
����������
�������

Citation: Golshan, S.; Blais, B.

Load-Balancing Strategies in Discrete

Element Method Simulations.

Processes 2022, 10, 79. https://

doi.org/10.3390/pr10010079

Academic Editor: Joanna Wiącek

Received: 17 November 2021

Accepted: 22 December 2021

Published: 31 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Load-Balancing Strategies in Discrete Element
Method Simulations

Shahab Golshan and Bruno Blais *

Research Unit for Industrial Flows Processes (URPEI), Department of Chemical Engineering, École Polytechique
de Montréal, P.O. Box 6079, Stn Centre-Ville, Montréal, QC H3C 3A7, Canada; shahab.golshan@polymtl.ca
* Correspondence: bruno.blais@polymtl.ca

Abstract: In this research, we investigate the influence of a load-balancing strategy and parametriza-
tion on the speed-up of discrete element method simulations using Lethe-DEM. Lethe-DEM is an
open-source DEM code which uses a cell-based load-balancing strategy. We compare the compu-
tational performance of different cell-weighing strategies based on the number of particles per cell
(linear and quadratic). We observe two minimums for particle to cell weights (at 3, 40 for quadratic,
and 15, 50 for linear) in both linear and quadratic strategies. The first and second minimums are
attributed to the suitable distribution of cell-based and particle-based functions, respectively. We
use four benchmark simulations (packing, rotating drum, silo, and V blender) to investigate the
computational performances of different load-balancing schemes (namely, single-step, frequent
and dynamic). These benchmarks are chosen to demonstrate different scenarios that may occur in
a DEM simulation. In a large-scale rotating drum simulation, which shows the systems in which
particles occupy a constant region after reaching steady-state, single-step load-balancing shows the
best performance. In a silo and V blender, where particles move in one direction or have a reciprocat-
ing motion, frequent and dynamic schemes are preferred. We propose an automatic load-balancing
scheme (dynamic) that finds the best load-balancing steps according to the imbalance of compu-
tational load between the processes. Furthermore, we show the high computational performance
of Lethe-DEM in the simulation of the packing of 108 particles on 4800 processes. We show that
simulations with optimum load-balancing need ≈40% less time compared to the simulations with no
load-balancing.

Keywords: discrete element method; parallel computing; load-balancing; silo; rotating drum;
V blender; packed bed

1. Introduction

Granular materials are prevalent in nature and global industry [1–3]. Due to their
abundance and wide range of applications, the study of granular flows is an active re-
search area where multiple challenges remain unanswered [4,5]. Generally, researchers
use continuum (Eulerian) or discrete (Lagrangian) approaches to model granular systems.
Although computationally efficient, continuum approaches can be inaccurate because the
flow of granular systems may deviate significantly from that of continuous matter [6]. The
Discrete Element Method (DEM) is a Lagrangian model which simulates the motion of all
the particles and their collisions with other particles and boundaries in a system [4]. Since
DEM tracks every particle individually, it is more accurate than continuum-based models.
This accuracy, of course, comes with a high computational cost [7].

The computational cost for the best-designed DEM codes is of the order ofO(np log np),
where np is the number of simulated particles [7,8]. This limits the number of particles
in a simulation based on the available computational resources. In the last two decades,
parallel computing has helped researchers simulate granular systems containing millions
of particles [4,8–13]. To this end, several parallel DEM softwares using multiple central
processing units (CPU) to carry-out a single simulation have been developed [5,9,12,14–16].

Processes 2022, 10, 79. https://doi.org/10.3390/pr10010079 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10010079
https://doi.org/10.3390/pr10010079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-0983-5672
https://orcid.org/0000-0001-6053-6542
https://doi.org/10.3390/pr10010079
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10010079?type=check_update&version=1

Processes 2022, 10, 79 2 of 13

These parallel DEM softwares generally employ a single program, multiple data (SPMD)
approach to parallelize the simulations. SPMD is based on spatial domain decomposition in
which the simulation domain is divided between the parallel processes and communication
between the processes is ensured through the Message Passing Interface (MPI) [6]. As
the particles move inside the simulation domain and migrate between the subdomains,
the computational load on the processes changes [10]. Migration of particles between the
subdomains may lead to load imbalance, in which the computational load on the processes
is significantly different. This overburdens some cores while leaving others idle and thus
slows down the simulation. Load-balancing can mitigate this problem.

