the target station area does not always
mean that it is the global optimal solution. Reference [14] added adjustment operator and
adjustment operator to the general genetic algorithm to optimize the distribution network
switch configuration. Reference [15] establishes a subsection optimization model based on
the concept of equipment life cycle cost (LCC), gives the recursive formula of the impact
of adding subsection switches one by one under any switch configuration on the system
outage cost, and uses discrete particle swarm optimization algorithm for optimization.
Such intelligent algorithms in references [14,15] have been improved, but they still cannot
guarantee 100% global optimization. Reference [16] proposed an optimization model for im-
proving the resiliency of power distribution systems by upgrading some manual switches
to remote-controlled switches. A weighted set cover is used to model the deployment
problem and a greedy algorithm is chosen as the solution algorithm. Reference [17] uses a
greedy algorithm and improved genetic algorithm to optimize the section switch respec-
tively, but the greedy algorithm can only optimize the section switch on the trunk line, and
the solution obtained by this method is not necessarily the optimal solution, but the solution
speed by using Visual FoxPro program development tool combined with improved genetic
algorithm is slow. Reference [18] uses an ant colony algorithm to solve the deployment
model of segment switch. In general, such models based on intelligent algorithms are easy
to formulate, but their solutions may fall into local optima. Reference [19] obtains reliability
indexes based on interval fusion fault retrieval method, transforms them into economic
indexes through the iear index method, and finally uses the greedy method to optimize
the section switch configuration. However, it does not reflect the optimization of the
number of switches. Reference [20] takes the minimum life cycle cost of the configuration
scheme as the objective function and uses the binary differential evolution algorithm for
analysis and calculation. Although the multi strategy evolution mode improves the search
probability of the global optimal solution, the convergence speed is significantly reduced.
Reference [21] comprehensively considers the actual engineering constraints such as line
transfer capacity and transfer line length between substations, preliminarily selects the
overall liaison structure of substation, puts forward the life cycle efficiency (LCE) index,
and establishes the mathematical model with the maximum LCE index of distribution
network switch planning scheme as the objective function. Reference [22] proposed a
sample construction and sample local search algorithm, and on this basis, proposed a new
iterative sample construction algorithm with path reconnection, which solved the problem
of optimal switch allocation. However, when evaluating the constructed samples, only the
expected energy not supply (EENS) is taken as the reliability index, without considering
additional constraints such as minimizing the number of switching operations, customer
priority, switching time or recovery cost. Reference [23] established a general model of
M-segment and n-interconnection connection of medium voltage distribution network, and
used the whole life cycle method to give feasible segmentation and interconnection config-
uration schemes under different boundary conditions. However, when the power supply
model is constructed, each line is divided into m segments with equal length and the load
is evenly distributed, which greatly affects the household hours affected by power failure,
so the reliability index cannot be fully guaranteed. Reference [24] obtains the reliability
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index expression by calculating the fault incidence matrix and fault parameters, and then
establishes a 0–1 integer quadratic constraint optimization model for segmented turnout
configuration to optimize the segmented switch and tie line. For the configuration problem
of remote-control section switches, reference [25] uses mixed integer linear programming
to model the problem and effectively optimizes the configuration scheme of the section
switch, but does not consider the combined optimization of section switch and tie line.
Moreover, the installation of subsection switches on a line segment only includes one
candidate position, while both the starting point and the end point are considered in the
literature [26,27], and the method of planning subsection switches and tie lines at the same
time is more economical and reasonable. References [28–30] proposed a three-stage optimi-
sation algorithm for switch configuration, which first determined the switch alternative
position and then installed the switch according to a single-switch-position criterion until
the constraint conditions were not satisfied. These switches were then individually opti-
mised. Although this method provided a certain degree of improvement compared with
the traditional method, it still fell into the local optimum and failed to not only optimise
the switch but also determine the quantity because it was determined in the second stage
before the position optimisation. In other words, the calculation of the constraint index
was not performed based on the final optimised switch position; thus, it was not optimal.
Figure 1 shows that because the power loss of the same number of switches in the optimal
and non-optimal positions is different, the optimal number of segments obtained when
constrained by economics is also different. Therefore, the method used for determining the
number of switches in [28–30] was not sufficiently accurate.
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To further optimise the position and number of switches, the first step in the present
study adopts the alternative switch positions proposed in [28–30]. Thus, the distribu-
tion of the switch positions is restricted within a limited range. Then, we individually
analyse the presence or absence of contact lines and propose a corresponding global switch-
combination criterion. The criterion is used to directly determine the best installation
position combination corresponding to a given number of switches, which ensures global
optimum. The main contributions of this paper are reflected in the following aspects:

(1) By comprehensively considering reliability and economy, an optimisation algorithm
for the distribution switch of an overhead line segment in a distribution network based
on the global combination criterion is proposed, and the switch-configuration scheme
is further optimised to effectively improve the utilisation rate of the equipment, reduce
the scope of faults, and improve the power supply reliability.

