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Abstract

:

Reagent addition is an important operation in the froth flotation process. In most plants, it is manually regulated according to the operator’s experience, by observing the surface features of the froth. Due to the drawbacks of manual operation, large fluctuations in the process are common, resulting in unexpected process indexes. Thus, we investigated the relationship between reagent addition, feed conditions (including ore properties, slurry density, and slurry flow rate), and froth image features based on the mechanism of froth flotation and production technology of gold-antimony flotation. Then, we proposed a two-step optimal-setting control strategy for reagent addition, which included a basic dosage pre-setting model and a feedback reagent addition compensation model. According to operating conditions and ore properties, the pre-setting model was developed using a belief rule base (BRB) method based on an evidential reasoning approach (RIMER), which could effectively address the uncertainties of operator experience and historical data. The model parameters of the BRB were then optimized using a state transition algorithm (STA). In terms of the offsets of the froth image features, the feedback compensation model using rule-based reasoning (RBR) was built. Simulation results using a STA-optimized BRB, GA-optimized BRB, least squares support vector machine (LSSVM), and artificial neural network (ANN) were compared. Finally, industrial test results confirmed that the reagent addition system based on the proposed method could satisfy the requirements for automatic reagent addition in an industrial production environment. This is of great significance for improving the production efficiency of flotation plants.
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1. Introduction


Froth flotation is widely used for separating valuable minerals from gangue. The essential mechanism of froth flotation is that reagents are added into the slurry to regulate the physicochemical properties of the particles [1]. To obtain a high concentrate grade and high recovery of the target metals, the optimal control of the types and quantities of reagents is important in the flotation process [2]. Due to the complex mechanisms involved and the long production process, there is an intricate relationship between the flotation performance and process variables, with strong coupling and significant uncertainties. Accordingly, in view of the difficulty of the online measurement of key process parameters, reagent addition control is performed by operators, based on their observation of the surface features of the froths, in almost all plants in China. The processes are usually regulated at very low frequency during the night and different operators have different levels of experience, which often results in a fluctuation in performance. Moreover, optimal operation of the process cannot be achieved, even when managed by very experienced operators [3]. Thus, the automatic and optimal control of reagent addition in the froth flotation processes has been an area of active research for many years.



Experiments and statistical methods are commonly used to determine optimal reagent addition. For example, Rath et al. [4] developed a quadratic response model using experimental data to determine the relationship between flotation reagents and both the Fe grade and recovery in a hematite flotation process. In studies by Azizi et al. [5] and Vieceli et al. [6], prediction models of process indexes were built based on experimental findings to identify the optimum reagent dosage.



Objective-based optimization methods are effective for optimal control in industrial processes if effective process models can be established [7,8,9]. However, for industrial flotation processes, it is very difficult to obtain a proper mathematical model.



The surface features of froths are important parameters that define the state of the process. They have been used for control and optimization of the froth flotation process in an increasing number of studies [10,11,12,13,14,15,16]. Meanwhile, in practice, operational experience is very important for reagent addition and has been the topic of some investigations. For example, Jahedsaravani et al. [10] modeled a high correlation between froth features (bubble size and velocity) and several process variables (pH, air-flow rate, and frother dosage) using neural networks. Zhang et al. [11] introduced a nonlinear model based on the wavelet-based Hammerstein–Wiener method to build a causal relationship between reagent dosage and bubble size distribution. Zhu et al. [12] presented a model predictive control method to calculate the reagent dosage by tracking a target probability density function (PDF) of bubble size. Zhang and Gao [13] designed a digital twin system for iron reverse flotation reagent addition. Based on the froth images and transformer algorithm, the flotation dosing model automatically updates the reagent system.



Kaartinen et al. [14] developed a reagent dosage control system based on expert rules in terms of empirical knowledge between image variables (froth color, bubble size distribution, froth speed, bubble collapse rate, and bubble load) and reagent dosage in zinc flotation. Xie et al. [15] proposed a sensitive froth image feature-based reagent addition control strategy based on the interval type II fuzzy control method. However, in most of these studies, only feed grade and froth features were taken as inputs. They did not consider the change in other working conditions that could have a significant impact on flotation performance, such as slurry density and slurry flow rate. The complexity of the process causes many uncertainties; it is impossible to build correlations between the process outputs and the inputs, states, and operating parameters.



Therefore, to develop an automatic control method which can fuse all the significant variables in the process and effectively eliminate the uncertainties involved, we propose an optimal-setting control strategy for reagent addition that considers both the feed conditions and froth image features for gold-antimony flotation. This strategy adopts a belief rule base (BRB) method, which has been demonstrated to be more suitable for uncertain information [17,18,19], to address the optimal-setting problem and identify optimal froth features to control the process better.