Load-balancing re-equalizes the computational loads by re-distributing the simulation
between the processes [10]. In the DEM, load-balance is mainly interpreted as having an
equal number of particles on each process [6]. Compared to Computational Fluid Dynamics
(CFD) [17], less attention has been paid to load-balancing in DEM. Fleissner et al. [13,18]
used an orthogonal recursive bisection domain partitioning algorithm [19] in their simula-
tions. This algorithm recursively subdivides the simulation domain using planes and moves
these planes in order to reach a homogeneous computational load [10]. LIGGGHTS uses a
recursive multi-sectioning algorithm on a Cartesian simulation grid for load-balancing [20].
Cintra et al. [21,22] used a recursive coordinate bisection in a simulation of hopper discharge
and landslide using the DEMOOP software. The performances of different load-balancing algo-
rithms were compared in other works [10,11,23]. Markauskas and Kačeniauskas [23] simulated
the discharge of 5.1 M spherical particles on 128–2048 cores and reported a speed-up of 1785 on
2048 cores. They observed that complex adaptations of the k-way graph partitioning method
do not improve the parallel performance. Our work in Lethe-DEM [8], using a forest of tree
approach for load-balancing, aims at solving the limitations and challenges of load-balancing
in DEM simulations.

2. Problem Definition

This work focuses on the load-balancing aspects of the DEM. The fundamentals of
DEM are not reviewed here. Interested readers may find the fundamentals of DEM and
the details of its implementation elsewhere [8]. We use an open-source DEM software,
Lethe-DEM, which is parallelized using MPI [8]. This code is based on the deal.II finite
element library [24,25] and uses its particles capabilities [26]. In this code, the Hertz–
Mindlin, limiting the tangential overlap and limiting the tangential force, and Hertz and
Hookean contact models are implemented. In the analyses in this research, we use the
Hertz–Mindlin with limiting the tangential overlap model. Lethe-DEM uses a background
grid in which the particles are mapped frequently. This grid, and consequently the particles,
are distributed between the processes in a parallel simulation. Lethe-DEM handles the
mesh partitioning using the p4est library via deal.II [27,28]. Initially, we create a coarse
triangulation (which consists of not more than 100–10,000 cells in most cases) using deal.II
or GMSH [29]. Lethe-DEM replicates this triangulation on all the processes, refines it
locally to reach a desired element size in a forest-of-tree manner, and partitions the final
triangulation through p4est. Each subdomain in the input triangulation is assigned to a
process. A halo layer of the width of a single cell surrounds each subdomain. The cells in
this halo are referred to as ghost cells and the particles that reside in these ghost cells
as ghost particles. In Figure 1 the concepts of distributed triangulation and subdomains,
ghost cells) and ghost particles) are explained.

According to these definitions, we categorize the particle-particle contacts into local-
local and local-ghost contacts. Local-local collisions are fully handled by the process owning
the particle, while in local-ghost contacts, each process only handles the calculations on
the particle which is local to it. This means that calculations of local-ghost contacts are
performed on the processes for which one particle is local. As the particles move in the
simulation domain and change subdomain, we need three functions to: update the owner
cells (and subdomain) of the particles, create and update the ghost particles, and update
the properties and location of the ghost particles.

Processes 2022, 10, 79 3 of 13

Figure 1. A triangulation distributed between two processes (Processes 0 and 1) and four particles.
The ghost cells are highlighted for each process. Particles 0 and 3 are local particles for processes
0 and 1, respectively, while particle 1 is a ghost particle of process 1 and particle 2 is a ghost
particle of process 0.

Load-balancing in Lethe-DEM is performed by assigning a weight to each cell accord-
ing to its computational load and redistributing the cells between the processes such that all
the processes have equal weight. The computational cost of some functions (for example,
the function used to update the owner cells and subdomain) in the DEM software is pro-
portional to O(nc), while other functions (for example, particle-wall and particle-particle
contact force) have computational costs proportional to O(np) and O(np log np). Because
these functions have different costs, assigning a weight to each cell based on the number
of particles is a complicated task. We can use different strategies to assign the cell weight.
Two intuitive strategies are linear and quadratic weighting:

Wc = αnp + β (1)

Wc = αnp
2 + β, (2)

where α and β are weights of particles and cells. We investigate the performances of linear
and quadratic weight models as well as the effects of α and β. Furthermore, load-balancing
itself is an expensive operation. In other words, calling load-balancing too frequently adds
extra computational cost to a simulation. Consequently, we have to call load-balancing
depending on the dynamics of the granular flow. To this end, we introduce three different
load-balancing schemes in Lethe-DEM:

• single-step (also referred to as once in this article): In this load-balancing strategy,
we only call load-balancing once per simulation at a given iteration;

• frequent: In frequent load-balancing, the software calls load-balancing at a constant
frequency (every nLB iterations);

• dynamic: In dynamic load-balancing, the software automatically detects if load-balancing
is required by measuring the load imbalance. At a predefined frequency, the software
checks the computational weights of all the processes. If the weight difference between
the processes with the highest and lowest loads exceeds a threshold based on the
average load (if Lmax − Lmin > εLav, where ε is a defined threshold), load-balancing is
performed. L and ε denote the total process load (summation of the weights of the
cells, Wc in Equations (1) and (2), owned by each process) and a user-defined dynamic
load-balancing threshold, respectively.