(2) Simultaneously, we determine multiple switch positions using a global combination
criterion. Compared with [28,29] that employed a single-switch criterion to determine
one switch at a time, the method of repeated iterative optimisation to determine the
switch position is more direct. Further, it does not fall into a local optimum. The
calculation speed is also very fast while ensuring global optimum.
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(3) This paper proposes to further optimise the number of switches based on the optimal
switch position and reflects the optimisation effect of the method on the number
of switches. The use of the optimised optimal switch-position data to determine
the number of switches is obviously better than that in [28,29]. The number of
switches determined by the switch-position data before optimisation is more accurate
and reasonable.

2. Relevant Definition and Reliability-Index Selection
2.1. Related Definitions

(1) Node: connection point of the feeder and distribution transformer. The connection
point of the primary branch and trunk is defined as a node.

(2) Line segment: a line that connects two nodes without a load is defined as a line segment.
(3) Line power supply end: the end of a line section close to the main power supply

(standby power supply) is defined as the main power supply end (backup power
supply end) of a line section.

2.2. Power Supply Reliability Index

Currently, the commonly used indicators for evaluating the reliability of a distribution
network [14] are the following: system average power outage duration index (SAIDI),
system average power outage frequency index, user average power outage frequency index,
and system power-shortage indicator [energy not supplied (ENS)], which is characterised
by insufficient power supply in the system for a given time. If the aforementioned indicators
are evaluated, the workload becomes large and the effect is not good because of the complex
relationship among the indicators. This study comprehensively considers the user (the
power outage time is shorter) and the power supply company (the lack of power supply is
less). Comprehensive evaluations are made using the two indicators: SAIDI and ENS.

2.3. Power Supply Reliability Evaluation Method

The traditional method of distribution network reliability evaluation is adopted,
namely, failure mode and effect analysis. This method uses component-reliability data
to select the appropriate fault-judgment criteria and then divides the system status into
normal operation and fault categories according to the criteria. It then performs reliability
calculations. For calculation convenience, the model is simplified, and only the line faults
are considered.

3. Constructing the Objective Function
3.1. Objective Function

According to SAIDI and ENS, the following multi-objective function is developed:

minR(y) = W1 × SAIDI(y) + W2 × ENS(y) (1)

where,

y—number of section switches
R(y)—reliability comprehensive index value
SAIDI(y)—SAIDI of y switches normalised before multiplying the weights
ENS(y)—ENS for y switches, which is normalised before multiplying the weights

Weight of W1—SAIDI indicator, which can be changed according to the actual situation.
This study considers it in a balanced manner and judged by experts, assumes a value of 0.5.

Weight of W2—ENS index, which can be changed according to the actual situation.
This study considers it in a balance manner and assumes a value of 0.5.

3.2. Restrictions

(1) Power system inequality constraints
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The inequality-constraint conditions that ensure normal operation of the power system
are expressed by the following formula:

SK ≤ SK.max
Ui.min ≤ Ui ≤ Ui.max
Iij ≤ Iij.max
fmin ≤ f ≤ fmax

(2)

S represents the user power, U represents the bus node voltage, I represents the branch
current, and f represents the system frequency.

(2) Power system equality constraints

The equality constraints that ensure normal operation of the power system are ex-
pressed by the following formula:{

ΣPGi−ΣPLi−Σ∆Ps= 0
ΣQGi−ΣQLi−Σ∆Qs= 0

(3)

ΣPGi,Σ∆Ps,ΣPLi represent the power supply, line loss, and active power of the load,
respectively, and ΣQGi,Σ∆Qs,ΣQLi represent the power supply, line loss, and reactive
power of the load, respectively.

(3) Maximum effective-segment-condition constraints

To allow each additional switch to exert a considerable effect, the set constraint condi-
tions are expressed as follows:

∆R(y)
R(y)

> ε (4)

where ∆R(y) represents the comprehensive-index value, which is reduced by adding one
more switch, i.e., R(y)−R(y − 1). ε is the minimum reduction rate that needs to be satisfied
(here, 0.1).

(4) Economic constraints

yc ≤ C0 (5)

Here, c represents the cost of installing a switch, including post-maintenance expenses,
and C0 represents the upper limit of the cost of this additional switch project.

(5) Reliability constraints

R(y) ≤ R0 (6)

Here, R0 represents the maximum reliability comprehensive-index value R(y). Exceed-
ing this value means that the reliability requirements cannot be met.