The rest of this study is arranged as follows: Section 2 presents the flotation process and an analysis of the relationship between all the variables. Based on this analysis, a two-step optimal-setting control strategy for reagent addition is developed in Section 3. The effectiveness of the strategy is confirmed through simulation and industrial testing in Section 4, and Section 5 summarizes the main conclusions.




2. Process Description and Analysis of Reagent Addition


2.1. Process Description


The gold-antimony froth flotation in this study adopts a part priority-mixed flotation process, meaning gold flotation is performed in alkaline pulp, followed by antimony flotation in acidic pulp. The process diagram is shown in Figure 1.



In this process, the feed flow rate and slurry level are measured online and can be regulated through a distributed control system (DCS). The particle size in the feed slurry is manually measured off-line every two hours, and feed ore grades (sampled before milling) and technical indices (tailing grade and concentrate) are measured off-line every eight hours, which causes control delay. Froth depth, measured by a floating level meter, is set to be a specific value and automatically controlled by regulating the slurry level. Therefore, the status of the froths is the most important state in the froth flotation process. Reagent addition is mainly manually controlled according to feed conditions and the status of the froths.



Due to the complex physicochemical reactions in the gold-antimony flotation process, there are strong nonlinearities and significant uncertainties between feed conditions, reagent addition, and flotation performance. Thus, it is necessary to implement automatic and optimal control of reagent addition to stabilize the process and reduce labor intensity. This can increase efficiency and improve the economic benefits of mineral processing.




2.2. Reagent Addition Analysis


The relationships between reagent addition, feed conditions, and froth image features are very complex [14]. Their analysis is described in the following section.



Feed conditions refer to the ore properties, slurry flow rate, and slurry density.



2.2.1. Ore Properties


In mineral engineering, ore properties, including ore floatability, compositions, grade, mineral dissemination characteristics, ore paragenesis, and existent morphology, are the critical factors used to determine how the froth flotation process should be operated. For ores with certain properties, there is an optimal amount of reagent that yields the best performance [20]. Considering that many factors cannot be measured online and are very difficult and expensive to be measured offline, only the ore compositions (grade) were measured in daily production to characterize ore properties.




2.2.2. Slurry Flow Rate and Slurry Density


When slurry flow rate (in t/h) increases, reagent addition needs to be correspondingly increased to maintain the qualified production index.



The slurry density (C) refers to the solid mass fraction of the slurry. A high slurry density requires a long flotation time and improves recovery but may reduce the grade of the concentrate. Meanwhile, within a certain range, the higher the slurry density, the higher the concentration of the reagent in the slurry, and the reagent dosage added per ton of ore can be reduced [21].




2.2.3. Froth Features


The surface features of froths have been used by many researchers as the main state variables for reagent addition control and optimization [14]. When the characteristics of the ore are stable, changes of the froth features indicate how reagents need to be regulated. In the actual production process, an adjustment in any reagent can cause a change of many froth image features [13]. The relationships between the froth features and reagents are too complex and uncertain and can only be described in vague terms such as the change of direction and degree.



Additionally, from long-term observation of the gold-antimony flotation process, we know that, under different ore grades, the froth status is clearly different.





2.3. Challenges and Difficulties in Reagent Addition


From the above analysis, it is evident that the following challenges exist in the reagent addition setting control:




	
Uncertainties in the process, including uncertainties caused by immeasurable ore properties, complicated and unclear mechanisms [15], intricate relationships and unknown correlations between the variables, and large measurement errors contained in the data. These introduce a large amount of uncertainty to reagent addition.



	
The frequent changing of ore properties is a significant issue, which causes difficulty in many flotation plants because good ore resources are eventually exhausted [16,20]. As in many other flotation processes, when the feed grade does not significantly change in gold-antimony flotation, working conditions are relatively stable and the flotation process is easy to control. On the contrary, the difficulty of reagent addition control increases.



	
The pH value and process indices are key feedback control measures. However, they cannot be measured online or even at a very low frequency. Therefore, froth features are mainly used as feedback and operator experience becomes more important.








Accordingly, based on the difficulties presented by the froth flotation mechanism and real production practices, a two-step optimal-setting control strategy for reagent addition is investigated, which considers the aforementioned parameters and addresses the uncertainties in operator experience and process data.





3. Optimal-Setting Control for Reagent Addition


The two-step optimal-setting strategy contains a pre-setting step using BRB-based RIMER methods according to feed conditions, and a feedback-setting step using IF-THEN rules and RBR according to froth features. The details of the strategy are described in the next section.



3.1. Optimal-Setting Control Strategy of Reagent Addition


In froth flotation, feed conditions are the main factors that determine the amount of reagent required. Therefore, a basic amount of reagent is accordingly preset. The surface features of the froths are state variables that provide feedback information and indicate whether regulation is needed for the reagents. The two-step optimal-setting control strategy of reagent addition based on feed conditions and froth features is shown in Figure 2.



