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Abstract: The application of a machine learning (ML) model to bio-electrochemical anaerobic diges-
tion (BEAD) is a future-oriented approach for improving process stability by predicting performances
that have nonlinear relationships with various operational parameters. Five ML models, which in-
cluded tree-, regression-, and neural network-based algorithms, were applied to predict the methane
yield in BEAD reactor. The results showed that various 1-step ahead ML models, which utilized
prior data of BEAD performances, could enhance prediction accuracy. In addition, 1-step ahead with
retraining algorithm could improve prediction accuracy by 37.3% compared with the conventional
multi-step ahead algorithm. The improvement was particularly noteworthy in tree- and regression-
based ML models. Moreover, 1-step ahead with retraining algorithm showed high potential of
achieving efficient prediction using pH as a single input data, which is plausibly an easier monitoring
parameter compared with the other parameters required in bioprocess models.

Keywords: machine learning; bio-electrochemical anaerobic digestion; methane yield; pH;
process stability

1. Introduction

Anaerobic digestion (AD) is gaining attention as a promising technology for biogas
production from various organic wastes, such as food waste, waste activated sludge,
livestock manure, and landfill leachate [1]. However, AD performances are often affected by
substrate characteristics, organic loading rate (OLR), accumulated volatile fatty acids (VFAs)
concentration, pH, alkalinity, ammonia concentration, and toxic substances [2,3]. Therefore,
AD reactors occasionally exhibit unstable methane production and inefficient organic
degradation rate [4,5]. In particular, highly concentrated and easily biodegradable organic
matter, such as food waste, interrupts efficient methane production and fast stabilization
by accelerating VFA accumulation and pH decrease, resulting in an imbalance between
acidogenesis and methanogenesis [6].

Bio-electrochemical anaerobic digestion (BEAD) is gaining attention as an advanced
technology that improves microbial activity and growth rates as well as organic removal
efficiency and biogas productivity by supplying low voltage (0.2~1.0 V) through bio-
electrodes in an AD reactor [7,8]. BEAD systems are superior to AD systems with respect
to organic substances removal and biogas production, and that a decrease in pH and VFA
accumulation has a low inhibitory effect on methane production [9–11]. Previous lab-scale
studies have sufficiently demonstrated the superiority of BEAD through basic studies such
as reaction mechanism identification, changes in microbial community structure, electrode
configuration, and material suitability [12–14].
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Operational stability should be examined as the next step to enhance the applicability of
BEAD because operational stability and maintainability of BEAD are important parameters
for its application in full-scale processes. This can be achieved by predicting the performance
based on the long-term performance of BEAD. In BEAD processes, the analytical parameters
are nonlinear in nature [15]. Various methods for forecasting process performance have been
researched to improve operational stability by analyzing nonlinear patterns.

Machine learning (ML), a statistical forecasting method, is gaining significant attention
for forecasting performance and preventing operational risks. ML can be successfully
applied into process models because of its capability to interpret the nonlinear relationships
that might be produced among variables (multi input/output) in a complex system [16].
Compared with the AD models, ML can model and predict complex relationships between
dependent and independent variables associated with the AD process, without requiring
detailed mechanisms of anaerobic processes [17]. In addition, ML models contain a class of
generic nonlinear regression models that learn the arbitrary mapping of the input data to
the output data to obtain computational models with high predictive accuracy [18]. Hence,
an extensive understanding in process model is not required in ML modeling [19]. This
suggests that ML can support the long-term process stability of BEAD by applying some
operational parameters as input data. BEAD is proven techniques that could achieve a
higher process stability than that of conventional AD, supporting bio-electrochemically
active microorganism and preventing various inhibitions that cause failure of a reaching
steady state [8,20]. Based on these advantages of BEAD, various ML models could be
applied into long-term operation of BEAD process for supporting operational stability and
accelerating biogas production. However, in-depth study results supporting the long-term
process stability of BEAD have not yet been reported, highlighting the need for studying
ML applications of BEAD.

Conventional ML models focused on raw data collected during specific operational pe-
riods for prediction of future performances by using simultaneous prediction method [21].
Although that method was widely applied to continuously operated bio-process, simultane-
ous prediction has a limitation in applying new input data that is continuously accumulated.
A 1-step ahead algorithm showed a possibility of continual training which contributes an
achieving a higher adoption to bio-process. Previous study clearly showed that the 1-step
ahead with retraining algorithm was suitable for the practical application by predicting
performances derived from continuously operated bio-process [21].