4. Optimal Switch Configuration Based on Global Combination Criterion
4.1. Definition of Related Quantity

Figure 2 shows that the K1 and K2 switches divide the line into three sections. We let
A1 be the length of the trunk line between switch K1 and power point, B1 be the total length
of the branch lines in the A1 section trunk line, L1 be the sum of the lengths of A1 and B1,
and A2 be the switch between K1 and K2. The length of the trunk line, i.e., B2 represents
the sum of the total length of the branch lines in the A2 section of the trunk line, and L2
denotes the sum of the lengths of A2 and B2. A3 represents the length of the trunk line from
switch K2 to the end of the line, and B3 denotes the length of the A3 section of the trunk
line, i.e., the sum of the total length of the branch lines. L3 denotes the sum of the lengths
of A3 and B3. The total number of users in L1 is denoted by N1. The total load is denoted
as P1, which are the loads from C1 to C5. The total number of users in L2 is denoted by N2.
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The total load is denoted as P2, which are the loads from C6 to C10. The total number of
users in L3 is denoted as N3, and the total load is represented by P3.
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If the number of switches is increased to y, the switches are denoted as K1–Ky from
left to right, i.e., the line is divided into y + 1 segments. Then, Li represents the trunk
line between the i − 1 and i switches, which represents the total length of the branch line.
Ni and Pi denote the number of users and load in Li (i = 1, 2, . . . , y + 1). When i = 1, Li
represents the total length of the main and branch lines between K1 and the power point.
When i = y + 1, Li denotes the total length of the main and branch lines from Ky to the end
of the line.

4.2. Switch Global Combination Criterion

(1) Criterion for global switch combination without a tie line

Figure 2 shows that for a single-ray ray path, the installation of switches will present
different reliability characteristics at different positions. Here, the effect of the combined
installation position of multiple switches on the global reliability is simultaneously investi-
gated. We let L be the sum of L1, L2, and L3, i.e., the total length of the trunk and branch
lines. We denote the total number of users in L as N and the total load as P. We also denote
the total number of users in L1 as N1 and the total load as P1. The total number of users in
L2 is denoted as N2, and the total load is denoted as P2. The total number of users in L3 is
listed as N3, and the total load is listed as P3. We assume that two switches K1 and K2 are
installed for the preliminary research.

By first considering only one reliability index, i.e., SAIDI, SAIDIbef before the switch
installation can be expressed by the following formula:

SAIDIbef =
λLt1N

N
= λLt1 (7)

Feeder SAIDIaft after the installation of the segment switch is expressed as

SAIDIaft =
λ[L 1t1+(L 2+L3)t2]N1

N1+N2+N3

+
λ[(L 1+L2)t1+L3t2]N2+λ(L 1+L2+L3)N3t1

N1+N2+N3

= λLt1+[L 2N1+L3(N 1+N2)]
λ(t 2−t1)

N

(8)

where:

t1—time required for fault repair
t2—Power-outage time in line B when line A fails. (The value of t2 when a circuit breaker
is used as a switch is zero, and that of t2 when a load switch is used is the sum of the
time required for the fault location and isolation and the time required for the switch to
trip). Line A indicates the part that needs to be isolated and repaired after the fault. Line B
indicates the part that can normally supply power after the fault is isolated.
λ—Line failure rate
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After the switch is installed, the reduced value of SAIDI, i.e., ∆SAIDI, is expressed by
the following formula:

∆SAIDI = [L 2N1+L3(N 1+N2)]
λ(t 1−t2)

N
(9)

We can easily learn that when Equation (9) obtains the maximum value, the best effect
and reliability are realised when two switches are installed, and the corresponding switch
position at this time is the optimal switch position when two switches are installed.

When y switches are installed, the line is divided into y + 1 segments. Then,

∆SAIDI = [L 2N1+L3(N 1+N2)+ . . .+Ly+1(N 1+N2 + . . .+Ny)]
λ(t 1−t2)

N
(10)

Similarly, we can observe that when the maximum value is obtained in Equation (10),
it indicates the optimal effect when y switches are installed. The reliability reaches the
highest value, and the corresponding switch position at this time is the optimal switch
position when y switches are installed.

λ, t1, t2, and N in Equations (9) and (10) do not change with the change in the switch
position. They are all quantities and do not affect the distribution of the optimal switch
position, which can be ignored when the maximum value is sought. We simply calculate
the maximum value of

[L 2N1+L3(N 1+N2)+ . . .+Ly+1(N 1+N2 + . . .+Ny)]

Similarly, if the reliability index considered is ENS, then the corresponding switch
position, when

[L 2P1+L3(P 1+P2)+ . . .+Ly+1(P 1+P2 + . . .+Py)]

obtains the maximum value is the optimal switch position when y switches are installed.
If the two reliability indexes, namely, SAIDI and ENS, are comprehensively considered,

they can be determined using Equation (11). When the value of Equation (11) is the largest,
the comprehensive reliability reaches the highest value, and the corresponding switch
position represents the comprehensive consideration of SAIDI and ENS, which is the
optimal switch position under the two indicators.