As shown in Figure 2, the optimal-setting control strategy includes a basic dosage pre-setting model using RIMER, and a feedback reagent addition compensation model based on RBR. Then, the sum of the basic reagent addition and compensate reagent addition is taken as the optimal reagent addition and transferred to the dosing machine controlled by the PLC for execution.




3.2. Reagent Addition Pre-Setting Based on RIMER


Considering the uncertainties listed in Section 2.3., we required a method that could effectively address uncertainty.



Yang et al. [17] proposed RIMER; it adds antecedent attribute weights, rule weights, and belief degrees of results, which expand the scope of rule description while also fully combining randomness and fuzziness of knowledge. This meets the requirements for the practical application of reagent addition control knowledge. The rule base, which consists of a series of belief rules, is called the BRB.



Based on the BRB, the inference of knowledge is performed via an evidential reasoning (ER) approach. Meanwhile, parameter optimization can be implemented using an optimization algorithm.



3.2.1. BRB Structure and Representation for Basic Reagent Addition Pre-Setting


In this study, we constructed five BRBs for reagent addition in gold rougher flotation and antimony rougher flotation, respectively. The BRB structure for the tth reagent is,


     R k ′   : i f     X 1     i s     A 1 k     a n d     X 2     i s     A 2 k     a n d  ⋯  a n d     X M     i s     A   M k   k     t h e n       O t  :  {   (   D   t 1    ,  β   t 1 , k     )  ,  (   D   t 2    ,  β   t 2 , k     )  , ⋯  (   D  t N   ,  β   t N , k     )   }     w i t h     θ  t k      a n d     δ   t 1 , k    , ... ,  δ  t  M k   , k       



(1)




where, t = 1, …, T, T is the number of the reagents,    O t    is the tth reagent in the output attributes, and N is the number of output levels. X = (   X 1  ,  X 2  , ⋯ ,  X   M k     ) refers to the antecedent attributes in the kth rule. Mk is the number of the antecedent attribute in the kth rule.    X i   ∈U. U = {   U i   , i = 1, ..., M} is the antecedent attributes set. M is the total number of the antecedent attributes. Therefore, Mk ≤ M. N is the number of output levels. k = 1, …, L, denotes the kth rule.    A i k    (i = 1, …, Mk, k = 1, …, L) is the referential value of the ith antecedent attribute    U i    in the kth rule.    A i k   ∈Ai. Ai= {Aij, j = 1,..., Ji} is a set of referential values for the ith antecedent attribute, and Ji is the number of referential values of the ith antecedent attribute.    β   j , k      (j = 1, …, N) is the belief degree of the output result,    D j   , in the kth rule. Term    θ k    is the rule weight of the kth rule. Attribute weight    δ  i , k     refers to the importance degree of    U i   , compared with other antecedent attributes in the kth rule. Without loss of generality, suppose    δ i  =  δ  i , k     in the BRB. For different reagents, it can have different output levels.



For gold flotation, the antecedent attributes are feed grade, slurry flow rate, and slurry density, which are denoted by    U 1   ,    U 2   , and    U 3   , respectively. The consequent attributes are xanthate, CuSO4, Na2S, Na2CO3, and terpenic oil. For antimony flotation, the antecedent attributes are feed grade, slurry flow rate, and slurry density, and the consequent attributes are xanthate, aerofloat, CuSO4, Pb (NO3)2, and terpenic oil. The referential points need to be selected and quantified before building a specific BRB. The number of referential points should neither be too large nor too small. The referential values should approximately cover the value range of the corresponding attribute. By combining the process data with operator experience, the number of referential points were determined, as shown in Table 1, Table 2, Table 3 and Table 4, where PVS, PS, PM, PL, and PVL denote positive very small, positive small, positive medium, positive large, and positive very large, respectively.



According to the flotation mechanism and operator experience, the initial BRBs of basic reagent addition pre-setting for gold and antimony rougher flotation were built, respectively. For gold flotation, because feed grade, slurry flow rate, and slurry density were all divided into three terms, there were 27 combinations of the three antecedents, leading to 27 rules in total in the rule base. For antimony flotation, because feed grade was divided into five terms and both slurry flow rate and slurry density were divided into three terms, there were 45 combinations of the three antecedents, leading to 45 rules in total in the rule base. All the rules were summarized according to the process knowledge and experience of the operator and metallurgist.




3.2.2. Belief Rule Inference Using the ER Approach


An ER algorithm was developed based on the DS theory [18,19]. In recent years, the ER approach has been applied to engineering design, user satisfaction assessment, product life assessment, trauma outcome prediction, and risk assessment [19]. However, the requirement of real-time in this study was more important than it was in these other test cases. In our study, using an ER approach included the following four steps [17]:




	Step 1

	
Calculate the individual matching degree.