The goal of this study is to characterize and quantify the impact of both the weighting
strategy as well as the load-balancing scheme. Using four benchmarks, namely:

• Packing of particles;
• A rotating drum;
• A silo;
• A V-blender.

Processes 2022, 10, 79 4 of 13

We demonstrate that load-balancing can greatly reduce computational time even
for simulations including a moving geometry. We quantify the load-balancing cost and
identify the best load-balancing schemes for different types of granular flows frequently
simulated with the DEM. Instead of focusing on the load-balance algorithms, which have
been studied and compared in the literature [10,11,13,18,20–23,30], we study the weighting
strategies and consistent load-balancing schemes in different scenarios that may occur in
DEM simulations. This research is useful to the researchers interested in using the DEM
simulations and of particle-based methods to optimize the computational costs of their
parallel simulations. Furthermore, all the benchmarks and examples are accessible on the Lethe
GitHub page (https://github.com/lethe-cfd/lethe/wiki, accessed on 21 December 2021).

3. Results and Discussion
3.1. Benchmark Cases

We use four benchmark cases. The first case is the packing of particles in a rectangular box.
We use this case to compare the computational performances of linear and quadratic weights
as well as the load-balancing costs of large-scale simulations. The second case is the granular
flow in a rotating drum. This is an example of the cases in which particles reside in a constant
region of the simulation domain after the flow has reached pseudo steady-state. In the third
case, we simulate the motion of particles during a silo discharge. This simulation is an example
of cases in which the particles move in one direction inside the simulation domain. The last
case is a V blender in which particles have a continuous reciprocating motion. We specify the
physical properties in Table 1 by using the experimental research in the literature [31,32], and
interested readers can find the parameter handler files of these simulations in the examples
section of the Lethe Github repository: https://github.com/lethe-cfd/lethe, (accessed on 21
December 2021). Figure 2 illustrates the simulation geometries and configurations.

0.06 m
0.06 m

0
.1

 m

D
ir
e

c
ti
o

n
 o

f
m

o
ti
o

n

(a)

0.36 m

0.24 m

(b)

Direction

of rotation

80 cm

1
0

0
 c

m

70°

4.1 cm

(c)

0.2 m

(d)

Direction of rotation

0.05 m

0
.0

5
 m

Figure 2. Configurations of the benchmark cases used in this work: (a) packing of particles in a
rectangular box, (b) rotating drum [32], (c) silo filling and discharge [31], (d) V blender.

https://github.com/lethe-cfd/lethe/wiki
https://github.com/lethe-cfd/lethe

Processes 2022, 10, 79 5 of 13

Table 1. Simulation and physical properties of the packing in rectangular box, rotating drum, silo
and V-blender simulations.

Packing Drum Silo V-Blender

dp(mm) 0.93, 0.43, 0.2, 0.093 3 5.83 1.5
np 105, 106, 107, 108 2.26× 105 1.32× 105 4× 104

ρp(kg/m3) 1000 2500 600 2000
Y(MPa) 100 100 5 10
ν 0.3 0.24 0.5 0.5
e 0.9 0.97 0.7 0.7
µ 0.3 0.3 0.5 0.5
µr 0.1 0.01 0.01 0.01
t f (s) 0.15 10 40 20
dt(s) 10−6 10−6 10−5 10−6

3.2. Influence of the Weighting Strategy (Linear and Quadratic)

We compare the simulation times of the packing case with 105 particles with a linear
and quadratic load-balancing weighting strategy. We compare the simulation times at
different ratios of α/β. We select the range of 1–100 for α/β where the former value (1)
corresponds to the situation in which the weight of owned cells is equal to the weight of
owned particles (in favor of the number of cells), and the latter value (100) belongs to the
situation where the weight of owned cells is almost negligible compared to that of the
particles. We use frequent load-balancing with fLB = 100 Hz, and repeat each simulation
three times and report the average simulation time. Figure 3 shows the results of this
comparison. Both linear and quadratic weighting strategies show the decreasing-increasing-
decreasing-increasing trends. The linear weighting strategy shows two minimums at
α/β = 15 and 50, and the quadratic weighting strategy shows two minimums at α/β = 3
and 40. The first minimums are attributed to the suitable distribution of cell-based functions,
and the second minimums are attributed to the appropriate distribution of particle-based
functions over the processes. The global minimum occurs at α/β = 50 for linear load-
balancing.