[L 2X1+L3(X 1+X2)+ . . .+Ly+1(X 1+X2 + . . .+Xy)] (11)

In Equation (11), Xi= W1
Ni
N +W2Pi, (i = 1,2, . . . , y). Xi can be considered as a compre-

hensive indicator of the user load. Equation (11) can be used as a global switch-combination
criterion for unconnected lines to determine the advantages and disadvantages of the global
switch position combination.

(2) Criterion for global combination of switches with tie lines

Figure 2 shows that, assuming a connection exist at the end of the line, feeder SAIDIaft
after the section switch is installed is expressed as

SAIDIaft =
λ[L 1t1+(L 2+L3)t2]N1

N1+N2+N3

+
λ[L 2t1+(L 1+L3)t2]N2+λ[L 3t1+(L 1+L2)t2]N3

N1+N2+N3
= λLt1+[(L 2+L3)N1+(L 1+L3)N2

+(L 1+L2)N3]
λ(t 2−t1)

N
= λLt1+[(L − L 1)N1+(L − L 2)N2

+(L − L3)N3]
λ(t2−t1)

N

(12)
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The reduced value of the average power-outage duration of the system after the
segment switch is installed, i.e., ∆SAIDI is

∆SAIDI = [(L − L 1)N1+(L − L 2)N2+(L − L 3)N3]
λ(t 1−t2)

N
(13)

When y switches are installed, the line is divided into y + 1 segments. Then,

∆SAIDI = [(L − L 1)N1+(L − L 2)N2 + . . .+(L − L y+1)Ny+1

] λ(t 1−t2)

N
(14)

Similar to that without a connection, λ, t1, t2, and N in Equation (14) are all quantities.
Then, the corresponding switch position when [(L − L 1)N1+(L − L 2)N2 + . . .+(L − L y+1)Ny+1

]
reaches the maximum value is the optimal switch position for y switches.

Similarly, when the considered reliability index is ENS, the corresponding switch
position when [(L − L 1)P1+(L − L 2)P2 + . . .+(L − L y+1)Py+1

]
achieves the maximum

value is the optimal switch position when y switches are installed.
When the two reliability indexes of SAIDI and ENS are comprehensively considered,

they can be determined according to the Equation (15). When the value of Equation (15) is
the largest, the comprehensive reliability reaches the highest value, and the corresponding
switch position denotes the comprehensive consideration of SAIDI and ENS. The optimal
switch position under the two indicators is expressed as follows:

[(L − L 1)X1+(L − L 2)X2 + . . .+(L − L y+1)Xy+1

]
(15)

Equation (15) can be used as the global switch-combination criterion of the connected circuit
to determine the advantages and disadvantages of the global switch-position combination.

(3) Advantages of the global switch-combination criterion compared with the single-
switch criterion

We consider the installation of four switches in a line with 15 alternative switch
positions as an example. This condition is compared with the traditional step of selecting
the switch positions using the single-switch criterion.

The switch position is traditionally selected using the single-switch criterion:

a. All candidate position criteria are first calculated. A switch is then installed at the
best point.

b. After the installation of the first switch, the criteria for the remaining positions need
to be recalculated. The maximum value is then determined, and the second switch
is installed.

c. Step b is repeated until four switches are installed.
d. Due to the installation of the additional switches, the criterion for the position of the

previously installed switch also changes and is not optimal. Thus, recalculating the
position is necessary to individually find the optimal positions until no change in the
switch position occurs. In addition, global optimality is not guaranteed.

We propose to use the switch-combination criterion to select the optimal switch
position. We directly calculate the criteria of the C(15,4) combination schemes, determine
the optimal value, i.e., the optimal position, and ensure global optimum.

Generally, the overhead lines of a medium-voltage distribution network are limited
in terms of capacity, and user access and loads are few. To ensure global optimum, all
combination schemes are searched using the enumeration method. A program written in
the C language is run in Visual C++ 6.0, and we search for the C(15,4) combination scheme
in approximately 2 s, which is relatively fast.
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4.3. Alternate Switch Position

The alternative position of the switch is the position where the switch may also be
installed. We analyse if the switch is installed in each line section, identify which position
is the best in the line section, restrict the distribution of the switch position within a limited
range, and significantly reduce the search volume while not reducing the accuracy. In this
manner, the problem is transformed into a discrete combination-optimisation problem
in which n switch alternative positions are first determined in the line, and y installed
switches are then selected at the n positions.

According to the abovementioned analysis, the following alternative switch positions
can be obtained with or without a tie switch.

(1) No contact line section

According to Equation (11) and keeping the other conditions unchanged, when only
the switch position in one line segment is used as a variable, the equation solution is the
largest when the switch is installed at the power supply end. Therefore, for non-connected
lines, the switch alternative position is located at each power end of the line segment, as
marked with a solid black dot in Figure 3.
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Figure 3. Switch alternative-location diagram (no contact).