	Step 2

	
Calculate the activation weights.




	Step 3

	
Synthesize the activated rules.




	Step 4

	
Calculate the expected output.









The results inferred from RIMER are the combination of a series of rules, which can produce a continuous output space to achieve fine control of reagent addition.




3.2.3. BRB Parameter Optimization


In the inferencing process of the BRB, parameter values, including    θ  t k    ,    δ  t i    ,    β  t n , k    ,    A  i j    ,    D  t n    , were initially provided by operators based on individual experience of and personal judgment, which are prone to error. Inference performance can be improved if the above parameters are adjusted by autonomous learning. The framework of the optimal learning model used in the BRB expert system is shown in Figure 3, which is referred to in [22].



The objective of our optimal learning model was to minimize the mean absolute error (MAE) between the BRB-based outputs and real reagent addition that was set by the operators, and was defined as follows:


  min  (  ξ  ( P )   )  = min  (   1 H    ∑  h = 1  H    |   y t   ( h )  −   y ^  t   ( h )   |     )   



(2)




where P is the row vector of the training parameters,   ξ  ( P )    is the objective function, and H is the number of training data. For the hth input    x ^  ( h )   (h = 1, 2, …, H),     y ^  t   ( h )    is the real reagent addition of the tth reagent    O t    and    y t   ( h )    is the BRB-based output of the tth reagent.



Equation (2) is a multi-variable constrained non-linear optimization problem and thus, not easily solved. To solve this complex problem, we used a parameter optimization method based on a state transition algorithm (STA) with demonstrated superior global searching capabilities, convergence properties, and a higher solution precision than some other popular algorithms.



Taking advantage of the two-stage STA, an optimized BRB can be obtained. Using the optimized parameters for inference, the optimized BRB-based output is closer to that of the real reagent addition set by the operators than the output of the initial rules.





3.3. Feedback Compensation Model of Reagent Addition Based Froth Features


By combining information about the process mechanism from operator experience and process data analysis, we selected froth image features that could adequately define the optimal-setting control of reagent addition. The froth features selected for reagent control included gray level, hue, size average, and size variance. These features were extracted by using machine vision technology, which can be found in reference [23].



Probability statistical distributions and optimal intervals of the froth image features were obtained through statistical analysis of the froth features and their corresponding process indices (including recovery and concentrate grade), as shown in Figure 4 and Table 5. At this optimal interval, there was greater than a 90% probability for the indices to be of higher or highest grade. An image of the froth at optimal intervals is shown in Figure 5.



The control objective was to regulate reagents to achieve optimal intervals of froth features. When froth image features were not in the optimal intervals, there needed to be compensation of basic reagent addition. The difference between real-time froth features and the optimal froth feature here is called offset. The mid-value of the optimal interval of a froth feature is regarded as the optimal froth feature. Considering antimony rougher flotation, for instance, the relationship between a single froth image feature and the reagents can be obtained, as shown in Table 6. In Table 6, the terms inverse and direct mean that there is an inverse ratio and direct proportional relationship between the froth feature and the reagent, respectively. No impact means that the froth feature did not change with the amount of reagent.



Accordingly, a reagent addition compensation model can be built based on these froth features. In this model, knowledge is presented as IF-THEN rules, and BRB is adopted. The offset of the gray level is defined as,


   Δ g r a   y i   = g r a   y i   - g r a   y o   



(3)




where    Δ g r a   y i    refers to the offset of the gray level at time instant i;   g r a  y i    refers to the mean gray value at time instant i; and   g r a  y o    refers to the optimal value of the gray level.



In a similar way, we define the offsets of the hue, froth size, and froth size variance, as follows:


   Δ h u   e i   = h u   e i   - h u   e o   



(4)






   Δ s i z   e i   = s i z   e i   - s i z   e o   



(5)






   Δ s t   d i   = s t   d i   - s t   d o   



(6)







To translate the relationship between froth features and reagent amounts into rules, +1 was used to represent when the offset of the froth image features was positive and exceeded an upper limit value. In contrast, when the offset of the froth image features was negative and smaller than a lower limit value, −1 was used to represent the situation. When the offset of the froth image features was between the lower and upper limit value, 0 was used to represent the situation. G, H, SI, and ST are all positive values and stand for the upper limit values of    Δ g r a   y i   ,    Δ h u   e i   ,    Δ s i z   e i   , and    Δ s t   d i   , respectively. In contrast, −G, −H, −SI, and −ST represent the lower limit values. Here, G, H, SI, and ST are set to be half of the length of the optimal intervals of the corresponding froth features. The limit intervals and quantified values of the offsets for froth image features are illustrated in Table 7.