Therefore, a practical application of ML to BEAD for treating food waste was suggested
in this study using a long-term evaluation of the effects of operational parameters on BEAD
reactors. Various ML models with multi-step and 1-step ahead algorithms were applied to
forecast the performance and achieve high operational stability of the BEAD. Moreover,
pH was applied as a single input data to evaluate the possibility of real-time prediction
and practical applications. The 1-step ahead method, which utilized prior data of BEAD
performances, could enhance the prediction accuracy. In addition, 1-step ahead with the
retraining algorithm could achieve high prediction accuracy when pH was used as a single
input parameter.

2. Materials and Methods
2.1. Data Preprocessing

The data used in this study were collected from a lab-scaled single-chamber BEAD
reactor (effective volume: 20 L) treating food waste. The BEAD reactor was operated
for 1086 days under various organic loading rates (OLRs) based on the input chemical
oxygen demand (COD) concentration. The details of the BEAD reactor have been published
in previous studies [22,23]. The pH, alkalinity, and COD removal efficiency were used
as the input parameters, and the input COD based methane yield (L-CH4/g-COD) was
used as the output parameter. The input parameters were chosen in accordance with the
variable importance analysis results. When pH, alkalinity, and COD removal efficiency
were applied as independent variable, the highest R2 value was calculated. The lab-scaled
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BEAD reactor was operated by supplying voltage of 0.3 V under gradually increased
OLRs (Table 1). During stage 1, the BEAD reached intermediate and final steady states
after 98 and 250 days, respectively, of operation and continued stable methane production
by stage 5. Stable methane yields in the BEAD reactor at the final steady state of S1–S5
(2.0–10.0 kg/m3·d) were 0.35 ± 0.02, 0.36 ± 0.04, 0.36 ± 0.04, 0.36 ± 0.02, and 0.36 ± 0.02
L-CH4/g-COD, respectively. More details on BEAD performance are presented in Table 1.

Table 1. Methane production and yield in BEAD reactor during the total operation periods.

Item Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Operation period (days) 0–365 366–598 599–795 796–950 951–1086
OLR (kg-COD/m3·d) 2.5 ± 0.6 1.0 ± 0.2 6.0 ± 0.3 8.0 ± 0.3 10.0 ± 0.4

pH 7.7 ± 0.3 8.0 ± 0.2 8.1 ± 0.1 8.1 ± 0.1 8.2 ± 0.1
Alkalinity (g/L as CaCO3) 7.6 ± 0.9 10.1 ± 0.8 13.9 ± 0.8 14.8 ± 0.7 15.3 ± 0.7

Total VFAs (mg/L) 2.6 ± 0.9 3.1 ± 0.2 3.9 ± 0.2 4.6 ± 0.3 5.3 ± 0.3
COD removal efficiency (%) 67.8 ± 7.2 71.4 ± 2.5 73.5 ± 3.0 75.1 ± 2.3 76.3 ± 1.7

CH4 production (L/day) 15.7 ± 4.6 33.9 ± 3.9 51.2 ± 6.3 63.4 ± 3.9 74.7 ± 3.4
CH4 yield (L-CH4/g-COD) 0.32 ± 0.07 0.35 ± 0.04 0.35 ± 0.04 0.36 ± 0.02 0.36 ± 0.01

BEAD: bio-electrochemical anaerobic digestion, OLR: organic loading rate, VFA: volatile fatty acid, COD: chemical
oxygen demand.

2.2. Statistical Analysis
2.2.1. Principal Component Analysis (PCA)

The PCA analysis was conducted using pH, alkalinity, COD removal efficiency, and
methane yield of the BEAD reactor as principal components. The axes of principal compo-
nents presenting eigenvalues of 1.0 that showed the dispersion size of orthogonal data were
considered when the number of principal components was determined [24]. The varimax
rotation method that can explain the relationships between variables and components was
used to rotate the axis [21]. The Bartlett’s sphericity test and the Kaiser Meyer Olkin (KMO)
test were applied to determine validity of preprocessed data for the PCA. The KMO test
results reveal the degree of covariance between the variables used in the analysis and the
components inherent in the data. As the degree of covariance approaches 1, the validity
of the analysis is high, and the analysis can be performed only when it is at least 0.5 [25].
Statistical analysis was performed using four variables that satisfied the standard value of
KMO. The KMO-value and p-value of four variables which consist of pH, alkalinity, COD
removal efficiency, and methane yield were 0.73 and less than 0.01, respectively.