(2) Link section is present

Similarly, according to Equation (15), this value is the largest when the switch in
each line segment is installed at the main power supply terminal or backup power supply
terminal. Therefore, for a connected line, the alternative position of the switch is at the
main power supply terminal in each line segment, which is marked with a solid black dot
in Figure 4.
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4.4. Determination of the Installation Position and Number of Switches

a. According to whether the line is connected or not, all alternative installation positions
are regarded as undetermined positions. The number of switches is denoted as n,
and initial switch number y is considered as one.

b. We find the most suitable y positions among the n switch positions to install y
switches. According to the connection of the line (zero) and the global combination
criterion in Equation (15) [Equation (11)], the values of the C(n, y) combination
schemes are calculated in sequence. The corresponding switch position is identified
when the maximum value is found, which is the optimal switch position when y
switches are installed.

c. We determine whether the constraint condition is satisfied, i.e., if y = y + 1, step b is
repeated; otherwise, step d is performed.
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d. We output the optimal position and number of y − 1 switches.

4.5. Algorithm Flow

The heuristic algorithm is based on the planning experience of the actual power grid,
converts it into a certain logic rule, and then determines whether the segment switch is
installed or not based on this logic rule. This paper also belongs to the heuristic algo-
rithm. This paper proposes a global combination criterion to simultaneously judge the
pros and cons of the combined effect of multiple switch positions, that is: find the most
suitable y positions on the n switch candidate positions to install y switches. According
to whether there is a connection or not, according to the global combination criterion of
Equation (11) (Equation (15)), the enumeration method is used to calculate the values of
C(n, y) combination schemes in turn, and the combination scheme with the maximum
value is found, which is the optimal switch position when y switches are installed. This
avoids the tediousness of traditionally adjusting only one switch position at a time and
the local optimal problem that may fall into, and directly obtains the optimal solution and
ensures the global optimality, so that the global optimal position of a given number of
switches can be determined.

The number of switches is determined based on the optimal switch position. First,
find the best combination of installation positions corresponding to a switch through the
global combination criterion. If the constraint conditions (2) to (6) are satisfied, add one to
the number of switches, and then find the best combination of installation positions under
this number until if the constraints are not met, it is the total number of switches. The flow
chart is as follows. This not only ensures the global optimization of the switch position,
but also ensures the optimization of the number of switches. Finally, it is verified by two
practical examples; the algorithm flow is as shown in Figure 5.
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5. Calculation Example and Optimisation-Effect Analysis 
5.1. Example 1 

The method in this study is used to calculate and optimise the actual feeder data in 
reference [14] listed in Table 1 and to compare the effects. By considering λ as 0.05 
times/(year·km), t1 = 3 h and t2 = 0. The considered reliability index is ENS. 

Table 1. Piece of the actual feeder data. 

Starting 
Point End Line Length (km) Load (kW) 

1 2 0.403  
2 3 0.120 192 
2 4 0.524  
4 5 0.480 201 
4 6 0.610  
6 7 0.000 134 
6 8 0.220 201 
6 9 0.000 128 
6 10 0.263  

10 11 0.000 201 
10 12 0.936 639 

Figure 5. Algorithm flowchart.
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5. Calculation Example and Optimisation-Effect Analysis
5.1. Example 1

The method in this study is used to calculate and optimise the actual feeder data in refer-
ence [14] listed in Table 1 and to compare the effects. By considering λ as 0.05 times/(year·km),
t1 = 3 h and t2 = 0. The considered reliability index is ENS.

Table 1. Piece of the actual feeder data.

Starting Point End Line Length (km) Load (kW)

1 2 0.403
2 3 0.120 192
2 4 0.524
4 5 0.480 201
4 6 0.610
6 7 0.000 134
6 8 0.220 201
6 9 0.000 128
6 10 0.263
10 11 0.000 201
10 12 0.936 639
10 13 0.815 361
10 14 0.583
14 15 0.000 658
14 16 0.400 201
14 17 0.195
17 18 0.000 383
17 19 0.200
19 20 0.200 639
19 21 0.204
21 22 0.140 255
21 23 0.604
23 24 0.000 255
23 25 0.400 243

Figure 6 shows the alternative positions of the switch without a tie line, and Figure 7
shows those with a tie line. The optimisation results are shown in the switch configuration
scheme shown in Figures 8–11 in which Figure 9 shows that with no tie. The optimal switch
configuration scheme is shown in Figure 11 where contact occurs. Figure 8 shows the
optimal switch position when only two switches are installed without a contact. Figure 10
shows the case when only two switches are installed without a contact.
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Figure 7. Example 1: alternative switch-position map (with contact). 
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Figure 8. Example 1: optimal switch-distribution map (no contact, two switches).
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Figure 11. Example 1: optimal switch-distribution map (with contact, five switches). 