We define    Δ g r a   y  A u    ,    Δ h u   e  A u    ,    Δ s i z   e  A u    , and    Δ s t   d  A u    , which denote the quantified values of the offsets of the gray level, hue, froth size, and froth size variance, respectively, for gold rougher flotation. Define    Δ u   (   l  A u    )   ,    Δ u   (   h  A u    )   ,    Δ u   (   n  A u    )   ,    Δ u   (   s  A u    )   , and    Δ u   (   o  A u    )   , which denote the compensation of Na2S, xanthate, Na2CO3, CuSO4, and terpenic oil, respectively. Therefore, the rule base of reagent compensation for gold rougher flotation was built according to process data and operator experience, as shown in Table 8.



We define    Δ g r a   y  S b    ,    Δ h u   e  S b    ,    Δ s i z   e  S b    , and    Δ s t   d  S b    , which denote the quantified values of the offsets of the gray level, hue, froth size, and froth size variance for antimony rougher flotation, respectively. We also define    Δ u   (   b  S b    )   ,    Δ u   (   h  S b    )   ,    Δ u   (   p  S b    )   ,    Δ u   (   s  S b    )   , and    Δ u   (   o  S b    )   , which denote the compensation of aerofloat, xanthate, Pb (NO3)2, CuSO4, and terpenic oil, respectively. The rule base of reagent compensation for antimony rougher flotation was built based on process data and operator experience, as shown in Table 9.





4. Data Validation and Experimental Analysis


4.1. Simulation Results Using Process Data


Reagent addition during antimony rougher flotation in a gold-antimony flotation plant was used to verify the reagent addition optimal-setting control method. A total of 530 groups of industrial process data, including feed conditions, froth features, reagent dosage, and other process data, were continuously collected from the plant. The key reagents in antimony roughing cells include xanthate, aerofloat, CuSO4, Pb (NO3)2, and terpenic oil. A five-fold cross-validation method was used to test the performance of the reagent addition prediction models. The entire dataset was randomly divided into five folds with the same amount of data, one of the five folds was used as a test set each time, and the remaining four folds were used as a training set. This was repeated five times. For consistency, the same training and test datasets were used for all models. The algorithms were implemented using MATLAB 2016b on a Windows 10 system with 4G memory and a 3.5 GHz CPU.



4.1.1. Validation of the BRB-Based RIMER


To evaluate the performance of the basic reagent addition, a pre-setting model using the RIMER approach was tested. This approach was compared with the least squares support vector machine (LSSVM) and artificial neural network (ANN). For RIMER, the optimized BRB pre-setting for antimony rougher flotation was used, as described in Section 3.2. The initial values of the parameters    θ  t k    ,    δ  t i    ,    β  t n , k    ,    A  i j    , and    D  t n     for the BRB were set according to the flotation mechanism and operator’s experience, as shown in Section 3.2.1. Optimal learning models were built according to the BRB-based output and real reagent addition was set by the operator. Then, a two-stage STA was used to solve these constrained optimization problems to obtain the optimal parameters, as described in Section 3.2.3. As this was the first time the two-stage STA was used to optimize BRB, a genetic algorithm (GA) was employed to compare and verify two-stage STA performance. Referring to [24], the parameters of the two-stage STA were set, as shown in Table 10. For GA, the population size was set to 30 and the maximum number of generations was set to 2000. Using the inference methodology described in Section 3.2.2, we obtained the inference outputs of the pre-set reagent addition using the optimized BRB system.



For LSSVM and ANN, the input variables were feed grade, slurry flow rate, and slurry density, whereas the output were the reagents, including xanthate, aerofloat, CuSO4, Pb (NO3)2, and terpenic oil. The width parameter of the radial basis function (RBF) kernel was set to 0.8 and the regularization parameter was set to 10 in LSSVM. In the ANN model, the network consisted of three fully connected (FC) layers (20–20–5). The rectified linear unit (ReLU) [25,26] layers were also added after the first and the second FC layers, to endow the network with more nonlinearity. Then, two reagent addition prediction models were built using LSSVM and ANN, respectively. The accuracy of these models was calculated and are given in Table 11.



In Table 11, the mean absolute error (MAE) is calculated based on Equation (7).


  M A E =  1  H C     ∑  h c = 1   H C     |   y t   (  h c  )  −   y ^  t   (  h c  )   |     



(7)




where HC is the number of test data,     y ^  t   (  h c  )    is the real reagent addition of the tth reagent, and    y t   (  h c  )    is the model-based output of the tth reagent. STA–-BRB and GA–BRB are models based on RIMER that use two-stage STA and GA to optimize BRB, respectively.



As shown in Table 8, the MAE for all five rounds of the STA–BRB model were smaller than in the GA–BRB model. The two-stage STA had better performance.