2.2.2. Variable Importance Analysis

Input data that was properly selected simplifies the model algorithm and improves
its applicability to full scale processes. Therefore, Recursive feature elimination (RFE)
was used to remove low important variables, one at a time. The lowest RMSE of 0.2382
L-CH4/g-COD and the highest R2 of 0.971 were obtained when the three independent
variables (ranked as follows: pH > COD removal efficiency > alkalinity) were applied.
Therefore, these three parameters were used as input data in ML models used in this study.

2.3. ML
2.3.1. Prediction Models

The input layer treats all the input data by communicating with the external environment
that provides significant pattern [26]. These input data are transferred to the hidden layer,
and every input neuron could show independent variables that can affect to the outputs of
the neural network (Figure 1a). The hidden layer collects those neurons that include applied
activation function. Because hidden layer processes the inputs obtained from previous layer,
it is responsible for extracting the required features from the input data [27]. The output layer
collects and transmits information according to a designated method.
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Figure 1. Schematic diagrams for understanding the (a) machine learning algorithm, (b) multi-step
ahead method, and (c) 1-step ahead with retraining method [21].

The following five ML models were applied to predict the methane yield of BEAD
reactor: random forest (RF), extreme gradient boosting (XGboost), support vector regression
(SVR), long short-term memory (LSTM), and recurrent neural network (RNN). A neural
network algorithm has three different layers: input, hidden, and output [26,27].

Each ML was modeled by using multi-step ahead method and 1-step ahead with re-
training method. More detailed fundamentals of each method are presented in Section 2.3.3
and Section 2.3.4, respectively. This study used R program (version 3.5.1), which is a
software for statistical analysis, ML modeling, and graphics formation. The R program
packages used for each ML model are listed in Table 2.

Table 2. R program packages used for the prediction of methane yield.

ML Models Packages

Random Forest (RF) Package “randomForest”
Extreme gradient boosting (XGboost) Package “rxgboost”

Support Vector Regression (SVR) Package “e1071”
Long Short-Term Memory (LSTM) Package “rnn” and “keras”
Recurrent Neural Networks (RNN) Package “rnn”
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2.3.2. Validations and Model Accuracy Calculation

Determining the optimal model parameters is important for improving the prediction
accuracy of ML models [27]. Cross validation was introduced to determine the optimal
combinations of hyperparameters. Learning rate, number of hidden nodes, batch size for
LSTM and RNN, C and sigma for SVR, and number of trees for the RF and XGboost were
considered as hyperparameters to optimize each model [21]. The 10-fold cross–validation
was repeated three times to prevent overfitting and evaluate the prediction performance.
The data was divided into a training set and a test set, which were used for the model
construction and evaluation of prediction accuracy.

Based on the continuously accumulated operation data of the BEAD reactor during
operational stages 1–5, 80% of the total time-series data were provided as training data,
and the posterior 20% was provided as test data (Figure 1b,c). For predicting final methane
yield, pH, alkalinity, and COD removal efficiency were used as input parameters and
amount of training and predicting samples were 312ea (80% of operation period) and 78ea
(20% of operation period), respectively. To compare the prediction accuracies of each ML
model, the RMSEs of all ML model results were evaluated in this study, using Equation (1):

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (1)

2.3.3. Multi-Step Ahead Method

The raw data (see Supplementary Materials) obtained by BEAD reactor operation for
3 years was divided into training and test datasets (Figure 1). In this study, 80% of the raw
data were used for training, and the remaining 20% of raw data were used for testing. The
multi-step ahead method was applied using split-sample experiments [21]. After modeling
was finished, the prediction accuracy was evaluated by comparing with predicted values
and known data. Therefore, multi-step ahead prediction was performed by using only 80%
past data of raw dataset as inputs for training process.