Table 2 lists the comparison between the calculation optimisation results of the 
method used in the present study and that in [28,29]. Through the calculation, when the 
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positions of the switches are arranged at the power terminals of 4–6, 10–14, and 19–21; the 
ENS is 3.684 MW·h/year. The method used in the present study is the same as that in [29], 
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switches for cost considerations, which were arranged at the 6–10 and 14–17 power termi-
nals, and the ENS was 3.900 MW·h/year. However, the position was not optimal. The op-
timal position of the two switches determined by the method used in the present study is 
at the 10–14 and 19–21 power terminals, and the ENS is 3.851 MW·h/year. Compared with 

Figure 9. Example 1: optimal switch-distribution map (no contact, three switches).

Processes 2022, 10, x FOR PEER REVIEW 13 of 18 
 

 

Figure 8. Example 1: optimal switch-distribution map (no contact, two switches). 

1
2 4

5

6

7
9

10

11

13

14

15

17
19

2122

23
24

 
Figure 9. Example 1: optimal switch-distribution map (no contact, three switches). 

1
2

3

4

5

6

8

7
9

10

11

12

13

14

15

16

17

18

19

20

2122

23
24 25

backup power

 
Figure 10. Example 1: optimal switch-distribution map (with contact, four switches). 

1
2

3

4

5

6

8

7
9

10

11

12

13

14

15

16

17

18

19

20

2122

23
24 25

backup power

 
Figure 11. Example 1: optimal switch-distribution map (with contact, five switches). 

Table 2 lists the comparison between the calculation optimisation results of the 
method used in the present study and that in [28,29]. Through the calculation, when the 
line is not connected, we install three switches to optimise the section, i.e., we divide the 
line into four sections. When four switches are installed, the optimal positions are at the 
power terminals of 6–10, 10–14, 17–19, and 21–23. The ENS is 3.513 MW·h/year, which is 
3% lower than that in the three-switch ENS and satisfy constraint condition number (4). 
The optimal three switches are located at the power terminals of 6–10, 10–14, and 19–21, 
and the ENS is 3.593 MW·h/year. The method in [29] also installs three switches, but the 
positions of the switches are arranged at the power terminals of 4–6, 10–14, and 19–21; the 
ENS is 3.684 MW·h/year. The method used in the present study is the same as that in [29], 
i.e., the same number of switches. Thus, investment is the same, which can reduce ENS by 
2.47%, and the system reliability is higher. Reference [28] chose to install only two 
switches for cost considerations, which were arranged at the 6–10 and 14–17 power termi-
nals, and the ENS was 3.900 MW·h/year. However, the position was not optimal. The op-
timal position of the two switches determined by the method used in the present study is 
at the 10–14 and 19–21 power terminals, and the ENS is 3.851 MW·h/year. Compared with 

Figure 10. Example 1: optimal switch-distribution map (with contact, four switches).



Processes 2022, 10, 1976 13 of 18

Processes 2022, 10, x FOR PEER REVIEW 13 of 18 
 

 

Figure 8. Example 1: optimal switch-distribution map (no contact, two switches). 

1
2 4

5

6

7
9

10

11

13

14

15

17
19

2122

23
24

 
Figure 9. Example 1: optimal switch-distribution map (no contact, three switches). 

1
2

3

4

5

6

8

7
9

10

11

12

13

14

15

16

17

18

19

20

2122

23
24 25

backup power

 
Figure 10. Example 1: optimal switch-distribution map (with contact, four switches). 

1
2

3

4

5

6

8

7
9

10

11

12

13

14

15

16

17

18

19

20

2122

23
24 25

backup power

 
Figure 11. Example 1: optimal switch-distribution map (with contact, five switches). 

Table 2 lists the comparison between the calculation optimisation results of the 
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line into four sections. When four switches are installed, the optimal positions are at the 
power terminals of 6–10, 10–14, 17–19, and 21–23. The ENS is 3.513 MW·h/year, which is 
3% lower than that in the three-switch ENS and satisfy constraint condition number (4). 
The optimal three switches are located at the power terminals of 6–10, 10–14, and 19–21, 
and the ENS is 3.593 MW·h/year. The method in [29] also installs three switches, but the 
positions of the switches are arranged at the power terminals of 4–6, 10–14, and 19–21; the 
ENS is 3.684 MW·h/year. The method used in the present study is the same as that in [29], 
i.e., the same number of switches. Thus, investment is the same, which can reduce ENS by 
2.47%, and the system reliability is higher. Reference [28] chose to install only two 
switches for cost considerations, which were arranged at the 6–10 and 14–17 power termi-
nals, and the ENS was 3.900 MW·h/year. However, the position was not optimal. The op-
timal position of the two switches determined by the method used in the present study is 
at the 10–14 and 19–21 power terminals, and the ENS is 3.851 MW·h/year. Compared with 

Figure 11. Example 1: optimal switch-distribution map (with contact, five switches).

