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Abstract: Long-term prediction of hour-concentration of PM2.5 (particles in atmospheric suspension
with effective dimensions equal or lower than 2.5 microns) is of great significance for environmental
protection and people’s health. At present, the prediction of hour-concentration of PM2.5 is mostly
single-step prediction, which is to predict PM2.5 concentration at a future time point based on a period
of historical data. In this paper, a model based on multi-time scale fusion is proposed to study single-
step prediction and multi-step prediction, respectively. Experimental results show that the proposed
model is better than stacked LSTM and CNN-LSTM in predicting PM2.5 hour-concentration.
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1. Introduction

At present, the traditional methods in the field of PM2.5 concentration prediction
research mainly combine four conventional methods formed by meteorology, environmen-
tal science, mathematics, and computational science. That is, empirical model prediction
based on historical data and statistical methods, probability model prediction based on
statistical and mathematical methods or models, prediction based on synthetic methods,
and prediction based on conventional machine learning models. With the rapid develop-
ment of deep learning, Fan et al. used the recurrent neural network model for predicting
PM2.5 concentration in the future 1 hour based on air quality and meteorological data
in the past 48 h [1]. Qi et al. proposed the model GCN-LSTM (A model based on Graph
Convolutional Network and Long Short-Term Memory), which proved that the model
was superior to CNN (Convolutional Neural Networks) and LSTM in predicting the air
quality in the future one hour [2]. He et al. combined the wavelet transform with the LSTM
(Long Short-Term Memory) model and took the daily average concentration as the input to
predict the pollutant concentration of the next day, and proved that the proposed model
was superior to MLR (Mixed Logistic Regression), LSTM and WT-MLR (Mixed Logistic
Regression based on Wavelet Transform) [3]. Huang and Kuo constructed the model APNet
(Attention-based Parallel Networks) and proved through experiments that the model was
superior to CNN and LSTM in predicting PM2.5 concentration in the future one hour [4].

However, the above studies only focus on PM2.5 concentration of single-step predic-
tion, did not predict the PM2.5 concentration for a period of time in the future, that is, did
not make a multi-step prediction. To solve this problem, this article builds a CNN-LSTM
network on the basis of the combination of attention mechanism, the multi-time scale fusion
model of multi-time scale features is integrated. The aim is to accurately predict the value
of PM2.5 corresponding to each hour in a continuous period of time in the future. Through
experiments, the validity and superiority of the method proposed in this paper are verified.
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2. PM2.5 Prediction Model Based on Multi-Time Scale Fusion
2.1. LSTM (Long Short-Term Memory)

LSTM is a variant produced to solve the long-term dependence problem that RNN
(Recurrent Neural Network) cannot solve, which effectively alleviates the gradient ex-
plosion problem that RNN cannot avoid and can better predict the time series [5]. The
architecture of an LSTM memory cell is shown in Figure 1, where each cell has three “gate”
structures, include, the input gate, the forget gate, and the output gate. A chain of repeating
cells forms the LSTM layer. The calculation process of the spatiotemporal feature matrix
X = [x1, x2, . . . , xt] in the LSTM layer is given in Equations (1)–(6). Equation (1) represents
the forget gate and it decides what information should be thrown away from the cell state.
The directions are: Input ht−1 and xt into the forget gate, and calculate the output value ft of
the forget gate through the sigmoid activation function. Equations (2) and (3) represent the
input gate, which decides what new information should be stored in the state of cell. The
directions are: Input ht−1 and xt into the input gate, and get it and c̃t through the sigmoid
activation function and tanh activation function respectively. Equation (4) uses the output
of the forget gate and the input gate to update the current cell state. Equations (5) and (6)
together constitute the output of the current cell. The directions are: First, input ht−1 and xt
into the output gate, and calculate the output ot of the output gate through the sigmoid
activation function. Then get the current cell output ht by calculating the output of the
output gate and the state of the current cell.
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Figure 1. The structure of LSTM neurons.