In conclusion, the data-driven model based on the LSSVM or ANN was built completely depending on the training database, and therefore, their performance is not guaranteed. The model based on STA–BRB-based RIMER was built by combining the operator’s experience with process data, and provided a more robust and preferable performance.




4.1.2. Validation of the Two-Step Reagent Addition Strategy


We tested the overall performance of the reagent addition optimal-setting control method. Taking the fifth rounds of the five-fold cross-validation experiments in antimony rougher flotation, the dosages of xanthate, aerofloat, CuSO4, Pb (NO3)2, and terpenic oil using the STA–BRB rule base of reagent compensation (two-step reagent addition method) and the actual manually set values are shown in Figure 6.



Moreover, the MAEs between the manually set actual reagent addition and calculated reagent addition using the two-step reagent addition method are shown in Table 12.



It is evident from Figure 6 and Table 12 that the calculated reagent dosages obtained from the two-step method generally match the actual reagent dosages. By using the two-step reagent addition method, the calculated reagent dosages became closer to the actual reagent dosages.





4.2. Industrial Test Results


Using the basic dosage pre-setting model based on RIMER and feedback reagent addition compensation model based on RBR, we implemented an automatic optimal-setting control for the gold-antimony flotation process and tested it in the froth image monitoring system of a gold-antimony flotation plant in Hunan province, China, which is shown in Figure 7.



In gold-antimony flotation production, every 24 h in a day is divided into three shifts, from 0:00 to 8:00 a.m., 8:00 a.m. to 4:00 p.m., and 4:00 to 12:00 p.m. The three shifts are managed by three separate teams. To ensure the reliability of the experimental results, we used a single shift test that lasted for an entire month, i.e., the automatic optimal-setting control system was applied when Team 2 (test team) was on shift. Members of Team 2 only needed to adjust the airflow rates and pulp levels, whereas Teams 1 and 3 used manual control. The feed ore was homogenized and stored in heaps, and each heap was usually used for one week. Thus, the feed grade was stable during the test and the process was under normal operations. Therefore, we can assume that the three teams were tested under the same conditions. The operating results, including concentrate and tailing grades, were compared between the automatic and manual systems. Monitoring results for the concentrate and tailing grade are shown in Figure 8. All technical indices of the three teams during the test are shown in Table 13.



As shown in Table 13, there was little difference between the cumulative mean values of gold ore grade and antimony ore ratios, meaning that the process ran under similar ore conditions for the three teams. From Figure 8 and Table 13, the indices of Team 2 are a little bit worse than those of Team 3, but better than the values of Team 1. That is, the automatic system can achieve similar performance to that of manual control. The automatic optimal-setting control of reagent addition can also help workers solve problems related to excessive reliance on human experience, tedious operations, and insufficient timeliness and accuracy.



However, there are still some issues that should be considered and improved. For example, in the rule inputs, only three or five referential points were used. To achieve more precise control of the process, more referential points should be considered. However, this will increase the scale of the rule base. Therefore, an optimized BRB needs to be further reduced, and the rule base for reagent compensation further refined, to achieve a more precise optimization method for reagent addition. Meanwhile, it would be better if the complexity of the reasoning process could be simplified.





5. Conclusions


Reagent addition is a decisive operating variable in the gold-antimony flotation process. According to principles of the flotation process and problems associated with current control of reagent addition and optimization, we proposed a two-step optimal-setting control strategy that included a basic dosage pre-setting model based on RIMER, and a feedback reagent addition compensation model based on RBR. The basic pre-setting model exploits the advantages of the RIMER approach to describe the complex relationships and uncertainty between the reagents and feed conditions. The composition model was based on froth image features and experiences of the operator. From the simulation, it was evident that the BRB and RIMER method has the advantage of describing the uncertainties and using a limited number of rules to solve a complex industrial problem. In an industrial setting, the method could be used to automatically control the process and lead to better performance. Finally, it should be mentioned that the rule model becomes more complicated with too many parameters. This aspect should be improved in future investigations.
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Figure 1. Process diagram of gold-antimony flotation. 
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Figure 2. Reagent addition optimal-setting control strategy for gold-antimony flotation process. 
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Figure 3. Framework of optimal learning model for BRB system. 
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Figure 4. Probability statistical distributions of optimal froth image features. 
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Figure 5. Froth image when the froth features are at the optimal intervals. 
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Figure 6. Comparison of the two methods for reagent dosing. 
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Figure 7. Hardware structure of froth image monitoring system. 
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Figure 8. Monitoring results of concentrate and tailing grade. 
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Table 1. Input referential values of antecedent attributes in gold flotation.
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	Antecedent Attributes
	PS
	PM
	PL