Table 2 lists the comparison between the calculation optimisation results of the method
used in the present study and that in [28,29]. Through the calculation, when the line is not
connected, we install three switches to optimise the section, i.e., we divide the line into
four sections. When four switches are installed, the optimal positions are at the power
terminals of 6–10, 10–14, 17–19, and 21–23. The ENS is 3.513 MW·h/year, which is 3%
lower than that in the three-switch ENS and satisfy constraint condition number (4). The
optimal three switches are located at the power terminals of 6–10, 10–14, and 19–21, and the
ENS is 3.593 MW·h/year. The method in [29] also installs three switches, but the positions
of the switches are arranged at the power terminals of 4–6, 10–14, and 19–21; the ENS is
3.684 MW·h/year. The method used in the present study is the same as that in [29], i.e., the
same number of switches. Thus, investment is the same, which can reduce ENS by 2.47%,
and the system reliability is higher. Reference [28] chose to install only two switches for
cost considerations, which were arranged at the 6–10 and 14–17 power terminals, and the
ENS was 3.900 MW·h/year. However, the position was not optimal. The optimal position
of the two switches determined by the method used in the present study is at the 10–14 and
19–21 power terminals, and the ENS is 3.851 MW·h/year. Compared with the switch-layout
scheme in [28], the cost remains the same, and the ENS is reduced by 1.26%.

When the line is connected, the calculation reveals that installing five switches is best
for segmentation, i.e., we divide the line into six segments. When six switches are installed,
the reliability of the upgrade is too low to satisfy constraint condition number (4). The
optimal positions of the five switches are at 4–6, 6–10, and 14–17 standby power terminals
and 10–14 and 19–21 main power terminals. The ENS is 0.840 MW·h/year. The method
employed in [28,29] was to install four switches. The switches in [28] were arranged at
the 4–6, 6–10, and 17–19 standby power terminals and 10–14 main power terminal. The
ENS was 1.055 MW·h/year. The switches used in [29] were arranged at the 4–6 and 10–
14 standby power terminals and 10–14 and 19–21 main power terminals. The ENS was
1.117 MW·h/year. However, the position of the four switches was not optimal. The optimal
position of the four switches determined by our study is located at the 4–6, 6–10, and 10–14
standby power terminals and the 19–21 main power terminal. ENS is 1.013 MW·h/year.
Under the same number of switches, ENS is reduced by 3.98% compared with that in [28]
and by 9.31% compared with that in [29]. The five-switch configuration scheme in the
present study is 17.08% lower than the four-switch optimal scheme. Compared with the
switch-layout scheme in [28,29], we install one more switch. ENS is reduced by 20.38%
compared with that in [28] and by 24.80% compared with that in [29]. We can observe that
although one more switch is installed, the ENS is significantly reduced and the reliability is
significantly improved, which prove that the proposed scheme can effectively optimise the
number of switches.

Table 3 is a chart detailing the various configuration conditions in this paper.
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Table 2. Example 1: comparison of the switch position-optimisation result.

Wiring Mode Method Switch Position ENS (MW·h/Year)

No contact

Present study 10–14 Power terminal
19–21 Power terminal 3.851

Reference [14] 6–10 Power terminal
14–17 Power terminal 3.900

Present study
6–10 Power terminal

10–14 Power terminal
19–21 Power terminal

3.593

Reference [15]
4–6 Power terminal

10–14 Power terminal
19–21 Power terminal

3.684

With contact

Present study

4–6 Standby power terminal
6–10 Standby power terminal
10–14 Standby power terminal

19–21 Main power terminal

1.013

Reference [14]

4–6 Standby power terminal
6–10 Standby power terminal
10–14 Main power terminal

17–19 Standby power terminal

1.055

Reference [15]

4–6 Standby power terminal
10–14 main power terminal

10–14 Standby power terminal
19–21 Main power terminal

1.117

Table 3. Condition and operation table.

Example Contact Line Graphics Configure

Example 1 (Actual feeder data in
Reference 28)

no contact

Figure 6 Alternative switch-position
map

Figure 8 Optimal switch-distribution
map (two switches)

Figure 9 Optimal switch-distribution
map (three switches)

with contact

Figure 7 Alternative switch-position
map

Figure 10 Optimal switch-distribution
map (four switches)

Figure 11 Optimal switch-distribution
map (five switches)

Example 2 (Actual feeder data in
a certain place)

with contact

Figure 12 Alternative switch-position
map

Figure 13 Optimal switch-distribution
map
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5.2. Example 2 
Table 4 lists the real feeder data of a certain place. The feeder is a connected feeder. 