2.3.4. 1-Step Ahead with the Retraining Method

In contrast with multi-step ahead method, 1-step ahead with the retraining method
considers the previous learning contents required in the time-series data analysis and
updates the inputs sequentially for the retraining process. In the 1-step ahead with the
retraining method, the network trained up to past time step n th is retrained to predict the
outputs for the next time step, that is, the (n + 1) th step (Figure 1c) [28,29]. Cumulative
1-step ahead retraining and learning were performed as follows: a model using the data
at time point t was constructed and the future value at time t + 1 was predicted. After
adding the data at time t + 1, a new model was built to retrain data at [1, . . . , t + 1] to
predict the value at time step t + 2. After repeating this process and when predicting
the value after time N elapsed, the model is constructed using data from the time step
[1, . . . , t + 1, . . . , t + n], and the value is predicted at time step t + n + 1 (Figure 2b) [27].
In this study, when time t − 3 was included, the prediction accuracy was the highest.
Therefore, input parameters and predicted outputs at t − 3 step was applied for retraining
process of each 1-step ahead ML model.
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3. Results
3.1. Statistical Analysis

Figure 3a shows the results of PCA analysis when methane yield, pH, alkalinity, and
COD removal efficiency of the BEAD reactor were applied as variables. The methane
yield of the BEAD reactors shows positive correlations with the pH, alkalinity, and COD
removal efficiency. The decreases in pH, alkalinity, and COD removal efficiency affected the
decrease in the final methane yield [30]. In particular, pH had the highest correlation with
the methane yield (BEAD reactor: 0.80), suggesting that rapidly overcoming the inhibition
caused by a pH decrease could contribute to stable methane production (Figure 3b) [31].
The methane yield of the BEAD reactor showed no correlation with the VFAs, which did
not satisfy the baseline value of KMO.
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When the three independent variables were used, the BEAD reactor showed the lowest
RMSE values in the RFE-RE model. The variables were in the order of pH > COD removal
efficiency > alkalinity for the BEAD reactor. The R2 and RMSE of the BEAD reactor were
0.971 and 0.2382 L-CH4/g-COD, respectively. This explained why the methane production
of the BEAD reactor was affected by COD and H+ consumption rates [22,32,33]. As shown in
the partial correlations, the correlations were nonlinear and complex. The methane yield of
BEAD decreased when the pH, alkalinity, and COD removal efficiencies were lower than 7.6,
8000 mg/L as CaCO3, and 60%, respectively. The results of partial dependents correlations
(Figure 3c) clearly showed that the methane yield of BEAD had non-linear relationships with
pH, alkalinity, and COD removal efficiency, respectively, and clarified needs of enhanced
prediction models for achieving high process stability in the BEAD operation.

3.2. Multi-Step Ahead ML Models

The RMSE value of the prediction result using the RNN method was 0.025 L-CH4/g-
COD, showing the best prediction efficiency (Figure 4). In addition, the RMSEs of RF,
XGboost, LSTM, and SVR were 0.041, 0.053, 0.055, and 0.056 L-CH4/g-COD, respectively. For
the BEAD reactor, the prediction accuracy of the RNN method, which was effective for time-
series prediction, was the highest. Therefore, RNN could reflect the characteristics of daily
data appropriately, thereby showing a high prediction accuracy [34]. In cases of the BEAD
reactor using the decision tree-based RF and XGboost, the prediction result was overestimated
for the instantaneous methane yield decrease at the initial operation in each stage. This
implied that the prediction accuracy was low for data that deviated significantly from the
mean value of the regression calculated through learning [35]. Furthermore, the prediction
efficiency of regression-based SVR, which assumed a linear combination of variables, was
low in biological reactions with complex nonlinear relationships of various factors. For
efficient operation and management of real BEAD reactors, it would be more effective to use
the RNN method based on the accumulated time-series data when predicting the methane
yield of the BEAD reactors with nonlinear relationships with time [36].