The following Equations (1)–(6) describe the internal calculation process of an LSTM
neural unit:

ft = σ(w f.[h t−1, xt] + bf
)

(1)

it = σ(wi.[ht−1, xt] + bi) (2)

c̃t = tan h(wc.[ht−1, xt] + bc) (3)

ct = ft � ct−1 + it � c̃t (4)

ot= σ(wo.[ht−1, xt]+bo) (5)

ht = ot � tan h(ct) (6)

where ft is the output of forget gate, the value range of ft is (0,1); it is the output of input
gate, the value range of it is (0,1); ct is the state of the current cell; ot is the output of
output gate, the value range of ot is (0,1); ht−1 is the output of the previous cell; ht is the
output of the current cell; wf, wi, wc, and wo are the weight matrices for input vector xt at
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time step t; bf, bi, bc, and bo are the bias vectors; σ is sigmoid activation function; tanh is
hyperbolic sine function; � stands for element-wise multiplication of the matrix; ⊗ stands
for multiplication; ⊕ stands for the sum operation;

2.2. Ensemble Empirical Mode Decomposition (EEMD)

As a noise-assisted signal decomposition method, EEMD adds white noise to the
original signal and performs EMD decomposition on it, and finally calculates lumped
average using the results of multiple decomposition [6].

The specific operation steps are as follows:
(1) Set the overall average times M;
(2) Add a white noise ni(t) with standard normal distribution to the original signal x(t)

to generate a new signal:
xi(t)= x(t)+ni(t) (7)

where ni(t) is i-th additive white noise sequence; xi(t) is the additional noise signal of the
i-th test, i = 1, 2, 3, . . . M.

(3) EMD decomposition is performed on the obtained signal xi(t) containing noise to
obtain the form of their respective IMF (Intrinsic Mode Function) sum:

xi(t) =
J

∑
j=1

ci,j(t)+ri,j(t) (8)

where ci,j(t) is the J-th IMF obtained by decomposing after adding white noise for the
i-th time. ri,j(t) is the residual term represents the average trend of the signal, and j is the
number of IMF;

(4) Repeat steps (2) and (3) for M times, decompose and add white noise signals with
different amplitudes each time, and the set of IMF is: c1,j(t), c2,j(t), . . . cM,j(t), where j = 1, 2,
3, . . . J;

(5) Based on the principle that the statistical average value of unrelated sequences is
zero, the above IMF is calculated by aggregate average to obtain the final IMF, namely:

cj(t) =
1
M

M

∑
i=1

ci,j(t) (9)

where cj(t) is the j-th IMF, i = 1, 2, . . . M, j = 1, 2, . . . J;

2.3. Attention Mechanism

The attention mechanism mimics the internal process of biological observation be-
havior [7]. His principle is through a set of weights αTt

Ts−e
=
[
αTt

Te
,αTt

Te+1
, . . .αTt

Ts

]
to express

the value of a certain time slice in the target sequence xTt and the dependent sequence
xTs−e = [xTe , xTe+1 , . . . , xTs] relevance. Eeach element in xTt and xTs−e has the same dimen-
sion. Map xTt and xTs−e to the parameter space:

Query = xTt WQ (10)

Key = xTs−e Wk (11)

Value = xTs−e Wv (12)

where WQ is dx*dq dimensional Query parameter matrix; Wk is dx*dk dimensional Key
parameter matrix; Wv is dx*dv dimensional Value parameter matrix;

The attention mechanism is divided into three stages: in the first stage, the target
sequence is mapped from xTt map of dx dimension to Query of dq dimension, and sim-
ilarly transformed xTs−e into matrix mapping to Key matrix with dk element dimension
and Value matrix with dv element dimension, calculating the similarity between Query
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and Key; In the second stage, the original score of the first stage is normalized, and the
αTt

Ts−e
weight of Value is calculated by Softmax. In the third stage, the Value is weighted

and summed according to the weight coefficient to obtain the attention Value.

2.4. Multi Time Scale Fusion Model

In this paper, the multi-time scale fusion model is applied to the prediction of PM2.5
hour-concentration for the first time, and the model process is shown in Figure 2. EEMD
(Ensemble Empirical Mode Decomposition) decomposition can decompose the original
PM2.5 sequence into new sequences with different time scales. CNN-LSTM was employed
to extract characteristic information of time series. Attention_layer pays attention to
important features and ignores non-important features through attention mechanism to
improve prediction accuracy.
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The specific steps are as follows:
(1) Input the original PM2.5 sequence into the EEMD model, and perform EEMD

decomposition on the original PM2.5 concentration data. This is the first improvement
made by the model in this paper on the basis of CNN-LSTM model. Compared with the
original sequence, the decomposed sequence can more precisely express the period of the
original sequence and better obtain information of different time scales.