0 20 40 60 80 100
175

200

225

α/β

t s
[m

in
]

linear
quadratic

Figure 3. Influence of the load balancing strategy on the simulation time for the packing case. Error
bars show standard deviation.

3.3. Packing in Box

Figure 4a shows the comparison between the load-balancing times (for a single load-
balancing operation) of four packing simulations in Table 1. We do not compare the
simulation times of these simulations since we have performed strong and weak scal-
ing analyses of Lethe-DEM in previous research [8]. We perform the simulations of the

Processes 2022, 10, 79 6 of 13

packing of 105, 106, 107, and 108 particles on 8, 48, 480, and 4800 processes, respectively
(np/nc ≈ 20,000). This figure shows that the cost of load-balancing increases as the number
of particles increases in a simulation. Figure 4b shows the load-balancing times (for a single
load-balancing operation) for the simulation of packing of 1 M particles on 32, 64, 96 and
128 processes. The cost of load-balancing decreases as the number of processes increases in
the simulation. This decrease is super-linear. This indicates that the cost of load-balancing
does not scale linearly with the number of particles per core. Consequently, load-balancing
becomes more and more viable as the number of cores is increased.

0.1 M 1 M 10 M 100 M
0

20

40

60
a

0.1

7.6

23.5

54.1

np

t lb
[m

in
]

32 64 96 128
0

10

20

30
b26.39

6.29

2.8
1.58

nproc

t lb
[m

in
]

Figure 4. Required time to perform a single load-balancing for simulations of packing of (a) 0.1 M,
1 M, 10 M, and 100 M particles on 8, 48, 480, and 4800 processes, and (b) 1 M particles on 32, 64, 96,
and 128 processes.

Figure 5 shows the simulation times of the packing of 1 M particles on 64 processes with
frequent load-balancing (fLB = 10, 20, 100, 200 and 1000 Hz). The total simulation time
decreases from fLB = 10 Hz to 20 Hz, and then increases as the load-balancing frequency
increases. Not only the total cost of load-balancing increases with increasing the load-
balancing frequency, it also shows that more frequent load-balancing cannot decrease the
simulation time. This happens because some operations, such as the mapping of particles
into subdomains and cells and the updating of the ghost particles has to be performed right
after each load-balancing step. These operations add an extra computational cost to the
total simulation time. In summary, we conclude that the time required to load-balance is
non-negligible, especially for large-scale systems or a small number of processes and does
not scale well with the number of particles and cells. As a result, we have to avoid any
non-necessary load-balancing in the simulations. Indeed, for a larger number of particles,
load balancing can become prohibitively expensive.

Figure 6 shows screenshots of packing simulations of 0.1 M, 1 M, 10 M, 100 M particles
on 8, 48, 480, and 4800 processes at t = 0.07 s. Interested readers may find an animation of
the simulation of 10 M particles in the supplementary materials Video S1 (packing.mp4). As
the particles move towards the bottom wall of the rectangular box, load-balancing moves
the subdomain of processes with the bulk of the particles to equalize the computational
load on each process. Finally, one process handles the majority of the cells on top of the
particle bed, while the rest of the processes are distributed evenly amongst the cells located
in the bed of particles. Since 10,000 time-steps exist between two consecutive load-balance
steps (fLB = 10 Hz), load-balancing compensates its computational cost by increasing the
speed of the DEM throughout the simulations. Consequently, a trade-off exists between the
load-balancing time and the time it saves.

Processes 2022, 10, 79 7 of 13

1000 200 100 20 10
0

500

1,000

1,500 1,481.4

586.5

363.1
292.2

362.5

fLB [Hz]

t s
[m

in
]

L.B.
Sim.

Figure 5. Simulation times of the packing of 1 M particles benchmark on 64 processes with frequent
load-balancing at fLB = 10, 20, 100, 200 and 1000 Hz. Load-balancing time is illustrated using the
red color.

np = 0.1 M np = 1 M

np = 10 M np = 100 M

Figure 6. Simulation screenshots of packing of 0.1 M, 1 M, 10 M, 100 M particles on 8, 48, 480, and
4800 processes at t = 0.07 s.