3.3. 1-Step Ahead ML Models

Reportedly, 1-step ahead prediction methods can predict and analyze time-series data
with high accuracy and prediction efficiency [37,38]. Figure 5 shows the results of the 1-step
ahead prediction using various ML models. In case of the BEAD reactor, the RMSE value
of the prediction result using the RNN method was 0.017 L-CH4/g-COD, showing the
best prediction efficiency. The RMSEs of SVR, LSTM, RF, and XGboost were 0.021, 0.022,
0.028, and 0.030 L-CH4/g-COD, respectively. In every ML models, The 1-step ahead with
retraining method showed a higher RMSEs than the RMSEs of the multi-step ahead method
shown earlier. This indicated that the 1-step ahead method which continuously retrains
previous prediction values could more efficiently predict the methane yield of the BEAD
reactor based on data that have nonlinear relationships with time [39]. In other words,
because operation data are accumulated continuously in BEAD reactor that is operated
continuously, the 1-step ahead method that facilitates learning by applying them in stages
can be effectively applied [40]. In particular, the prediction accuracies of RF, XGboost, and
SVR, which were not appropriate for time-series prediction, were increased through the
1-step ahead method, and they were not significantly different from the RMSE value of
the RNN method. These results suggest that the prediction can be performed indirectly
for the time-series data analysis using 1-step ahead method. Of note, the prediction value
that deviates greatly from the regression section in the multi-step ahead prediction of
decision tree-based RF and XGboost can be corrected based on the time-series learning
and prediction through the 1-step ahead method. Therefore, the usability of the decision
tree-based model can be increased in the prediction of nonlinear data over time [41,42].



Processes 2022, 10, 158 9 of 14Processes 2021, 9, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 4. Results of the multi-step ahead predictions prediction of bio-electrochemical anaerobic 
digestion (BEAD) reactor using (a) random forest (RF), (b) extreme gradient boosting (XGboost), (c) 
support vector regression (SVR), (d) long short-term memory (LSTM), and (e) recurrent neural 
network (RNN) models. 

3.3. 1-Step Ahead ML Models 
Reportedly, 1-step ahead prediction methods can predict and analyze time-series 

data with high accuracy and prediction efficiency [37,38]. Figure 5 shows the results of the 
1-step ahead prediction using various ML models. In case of the BEAD reactor, the RMSE 
value of the prediction result using the RNN method was 0.017 L-CH4/g-COD, showing 
the best prediction efficiency. The RMSEs of SVR, LSTM, RF, and XGboost were 0.021, 
0.022, 0.028, and 0.030 L-CH4/g-COD, respectively. In every ML models, The 1-step ahead 
with retraining method showed a higher RMSEs than the RMSEs of the multi-step ahead 
method shown earlier. This indicated that the 1-step ahead method which continuously 
retrains previous prediction values could more efficiently predict the methane yield of the 
BEAD reactor based on data that have nonlinear relationships with time [39]. In other 
words, because operation data are accumulated continuously in BEAD reactor that is 
operated continuously, the 1-step ahead method that facilitates learning by applying them 
in stages can be effectively applied [40]. In particular, the prediction accuracies of RF, 
XGboost, and SVR, which were not appropriate for time-series prediction, were increased 
through the 1-step ahead method, and they were not significantly different from the 
RMSE value of the RNN method. These results suggest that the prediction can be 
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digestion (BEAD) reactor using (a) random forest (RF), (b) extreme gradient boosting (XGboost),
(c) support vector regression (SVR), (d) long short-term memory (LSTM), and (e) recurrent neural
network (RNN) models.

3.4. Prediction of Methane Yield Using pH as Single Input Data

The 1-step ahead model using pH, alkalinity, and COD removal efficiency as input data
was found to enable the effective prediction of time-series data. However, these input data
are not available for real-time prediction because of the difficulty of prompt measurement
in the full-scale BEAD process [43]. pH is the easiest parameter for monitoring full-scale
BEAD processes using portable instruments and is one of the most important factors that
directly affects methanogenic microorganism activity [44–46]. Therefore, the effect of pH as
a single input data point on the prediction of methane yield was evaluated in this study.
For the BEAD reactor, the prediction efficiency of the RNN method, which was effective
for time-series prediction, was the highest. The 1-step ahead method of every ML model
showed a higher prediction accuracy than the multi-step ahead prediction efficiency shown
earlier. This indicated that the 1-step ahead method that facilitates learning by considering
previous prediction values continuously could more efficiently predict the methane yield in
the full-scale BEAD process based on the pH as a single input data [39]. Figure 6 shows the
RMSE values of BEAD resulting from the multi-step and 1-step ahead RNN models that
achieved the highest prediction efficiency. For the multi-step-ahead RNN model, the RMSE
value of the BEAD reactor was 0.032 L-CH4/g-COD. For the 1-step ahead RNN model, the
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RMSE value of the BEAD reactor was 0.017 L-CH4/g-COD. These results show that the
methane yield could be effectively predicted by pH as a single input data and suggest the
possibility of applying BEAD to a full-scale process [46].
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4. Discussion