The method in this study is used to optimise and compare the effects. The values of λ, t1, 
and t2 are the same as those in Example 1. The optimisation results are shown in Figure 
13. 
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Starting 
Point 
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5.2. Example 2

Table 4 lists the real feeder data of a certain place. The feeder is a connected feeder.
The method in this study is used to optimise and compare the effects. The values of λ, t1,
and t2 are the same as those in Example 1. The optimisation results are shown in Figure 13.

Table 4. Piece of real feeder data in a certain place.

Starting Point End Line Length (km) Load (kW) Number of Users (Household)

1 2 0.604
2 3 0.204 204 53
2 4 0.420
4 5 0.000 142 41
4 6 0.231 246 72
4 7 0.368
7 8 0.000 436 137
7 9 0.273 234 83
7 10 0.852 174 66
7 11 0.497
11 12 0.000 387 132
11 13 0.465 589 203
11 14 0.373
14 15 0.742 628 258
14 16 0.405
16 17 0.295 291 139
16 18 0.000 336 115
16 19 0.300 283 93
16 20 0.520
20 21 0.000 335 102
20 22 0.380 278 92
20 23 0.434
23 24 0.000 377 127
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Table 5 lists the comparison of the results after optimisation of the comprehensive and
single indexes after and before optimisation. The feeder is equipped with four segment
switches before optimisation, which are arranged at the 2–4 and 11–14 standby power
terminals and 7–11 and 16–20 main power supply terminals; ENS is 1.152 MW·h/year,
and SAIDI is 0.2349 h/(house·year). The positions obtained by optimising using the
comprehensive index by the method employed in the present study are shown in Figure 13,
which are at the 4–7, 7–11, 14–16, and 16–20 standby power terminals and the 11–14
main power terminal. ENS is 0.8519 MW·h/year, and SAIDI is 0.1719 h/(household·year).
Compared with the values before optimisation, only one more switch is installed, and ENS
is reduced by 26.05%, SAIDI is reduced by 26.82%, and the comprehensive reliability index
is reduced by 26.42%. We can observe that the reliability-index value is greatly reduced
and the reliability is significantly improved.

Table 5. Example 2: comparison of the switch-position optimisation results.

Considered Indicators Switch Position
SAIDI (h/

(Household
Year))

ENS (MW·h/
Year)

Value of the Objective
Function under the

Composite Indicator
(Normalised)

Optimal under
comprehensive index

4–7 Standby power
terminal

7–11 Standby power
terminal

11–14 Main power
terminal

14–16 Standby power
terminal

16–20 Standby power
terminal

0.1719 0.8519 0.155902

Optimal under ENS
index

4–7 Standby power
terminal

7–11 Standby power
terminal

11–14 Main power
terminal

14–16 Standby power
terminal

16–20 Standby power
terminal

0.1719 0.8519 0.155902

Optimum under SAIDI

4–7 Standby power
terminal

7–11 Standby power
terminal

11–14 Main power
terminal

14–16 Standby power
terminal

16–20 Power terminal

0.1707 0.8582 0.155938

Before optimisation

2–4 Standby power
terminal

7–11 Main power
terminal

11–14 Standby power
terminal

16–20 Main power
terminal

0.2349 1.152 0.211868
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Compared with the optimisation result under the SAIDI indicator, the optimisation
result under the comprehensive indicator has slightly higher SAIDI but lower ENS. The
two indicators are normalised and multiplied by their respective weights [W1 (SAIDI) = 0.5;
W2 (ENS) = 0.5]. The obtained objective function value is lower, which is better. We can ob-
serve that the optimisation results under the comprehensive index are more comprehensive
and reliable than that under the single index. Simultaneously, we prove that the method
proposed in this paper can effectively optimise the number of switches under the ENS and
SAIDI indexes and effectively optimise the number of switches under the comprehensive
reliability index, which presents important applicability.

6. Conclusions

(1) Considering the reliability and economy comprehensively, multiple switch positions
are judged at the same time through the global combination criterion. Compared with
the method of repeatedly iteratively optimizing and determining the switch position
using the single switch criterion in literatures [28,29], it is not only more direct, and
does not get stuck in a local optimum. When there is no tie switch in the first example,
the method in this paper reduces the ENS by 2.47% compared with the literature [29],
which effectively improves the utilization rate of the equipment.

(2) This paper proposes to further optimize the number of switches based on the optimal
switch position. In example 1, the ENS of this paper is reduced by 20.38% and 24.80%
compared with the literature [28] and literature [29], respectively. In example 2, the
comprehensive index of the method in this paper is reduced by 26.05%, SAIDI by
26.82%, and comprehensive reliability index by 26.42% compared with the ENS before
optimization. It can be seen that it is obviously more reasonable to use the optimized
optimal switch position data to determine the number of switches, which not only
ensures the global optimum of the switch position, but also ensures the optimum
number of switches, so that the reliability index value is greatly reduced and the
reliability is significantly improved.
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