3.4. Rotating Drum

We performed the rotating drum simulation with three load-balancing strategies:
single-step load-balancing at t = 1.5 s, frequent load-balancing with fLB = 10 Hz, and
dynamic load-balancing with fLB = 10 Hz and ε = 0.8. Since the system reaches the
steady-state at approximately t = 1 s, we call load-balancing at t = 1.5 s when using the
single-step scheme. The simulation with the frequent scheme calls the load-balancing

Processes 2022, 10, 79 8 of 13

100 times during the simulation, while the simulation with the dynamic scheme calls load-
balancing eight times. Figure 7 shows the distribution of subdomains before (at t = 1 s)
and after (at t = 8 s) load-balancing. This distribution does not significantly change after
t = 1 s, when the granular flow reaches pseudo steady-state.

Figure 7. Distribution of particles and subdomains in the simulation of a rotating drum on 64
processes. (left): before load-balancing at t = 1 s, and (right): after load-balancing at t = 8 s.

Figure 8 shows the simulation times (including load-balancing time) with different
load-balancing schemes. The simulation times without load-balancing, with single-step,
frequent, and dynamic load-balancing schemes are 1337, 894.1, 762.4, and 868.3 min,
respectively. These results show that frequent load balancing leads to a lower simulation
time than the alternative strategy. However, these simulations include a small number of
particles (0.226 M) for which the load balancing cost is small. According to the trends in
Figures 4 and 5, for a similar simulation but with a higher particle count, minimizing the
number of load-balancing operations using the single-step or dynamic strategy yields
better results than frequent load-balancing. In general, at a small number of particles, cores
and cells dynamic load-balancing is the most efficient scheme, while at a large number of
particles (np > 1 M), cores and cells, single-step load-balancing is preferred for rotating
drum simulations. Interested readers can find the animation of this simulation in the
supplementary materials Video S2 (drum.mp4).

Single
-step

Frequent Dynamic No L.B.
0

500

1,000

1,500

894.1
762.4

868.3

1,337

t s
[m

in
]

L.B.
Sim.

Figure 8. Simulation times of the rotating drum benchmark with different load-balancing schemes.
Load-balancing time is illustrated using the red color.

3.5. Silo

In the silo simulation, particles are packed on top of a stopper in the filling phase. Then
in the discharge phase, the stopper is removed and particles leave the hopper and move
into the bottom container. Figure 9 shows the distribution of subdomains and particles

Processes 2022, 10, 79 9 of 13

in the silo simulation. Interested readers may find an animation of the silo simulation in
the supplementary materials Video S3 (silo.mp4). At the beginning of the filling phase
(t = 4 s), the particles and all the subdomains of processes except process 0 are in the hopper.
As the discharge phase begins and particles leave the hopper, the simulation moves the
subdomain of processes towards the bottom container. When all the particles completely
leave the hopper (t = 39 s), all the particles and subdomains are located in the bottom of
the geometry and one single process handles the hopper.

63
63

t = 4 s t = 15 s

63 63

t = 21 s t = 39 s

Figure 9. Distribution of subdomains and particles in the simulation of silo on 64 processes with
fLB = 1 Hz.

Using the single-step load-balancing for this simulation is meaningless. Figure 10
shows the simulation times (including load-balancing time) without and with frequent
and dynamic load-balancing schemes. Figure 10 shows the simulation times of the silo sim-
ulation with no load-balancing, and with frequent and dynamic load-balancing schemes.
Frequent (with fLB = 1 Hz) and dynamic schemes (with fLB = 1 Hz and a threshold of 0.8)
call load-balancing 40 and 35 times, respectively, throughout this simulation. The simu-
lation times are 154.1, 96.2 and 98.8 hours for no load-balancing, frequent and dynamic
schemes, respectively. Load-balancing times are negligible compared to the total simulation
time for this small-scale simulation (np = 1.32× 105). The dynamic scheme does not call
load-balancing when the particles get packed on top of the stopper and in the bottom of the
container (when the load-balancing is not necessary). Silo simulation results show that in
systems where the particles move in one direction, frequent and dynamic load-balancing
show the best computational performance.

Processes 2022, 10, 79 10 of 13

Frequent Dynamic No L.B.
0

50

100

150

96.2 98.79

154.1

t s
[h
]

L.B.
Sim.

Figure 10. Simulation times of the silo benchmark without and with dynamic and frequent load-
balancing schemes.

3.6. V Blender

In a V blender, particles have a reciprocating motion. Similar to the silo, using
a single-step load-balancing is meaningless here. We simulate the V blender with
frequent (with fLB = 10 Hz) and dynamic (with fLB = 10 Hz and ε = 0.8) load-balancing
schemes. Frequent and dynamic schemes call load-balancing 200 and 192 times, respec-
tively. Figure 11 shows the distribution of the subdomains during the simulation on 64
processes with the frequent load-balancing scheme. Interested readers may find an anima-
tion of this simulation in the supplementary materials Video S4 (VBlender.mp4). Particles
continuously move inside the V blender. As a result, frequent and dynamic load-balancing
schemes are required to obtain the best performance in such systems. The simulations
without load-balancing, and with frequent and dynamic schemes, take 3402.6, 2536.1,
and 2325.1 min, respectively. In systems with reciprocating granular flow, dynamic and
frequent schemes show the best performance.