Results from the PCA showed that pH had the highest correlation with the methane
yield in the BEAD reactor, which meant that quickly overcoming the inhibition caused
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by a pH decrease could contribute to stable methane production. 1-step ahead prediction
method could predict and analyze time-series data with high accuracy and prediction
efficiency (Table 3). In other words, because operational performance data are continuously
accumulated in the BEAD reactor, the 1-step ahead with retraining method that facilitates
learning by applying them in stages can be effectively applied. The capability of the 1-step
ahead with the retraining method could realize real-time monitoring and prediction of
BEAD performance simultaneously. These potentials would be useful to achieve the stable
operation of the full-scale BEAD process, especially when BEAD is faced with unexpected
status, causing a loss of economic and energy production.

Table 3. RMSE values of BEAD reactor for multi-step ahead and 1-step ahead predictions using
various machine learning models.

Parameters
RMSE (L-CH4/g-COD)

RF XGboost SVR LSTM RNN

BEAD
Multi-step ahead 0.041 0.053 0.056 0.055 0.025

1-step ahead 0.028 0.030 0.021 0.022 0.017
RMSE: root mean square error, RF: random forest, COD: chemical oxygen demand, XGboost: extreme gradient
boosting, SVR: support vector regression, LSTM: long short-term memory, RNN: recurrent neural network, BEAD:
bio-electrochemical anaerobic digestion.

While alkalinity, COD removal efficiency, VFAs, and others could be also used as input
parameters for ML models, they are not suitable for real-time predictions in full-scale BEAD
processes due to time-consuming disadvantages and uneconomic applicability [21,43].
However, pH can be quickly analyzed by sensor-based portable detectors. Furthermore, pH
is the most sensitive factor that directly affects methanogenic microorganism activity and
methane yield [44–47], and change of pH showed the highest correlationship with BEAD
performance in the statistic analysis of this study (Figure 3). Thus, the result of prediction
using pH as a single input data showed that the methane yield could be effectively predicted
by pH data and implied the possibility of practical application of BEAD, which could
maintain optimum pH values via bio-electrochemical reactions (Table 4).

Table 4. RMSE values of BEAD reactor for multi-step ahead and 1-step ahead predictions using
various machine learning models with pH as a single input data.

Parameters
RMSE (L-CH4/g-COD)

RF XGboost SVR LSTM RNN

BEAD
Multi-step ahead 0.020 0.023 0.022 0.021 0.019

1-step ahead 0.019 0.022 0.019 0.019 0.017
RMSE: root mean square error, RF: random forest, COD: chemical oxygen demand, XGboost: extreme gradient
boosting, SVR: support vector regression, LSTM: long short-term memory, RNN: recurrent neural network, BEAD:
bio-electrochemical anaerobic digestion.

This study could show that the various ML models would be able to help BEAD
achieves a higher process stability than AD. Moreover, 1-step ahead with the retraining
methods could provide realizable applicability of various ML models to real world bio-
processes. The pH could be realizable parameter as a single input data and its applicability
was proven in this study. This possibility implies more detailed and scientific algorithm
should be developed and modeled in the future.

5. Conclusions

This study confirmed that the 1-step ahead with the retraining method applied to
various ML models was able to improve prediction accuracy of BEAD performance by
retraining the prior state performances in the time series data. Notably, 1-step ahead with
the retraining method significantly improved prediction accuracies during the OLR transi-
tion periods in the tree-based RF and regression-based SVR models. Another important
finding of 1-step ahead method was that pH as only input parameter could be efficiently
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used for real-time prediction of BEAD performance. The ML models using pH as a single
input parameter were less accurate than those using multiple input parameters. However,
pH was more efficient for monitoring than the other parameters, offering advantages in
achieving real-time performance predictions for time-series full-scale operations.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pr10010158/s1, Table S1: Input and output data for various ML models.
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