	Feed grade (%)
	2.05
	2.29
	2.47



	Slurry flow rate (t/h)
	10
	12
	14



	Slurry density (%)
	25
	31
	37
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Table 2. Output referential values of consequent attributes in gold flotation (mL/min).
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	Consequent Attributes
	PS
	PM
	PL





	Xanthate
	570
	590
	620



	CuSO4
	400
	415
	430



	Na2S
	1020
	1092
	1200



	Na2CO3
	900
	1015
	1250



	Terpenic oil
	8
	13
	18
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Table 3. Input referential values of antecedent attributes in antimony flotation.
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	Antecedent Attributes
	PVS
	PS
	PM
	PL
	PVL





	Feed grade (%)
	1
	1.41
	1.73
	2.11
	2.76



	Slurry flow rate(t/h)
	-
	10
	12
	14
	-



	Slurry density (%)
	-
	25
	31
	37
	-
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Table 4. Output referential values of consequent attributes in antimony flotation (mL/min).
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	Consequent Attributes
	PVS
	PS
	PM
	PL
	PVL





	Xanthate
	150
	180
	210
	250
	300



	Aerofloat
	60
	90
	130
	170
	200



	CuSO4
	50
	57
	65
	72
	80



	Pb (NO3)2
	300
	330
	370
	410
	440



	Terpenic oil
	6
	23
	40
	59
	88
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Table 5. Optimal intervals of froth image features.
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	Gray Level
	Hue
	Froth Variance
	Froth Size





	[86, 128]
	[100, 215]
	[760, 2180]
	[440, 1400]
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Table 6. The relationship between a single froth feature with each reagent.
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	Regulating Direction
	Aerofloat
	Pb (NO3)2
	Xanthate
	Terpenic Oil
	CuSO4





	Gray level
	Inverse
	Direct
	Direct
	Inverse
	Direct



	Hue
	Direct
	No impact
	No impact
	Inverse
	Direct



	Size average
	Inverse
	Direct
	Direct
	Inverse
	Direct



	Size variance
	Inverse
	Direct
	Direct
	Inverse
	Direct
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Table 7. Limit intervals and quantified values of the offsets for froth image features.
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Froth Image Offset Features

	
Limit Interval

	
Quantified Values of the Offsets






	
    Δ g r a   y i    

	
(−∞,−G)

	
−1




	
[−G, G]

	
0




	
(G, ∞)

	
+1




	
    Δ h u   e i    

	
(−∞,−H)

	
−1




	
[−H, H]

	
0




	
(H, ∞)

	
+1




	
    Δ s i z   e i    

	
(−∞,−SI)

	
−1




	
[−SI, SI]

	
0




	
(SI, ∞)

	
+1




	
    Δ s t   d i    

	
(−∞,−ST)

	
−1




	
[−ST, ST]

	
0




	
(ST, ∞)

	
+1
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Table 8. Rule base of reagent compensation for gold rougher flotation.
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	Rule

Number
	Antecedent Combinations

   { Δ g r a  y  A u   , Δ h u  e  A u   , Δ s i z  e  A u   , Δ s t  d  A u   }   
	Consequent Combinations

   { Δ u (  l  A u   ) , Δ u (  h  A u   ) , Δ u (  n  A u   ) , Δ u (  s  A u   ) , Δ u (  o  A u   ) }   





	1
	{−1, −1, −1, −1}
	{−8, −10, −15, −19, −1}



	2
	{−1, −1, −1, 1}
	{−6, −5, −7, −10, 1}



	…
	…
	…



	30
	{1, 1, 1, 1}
	{9, 11, 13, 21, 1}
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Table 9. Rule base of reagent compensation for antimony rougher flotation.
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	Rule

Number
	Antecedent Combinations

   { Δ g r a  y  S b   , Δ h u  e  S b   , Δ s i z  e  S b   , Δ s t  d  S b   }   
	Consequent Combinations

   { Δ u (  b  S b   ) , Δ u (  h  S b   ) , Δ u (  p  S b   ) , Δ u (  s  S b   ) , Δ u (  o  S b   ) }   





	1
	{−1, −1, −1, −1}
	{−7, −3, −10, −3, 3}



	2
	{−1, −1, −1, 0}
	{−5, −2, −9, −3, 2}



	…
	…
	…



	64
	{1, 1, 1, 1}
	{6, 4, 9, 4, −3}
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Table 10. Parameter settings of the two-stage STA.
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	Parameter
	maxiter
	SE
	α
	β
	γ
	δ
	fc
	ρ
	   κ   
	   σ   





	Value
	2000
	30
	1→1 × 10−4
	1
	1
	1
	2
	0.5
	2
	1 × 1015
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Table 11. The errors between calculated reagent addition and actual reagent addition, set manually.
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Reagents