63

63

t = 0 s t = 2.2 s

63

63

t = 3.18 s t = 5.3 s

Figure 11. Distribution of subdomains and position of particles during the simulation of V blender
on 64 processes with frequent scheme.

Processes 2022, 10, 79 11 of 13

4. Conclusions

In this research, we compared the computational performances of linear and quadratic
load-balancing weighting strategies as well as three different load-balancing schemes. Lin-
ear and quadratic strategies showed two minimums in the computational cost at particle
weigh to cell weigh of 15, 50 and 3, 40, respectively. The first minimum is attributed to
cell-based functions, while the second minimum is attributed to particle-based functions.
We compared the load-balancing times in packing simulations. We observed that increasing
the number of particles and cells and decreasing the number of processes in a simula-
tion increases the load-balancing cost. As a result, we should avoid any non-necessary
load-balancing in large-scale simulations. Afterwards, we evaluated the performances of
different load-balancing schemes, namely single-step, frequent and dynamic, in systems
with different behaviors. We observed that in large-scale systems in which particles reside in
a constant region after reaching steady-state (for instance, the rotating drum), single-step
load-balancing shows the best performance. In the simulations where particles move in
one direction (for example, the silo) or where particles have a reciprocating motion (for
example, the V blender) frequent and dynamic load-balancing schemes are favorable.
Dynamic load-balancing is a scheme that calls load-balancing according to the imbalance
between the computational load on the processes. Using dynamic load-balancing, we can
avoid unnecessary load-balancing operations. In the packing simulation, we were able to
simulate the packing of 108 particles on 4800 processes, which shows the high computa-
tional performance of Lethe-DEM. On average, the computational cost of simulations with
optimum load-balancing is 60% of simulations without load-balancing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pr10010079/s1, Video S1: packing.mp4, Video S2: drum.mp4, Video S3: silo.mp4, Video S4:
VBlender.mp4.

Author Contributions: S.G.: Data curation, Formal analysis, Investigation, Software, Validation,
Methodology, Visualization, Writing—original draft; B.B.: Funding acquisition, Software, Validation,
Methodology, Project administration, Resources, Supervision, Writing—review & editing. All authors
have read and agreed to the published version of the manuscript.

Funding: This project was partially funded by the Natural Sciences and Engineering Research
Council via NSERC Grant RGPIN-2020-04510.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Lethe-DEM is an open source DEM software available on GitHub
https://github.com/lethe-cfd/lethe, (accessed on 21 December 2021).

Acknowledgments: The authors would like to acknowledge support received by the deal.II commu-
nity. The authors would like to acknowledge the support received from Calcul Québec and Compute
Canada. Computations shown in this work were made on the supercomputer Beluga, Cedar and
Graham managed by Calcul Québec and Compute Canada. The operation of these supercomputers
is funded by the Canada Foundation for Innovation (CFI), the ministère de l’Économie, de la science
et de l’innovation du Québec (MESI) and the Fonds de recherche du Québec—Nature et technologies
(FRQ-NT).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/pr10010079/s1
https://www.mdpi.com/article/10.3390/pr10010079/s1
https://github.com/lethe-cfd/lethe

Processes 2022, 10, 79 12 of 13

Nomenclature
dp Particle diameter
dt Time-step
e Coefficient of restitution
fLB Load-balancing frequency
L Total computational load of a process
nc Number of cells
np Number of particles
nproc Number of processes
t Time
t f Simulation time
tLB Load-balancing time
ts Simulation time
Wc Cell weight
Y Young’s modulus
Greek letters
α Particle weight
β Cell weight
ε Dynamic load-balancing threshold
µ Coefficient of friction
µr Coefficient of rolling friction
ρp Density of particle
ν Poisson’s ratio

References
1. Richard, P.; Nicodemi, M.; Delannay, R.; Ribiere, P.; Bideau, D. Slow relaxation and compaction of granular systems. Nat. Mater.