(2) The original PM2.5 data sequence and the decomposed PM2.5 sequence were
input into CNN-LSTM network composed of two layers of Conv1d and one layer of
LSTM respectively for feature extraction. As convolutional neural network has excellent
feature extraction and feature expression capabilities, LSTM has natural advantages in
processing time sequence. Therefore, CNN and LSTM are used in combination in feature
extraction in this paper. In this paper, the decomposed sequences are recombined into new
sequences according to different time scales and used as the input of different network
layers respectively with the original sequence.
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(3) The outputs of different LSTM layers output the prediction results through the
attention mechanism layer. Attention mechanism is another improvement based on CNN-
LSTM. Through attention mechanism, more important feature information can be paid
attention to in features of different time scales to improve the accuracy of prediction.

3. Results and Discussion
3.1. Experimental Configuration and Data Set Description

The experimental environment of this paper uses TensorFlow + Keras framework,
Python 3.7 development language, the system uses Windows, with multiple Python library
functions for code implementation and result analysis.

The data in this paper are the monitoring data from ground stations in Harbin, mainly
including AQI, PM2.5, PM10, O3, and other data. The update frequency is one hour, and
the time span is from May 2014 to April 2021. PM2.5 is shown in Figure 3.
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3.2. Data Pre-Processing

In this paper, data pre-processing includes data cleaning and data normalization.
During data cleaning, clear redundant data. When the pollutant data is missing, this paper
uses 8 h moving average data to replace it. After processing, the short-term missing values
that still exist are supplemented by simple linear interpolation of adjacent values, and the
missing data that are too long are deleted.

The normalization of maximum and minimum values is used in this paper, as follows:

f∗ = f− fmin

fmax−fmin
(13)

where fmax is the maximum value of sample data; fmin is the minimum value of sample data.

3.3. EEMD Decomposition of PM2.5 Concentration

In this paper, the pre-treated TIME series of PM2.5 value is decomposed into 14 IMF
series and one trend item, as shown in Figure 4.

For the period calculation of IMF components, this paper uses the average period
as the period of IMF components. The calculation results are shown in Table 1 below.
According to the cycle calculation results, imF1-IMF4 is hour scale, IMF5-IMF9 is day scale,
IMF10-IMF12 is month scale, and IMF13-IMF14 is year scale.
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Table 1. The period of each IMF component of PM2.5 concentration.

IMF Component Period/h

IMF1 3

IMF2 5

IMF3 8

IMF4 15

IMF5 25

IMF6 46

IMF7 89

IMF8 168

IMF9 321

IMF10 659

IMF11 1395

IMF12 4000

IMF13 8572

IMF14 20,000

RES –

3.4. Evaluation Index

The following indicators are selected as the evaluation criteria in this paper:
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(1) RMSE (Root Mean Square Error)

RMSE =

√√√√ 1
M

M

∑
m=1

(ym− y′m)2 (14)

where ym is the true value in the test set; ym’ is the predicted value.
(2) MAE (Mean Absolute Error)

MAE =
1
m

M

∑
m=1

∣∣Y′ − Y
∣∣ (15)

where Y′ is predicted results; Y is true value.
(3) R2adj (Adjusted R-Square)

R2 = 1−

M
∑

m=1

(
ym −

−
ym

)2

M
∑

m=1

(
ym−

−
y
)2

(16)

R2adj= 1− (1− R2)(n− 1)
n− p− 1

(17)

where ym is the true value in the test set;
−
ym is the predicted value;

−
y is the average of the

true values in the test set; R2 is R-Square; n is the number of samples; p is the number of
features; R2adj offsets the impact of the number of samples on R2, so that the value of R2adj
is between zero and one, and the larger the value of R2adj, the better the performance of the
model.

3.5. Comparison of Experimental Results
3.5.1. Impact of Historical Time Windows on Model Performance

PM2.5 data is affected by a variety of related time series, but the change of each time
series value does not immediately affect PM2.5 concentration value, which means that the
variable value at the previous moment has a lag effect on the PM2.5 concentration value
at the next moment, which may be strong in the short term and weak in the long term [8].
A smaller window size cannot guarantee sufficient long-term memory input for LSTM
model, while a larger window size will increase the input of irrelevant information and
increase the unnecessary computational complexity of the model [9]. In order to determine
the appropriate historical time window, the historical time window in this study starts
from 12 h, and every 12 h is a time interval. The prediction scale is the concentration of
1 h PM2.5 in the future. The results are shown in Table 2 below. When the historical time
window is 36 h, the RMSE, MAE and R2 of the model in this paper are 9.66, 6.95, and 0.95,
respectively, which are the best. For LSTM model, when the history time window is 24 h,
RMSE 14.0 is the best. When the historical time window is 36 h, MAE is 7.63 and R2 is 0.89.
For CNN-LSTM model, when the historical time window is 24 h, RMSE is 13.66, MAE is
9.88, and R2 is 0.91. The model in this paper is superior to the comparison model in terms
of indicators. The RMSE of the model is 31% lower than that of LSTM and 25% lower than
that of CNN-LSTM. For the index MAE, it is 24% lower than LSTM and 22% lower than
CNN-LSTM. For index R2, it is 5% higher than LSTM and 3% higher than CNN-LSTM.