	
Models

	
1st Fold

	
2nd Fold

	
3rd Fold

	
4th Fold

	
5th Fold

	
Average






	
Aerofloat

	
STA–BRB

	
15.3701

	
21.9176

	
38.0190

	
30.4753

	
18.3651

	
24.8294 ± 8.3137




	
GA–BRB

	
37.7464

	
44.0030

	
43.6809

	
48.5918

	
36.5925

	
42.1229 ± 4.4170




	
LSSVM

	
18.2392

	
23.8585

	
42.4241

	
35.8771

	
26.1069

	
29.3012 ± 8.6908




	
ANN

	
32.0001

	
31.0447

	
47.7837

	
37.3782

	
30.0784

	
35.6570 ± 6.5694




	
CuSO4

	
STA–BRB

	
2.4147

	
4.1319

	
5.2300

	
6.3337

	
4.2473

	
4.4715 ± 1.2992




	
GA–BRB

	
3.6412

	
6.2606

	
5.7204

	
6.8840

	
5.0710

	
5.5154 ± 1.1118




	
LSSVM

	
3.0779

	
4.6264

	
5.6036

	
6.3849

	
4.8574

	
4.9100 ± 1.1042




	
ANN

	
2.9007

	
5.4778

	
5.5336

	
7.1541

	
4.9284

	
5.1989 ± 1.3688




	
Pb (NO3)2

	
STA–BRB

	
11.9266

	
20.5610

	
24.8828

	
27.9151

	
22.1760

	
21.4923 ± 5.3960




	
GA–BRB

	
20.0284

	
34.4166

	
33.3875

	
36.8127

	
33.8412

	
31.6973 ± 5.9528




	
LSSVM

	
15.1808

	
24.2642

	
27.1562

	
30.5738

	
25.0962

	
24.4542 ± 5.1224




	
ANN

	
19.8953

	
37.5139

	
34.6553

	
34.8208

	
28.3920

	
31.0554 ± 6.3323




	
Xanthate

	
STA–BRB

	
9.6745

	
19.5528

	
21.2272

	
27.2837

	
17.8153

	
19.1107 ± 5.6955




	
GA–BRB

	
12.7571

	
26.8369

	
26.8290

	
36.1249

	
23.6919

	
25.2480 ± 7.5070




	
LSSVM

	
12.7162

	
20.5149

	
22.3708

	
28.9753

	
20.1887

	
20.9532 ± 5.1959




	
ANN

	
23.8274

	
31.6031

	
29.7850

	
32.1390

	
22.0279

	
27.8765 ± 4.1545




	
Terpenic oil

	
STA–BRB

	
8.3935

	
7.8431

	
10.4590

	
16.0375

	
11.0045

	
10.7475 ± 2.9021




	
GA–BRB

	
8.9985

	
9.9613

	
11.8657

	
19.1288

	
11.8228

	
12.3554 ± 3.5610




	
LSSVM

	
8.7514

	
7.3935

	
12.7000

	
16.3499

	
10.4523

	
11.1294 ± 3.1557




	
ANN

	
14.8050

	
9.0957

	
15.7766

	
17.9510

	
11.0339

	
13.7325 ± 3.2220
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Table 12. The MAEs of reagent dosing using two-step reagent addition method.
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	Reagents
	1st Fold
	2nd Fold
	3rd Fold
	4th Fold
	5th Fold
	Average





	Aerofloat
	10.0498
	17.3263
	24.0008
	21.6386
	14.1372
	17.4305 ± 5.0241



	CuSO4
	2.0468
	3.0460
	4.2893
	5.2921
	3.7765
	3.6901 ± 1.0998



	Pb (NO3)2
	10.2426
	16.1045
	17.2852
	19.4135
	16.1904
	15.8472 ± 3.0457



	Xanthate
	7.9539
	15.1308
	16.0834
	20.5337
	12.2117
	14.3827 ± 4.1792



	Terpenic oil
	4.5212
	5.4773
	6.6492
	12.5953
	6.4852
	7.1456 ± 2.8303
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Table 13. Technical indices of each team.






Table 13. Technical indices of each team.





	

	
Technical Index

	
Team 1

Cumulative Mean Value

	
Test Team (Team 2)

Cumulative Mean Value

	
Team 3

Cumulative Mean Value






	
Feed

	
Gold ore grade (g/t)

	
2.27

	
2.34

	
2.38




	
Antimony ore grade (%)

	
1.60

	
1.55

	
1.61




	
Tailing and recovery

	
Gold recovery rate (%)

	
86.37

	
87.49

	
87.61




	
Tailing gold content (g/t)

	
0.33

	
0.31

	
0.31




	
Antimony recovery rate (%)

	
96.73

	
96.84

	
96.84




	
Tailing antimony content (%)

	
0.05

	
0.05

	
0.05
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