2005, 4, 121–128. [CrossRef] [PubMed]
2. Ketterhagen, W.R.; am Ende, M.T.; Hancock, B.C. Process modeling in the pharmaceutical industry using the discrete element

method. J. Pharm. Sci. 2009, 98, 442–470. [CrossRef]
3. Boac, J.M.; Ambrose, R.K.; Casada, M.E.; Maghirang, R.G.; Maier, D.E. Applications of discrete element method in modeling of

grain postharvest operations. Food Eng. Rev. 2014, 6, 128–149. [CrossRef]
4. Blais, B.; Vidal, D.; Bertrand, F.; Patience, G.S.; Chaouki, J. Experimental methods in chemical engineering: Discrete element

method—DEM. Can. J. Chem. Eng. 2019, 97, 1964–1973. [CrossRef]
5. Golshan, S.; Sotudeh-Gharebagh, R.; Zarghami, R.; Mostoufi, N.; Blais, B.; Kuipers, J. Review and implementation of CFD-DEM

applied to chemical process systems. Chem. Eng. Sci. 2020, 221, 115646. [CrossRef]
6. Sawley, M.L.; Cleary, P.W. A parallel discrete element method for industrial granular flow simulations. EPFL Supercomput. Rev.

1999, 11, 23–29.
7. Norouzi, H.R.; Zarghami, R.; Sotudeh-Gharebagh, R.; Mostoufi, N. Coupled CFD-DEM Modeling: Formulation, Implementation and

Application to Multiphase Flows; John Wiley & Sons: Hoboken, NJ, USA, 2016.
8. Golshan, S.; Munch, P.; Gassmoller, R.; Kronbichler, M.; Blais, B. Lethe-DEM: An open-source parallel discrete element solver

with load balancing. arXiv 2021, arXiv:2106.09576.
9. Norouzi, H.; Zarghami, R.; Mostoufi, N. New hybrid CPU-GPU solver for CFD-DEM simulation of fluidized beds. Powder

Technol. 2017, 316, 233–244. [CrossRef]
10. Eibl, S.; Rüde, U. A systematic comparison of runtime load balancing algorithms for massively parallel rigid particle dynamics.

Comput. Phys. Commun. 2019, 244, 76–85. [CrossRef]
11. Rettinger, C.; Rüde, U. Dynamic load balancing techniques for particulate flow simulations. Computation 2019, 7, 9. [CrossRef]
12. Tsuzuki, S.; Aoki, T. Large-scale granular simulations using Dynamic load balance on a GPU supercomputer. In Proceedings of

the Poster at the 26th IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis,
New Orleans, LA, USA, 16–21 November 2014.

13. Fleissner, F.; Eberhard, P. Load balanced parallel simulation of particle-fluid dem-sph systems with moving boundaries. Parallel
Comput. Archit. Algorithms Appl. 2007, 48, 37–44.

14. Kloss, C.; Goniva, C.; Hager, A.; Amberger, S.; Pirker, S. Models, algorithms and validation for opensource DEM and CFD–DEM.
Prog. Comput. Fluid Dyn. Int. J. 2012, 12, 140–152. [CrossRef]

15. Weinhart, T.; Orefice, L.; Post, M.; van Schrojenstein Lantman, M.P.; Denissen, I.F.; Tunuguntla, D.R.; Tsang, J.; Cheng, H.;
Shaheen, M.Y.; Shi, H.; et al. Fast, flexible particle simulations—An introduction to MercuryDPM. Comput. Phys. Commun. 2020,
249, 107129. [CrossRef]

16. Forgber, T.; Toson, P.; Madlmeir, S.; Kureck, H.; Khinast, J.G.; Jajcevic, D. Extended validation and verification of XPS/AVL-Fire™,
a computational CFD-DEM software platform. Powder Technol. 2020, 361, 880–893. [CrossRef]

http://doi.org/10.1038/nmat1300
http://www.ncbi.nlm.nih.gov/pubmed/15689950
http://dx.doi.org/10.1002/jps.21466
http://dx.doi.org/10.1007/s12393-014-9090-y
http://dx.doi.org/10.1002/cjce.23501
http://dx.doi.org/10.1016/j.ces.2020.115646
http://dx.doi.org/10.1016/j.powtec.2016.11.061
http://dx.doi.org/10.1016/j.cpc.2019.06.020
http://dx.doi.org/10.3390/computation7010009
http://dx.doi.org/10.1504/PCFD.2012.047457
http://dx.doi.org/10.1016/j.cpc.2019.107129
http://dx.doi.org/10.1016/j.powtec.2019.11.008

Processes 2022, 10, 79 13 of 13

17. Blais, B.; Barbeau, L.; Bibeau, V.; Gauvin, S.; El Geitani, T.; Golshan, S.; Kamble, R.; Mikahori, G.; Chaouki, J. Lethe: An
open-source parallel high-order adaptative CFD solver for incompressible flows. SoftwareX 2020, 12, 100579. [CrossRef]

18. Fleissner, F.; Eberhard, P. Parallel load-balanced simulation for short-range interaction particle methods with hierarchical particle
grouping based on orthogonal recursive bisection. Int. J. Numer. Methods Eng. 2008, 74, 531–553. [CrossRef]

19. Warren, M.S.; Salmon, J.K. A parallel hashed oct-tree n-body algorithm. In Proceedings of the 1993 ACM/IEEE Conference on
Supercomputing, Portland, OR, USA, 19 November 1993; pp. 12–21.