3.5.2. Performance Comparison of Multi-Step Prediction

In order to test the multi-step prediction performance of the model in this paper for
PM2.5 hour-concentration, experiments were carried out on the three models for 1 h, 4 h,
8 h, 12 h, and 24 h in the future, respectively, and the results are shown in Table 3. It can
be seen from Table 3 that: (1) each model achieves the best effect when the prediction step
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size is one hour, and the evaluation indexes of the model proposed in this paper are better.
(2) With the increase of prediction step size, the accuracy of prediction decreases, but the
prediction evaluation index of the model proposed in this paper is superior to LSTM and
CNN-LSTM in each prediction time scale. Therefore, it indicates that the model proposed
in this paper is effective in improving the long-term prediction accuracy.

Table 2. Performance comparison of models in different historical time windows.

Historical
Window Time

LSTM CNN-LSTM Model of This Paper

RMSE MAE Adjusted R2 RMSE MAE Adjusted R2 RMSE MAE Adjusted R2

12 h 14.65 9.39 0.90 13.85 9.56 0.91 10.62 7.27 0.94

24 h 14.0 9.23 0.91 12.90 8.80 0.92 9.79 7.02 0.95

36 h 14.24 9.15 0.90 12.96 8.91 0.92 9.66 6.95 0.95

48 h 16.87 10.57 0.86 13.30 9.20 0.91 10.37 7.25 0.94

60 h 17.16 11.07 0.86 14.90 10.34 0.89 10.99 7.56 0.94

72 h 17.41 11.45 0.85 14.92 10.40 0.89 11.06 7.42 0.94

Table 3. Comparison of the performance of the three methods for different time step predictions.

Time Step
(Predicted)

LSTM CNN-LSTM Model of This Paper

RMSE MAE Adjusted R2 RMSE MAE Adjusted R2 RMSE MAE Adjusted R2

1 h 14.25 9.15 0.90 12.96 8.91 0.92 9.96 6.95 0.95

4 h 14.95 9.72 0.89 14.51 9.70 0.90 11.68 8.10 0.93

8 h 16.88 11.16 0.86 15.20 10.26 0.89 14.25 9.69 0.90

12 h 17.65 11.27 0.84 17.60 11.32 0.85 15.00 9.85 0.89

24 h 21.21 13.48 0.78 20.80 13.63 0.79 18.48 11.78 0.83

In order to display the forecast results intuitively, the forecast data from 26 Febru-
ary 2021 to 18 March 2021 are selected for display, as shown in Figures 5–9 below. The blue
represents the real data value, the yellow is the predicted value of the LSTM model, the
green is the predicted value of the CNN-LSTM model, and the red is the predicted value of
the model in this article. It can be seen from Figures 5 and 6 that when the prediction step
length is short, although the prediction results of the other two models and the predicted
future trend can be well consistent with the real data, the model proposed in this article
has achieved better results. At the same time, the model proposed in this article is also
superior to the other two models in peak prediction. It can be seen from Figures 7–9 that as
the prediction duration increases, the accuracy of the peak prediction and the prediction
of the future trend of each model decreases. When the prediction time step is 24 h, the
prediction trend of LSTM and CNN-LSTM starts to be opposite to that of the real data, as
shown in the predicted value between 400 h and 450 h in Figure 9. The prediction results
and future trends of the model in this article can be better agreement with the real data.
Therefore, the model in this article can better simulate the long-term forecast of PM2.5.
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4. Conclusions

The prediction of PM2.5 concentration is of great significance for People’s Daily life
and environmental governance. Because the characteristic information of different time
scales has different influence on the prediction results, a multi-time scale fusion model
is proposed in this paper. The experimental results show that the proposed multi-time
scale fusion model is superior to the comparison model in single and multi-step prediction,
indicating that the multi-time scale fusion is effective for long-term prediction. In addition,
in this paper, only the data of one site is used for the experiment, the amount of data is
too small, and the influence between sites is not taken into account. In the future, PM2.5
between adjacent stations will be studied and analyzed, and the accuracy of prediction will
be improved by studying the spatial correlation between stations.
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