20. Berger, R.; Kloss, C.; Kohlmeyer, A.; Pirker, S. Hybrid parallelization of the LIGGGHTS open-source DEM code. Powder Technol.
2015, 278, 234–247. [CrossRef]

21. Cintra, D.T.; Willmersdorf, R.B.; Lyra, P.R.M.; Lira, W.W.M. A hybrid parallel DEM approach with workload balancing based on
HSFC. Eng. Comput. 2016, 33, 2264–2287. [CrossRef]

22. Cintra, D.T.; Willmersdorf, R.B.; Lyra, P.R.M.; Lira, W.W.M. A parallel DEM approach with memory access optimization using
HSFC. Eng. Comput. 2016, 33, 2463–2488. [CrossRef]

23. Markauskas, D.; Kačeniauskas, A. The comparison of two domain repartitioning methods used for parallel discrete element
computations of the hopper discharge. Adv. Eng. Softw. 2015, 84, 68–76. [CrossRef]

24. Arndt, D.; Bangerth, W.; Blais, B.; Clevenger, T.C.; Fehling, M.; Grayver, A.V.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; et
al. The deal. II library, version 9.2. J. Numer. Math. 2020, 28, 131–146. [CrossRef]

25. Arndt, D.; Bangerth, W.; Blais, B.; Fehling, M.; Gassmöller, R.; Heister, T.; Heltai, L.; Köcher, U.; Kronbichler, M.; Maier, M.; et al.
The deal. II library, version 9.3. J. Numer. Math. 2021, 29, 171–186. [CrossRef]

26. Gassmöller, R.; Lokavarapu, H.; Heien, E.; Puckett, E.G.; Bangerth, W. Flexible and scalable particle-in-cell methods with adaptive
mesh refinement for geodynamic computations. Geochem. Geophys. Geosystems 2018, 19, 3596–3604. [CrossRef]

27. Burstedde, C.; Wilcox, L.C.; Ghattas, O. p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees.
SIAM J. Sci. Comput. 2011, 33, 1103–1133. [CrossRef]

28. Bangerth, W.; Burstedde, C.; Heister, T.; Kronbichler, M. Algorithms and Data Structures for Massively Parallel Generic Adaptive
Finite Element Codes. Acm Trans. Math. Softw. 2012, 38, 1–38. [CrossRef]

29. Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J.
Numer. Methods Eng. 2009, 79, 1309–1331. [CrossRef]

30. Owen, D.; Feng, Y.; Han, K.; Peric, D. Dynamic domain decomposition and load balancing in parallel simulation of finite/discrete
elements. In Proceedings of the ECCOMAS 2000, Barcelona, Spain, 11–14 September 2000.

31. Golshan, S.; Esgandari, B.; Zarghami, R.; Blais, B.; Saleh, K. Experimental and DEM studies of velocity profiles and residence time
distribution of non-spherical particles in silos. Powder Technol. 2020, 373, 510–521. [CrossRef]

32. Alizadeh, E.; Dubé, O.; Bertrand, F.; Chaouki, J. Characterization of mixing and size segregation in a rotating drum by a particle
tracking method. AIChE J. 2013, 59, 1894–1905. [CrossRef]

http://dx.doi.org/10.1016/j.softx.2020.100579
http://dx.doi.org/10.1002/nme.2184
http://dx.doi.org/10.1016/j.powtec.2015.03.019
http://dx.doi.org/10.1108/EC-01-2016-0019
http://dx.doi.org/10.1108/EC-07-2015-0203
http://dx.doi.org/10.1016/j.advengsoft.2014.12.002
http://dx.doi.org/10.1515/jnma-2020-0043
http://dx.doi.org/10.1515/jnma-2021-0081
http://dx.doi.org/10.1029/2018GC007508
http://dx.doi.org/10.1137/100791634
http://dx.doi.org/10.1145/2049673.2049678
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1016/j.powtec.2020.06.093
http://dx.doi.org/10.1002/aic.13982

	Introduction
	Problem Definition
	Results and Discussion
	Benchmark Cases
	Influence of the Weighting Strategy (Linear and Quadratic)
	Packing in Box
	Rotating Drum
	Silo
	V Blender

	Conclusions
	References

