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Abstract: Dynamic optimization is an important research topic in chemical process control. A dy-
namic optimization method with good performance can reduce energy consumption and prompt
production efficiency. However, the method of solving the problem is complicated in the establish-
ment of the model, and the process of solving the optimal value has a certain degree of difficulty.
Based on this, we proposed a non-fixed points discrete method of an enhanced beetle antennae
optimization algorithm (EBSO) to solve this kind of problem. Firstly, we converted individual beetles
into groups of beetles to search for the best and increase the diversity of the population. Secondly, we
introduced a balanced direction strategy, which explored extreme values in new directions before
the beetles updated their positions. Finally, a spiral flight mechanism was introduced to change the
situation of the beetles flying straight toward the tentacles to prevent the traditional algorithm from
easily falling into a certain local range and not being able to jump out. We applied the enhanced
algorithm to four classic chemical problems. Meanwhile, we changed the equal time division method
or unequal time division method commonly used to solve chemical dynamic optimization problems,
and proposed a new interval distribution method—the non-fixed points discrete method, which
can more accurately represent the optimal control trajectory. The comparison and analysis of the
simulation test results with other algorithms for solving chemical dynamic optimization problems
show that the EBSO algorithm has good performance to a certain extent, which further proves the
effectiveness of the EBSO algorithm and has a better optimization ability.

Keywords: enhanced beetle antennae optimization algorithm; non-fixed points discrete; spiral flight
mechanism; chemical dynamic optimization problem; optimal control trajectory

1. Introduction

Chemical process control is a dynamic process in which state variables change over
time and space dimensions are adjusted. As the problems of resource environments and
biochemistry become increasingly prominent, the requirements for the optimization of the
operating performance of the chemical process and the determination of control indicators
are also increasing. The chemical control strategy of the traditional steady-state model
to solve such problems cannot adapt to the overall dynamic behavior analysis and real-
time control optimization of the system with the improvement of technology and cannot
effectively solve the chemical process control problem. Therefore, dynamic optimization is
an inevitable trend in the development of process control in the chemical industry.

Chemical engineering problems can be described as a class of complex nonlinear
differential equations. The commonly used methods for solving dynamic optimization
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problems mainly include direct methods [1] and indirect methods [2]. The direct method
transforms high-dimensional dynamic optimization problems into finite–dimensional static
nonlinear programming problems through discretization, including the control variable
parameterization method [3] (CVP), the iterative dynamic programming method [4] (IDP),
complete parameterization [5], and so forth. The direct method has a strong dependence
on the initial value, and for some non-continuous problems that cannot be derived, the
solution value is inaccurate, the solution efficiency is low, and it cannot guarantee that the
global optimal solution is located near the obtained control sequence. Moreover, the process
of solving the state variable trajectory is more cumbersome. The indirect method takes the
principle of extreme value as a necessary condition for the optimal control solution and
converts the original problem into a two-point boundary value problem for the solution,
including a finite element configuration [6] and the constant value insertion method,
the univariate projection method [7], the multivariate projection method, and so forth.
In engineering, to solve complex control systems, the indirect method has considerable
limitations, and it is difficult to obtain a solution value. The direct method has become the
mainstream method for solving dynamic optimization problems.

In recent years, intelligent optimization algorithms have sprung up rapidly. Compared
to traditional solution methods, intelligent optimization has the following advantages:
(1) the principle is simple and easy to implement; (2) the algorithm has better robustness and
global convergence; (3) it does not require gradient information. Therefore, the numerical
method of an intelligent optimization algorithm is widely used in dynamic optimization
problems in various fields, and has gradually been extended to the solution of chemical
dynamic optimization problems. Shi et al. [8] proposed a method based on PSO–CVP, using
a particle swarm algorithm to solve the chemical process control, and feed the solution result
to the control variable parameterization method for secondary optimization. Xu et al. [9]
proposed a biogeographic learning particle swarm algorithm, which was combined with
biogeographic learning methods to sort particles and improve learning efficiency. Tabassum
et al. [10] proposed an improved differential gradient evolution method; the algorithm was
combined with an improved dynamic probability distribution, enhanced exploration and
development capabilities, and improved the premature convergence of the algorithm. It
has good performance in complex nonlinear chemical design problems. Pham et al. [11]
proposed smoothing and rotation into genetic algorithms to increase the diversity of the
population and to solve the problem of chemical dynamic optimization. Zhang et al. [12]
introduced a sequence ant colony optimization algorithm to solve the chemical dynamic
problem. In the solutions of dynamic optimization problems, the intelligent optimization
algorithm can converge to the global optimum according to the probability. Appropriate
improvement of the algorithm can prevent it from falling into the local optima. At the same
time, the bionic random mechanism of the intelligent algorithm faces the problem of slow
convergence speed and low optimization efficiency. The bottleneck restricts its real-time
application in engineering.

For this reason, we started from the perspective of improving the algorithm’s slow
convergence speed and low solution accuracy in chemical dynamic optimization problems.
We proposed an enhanced beetle algorithm based on the discretization of a non-fixed points
segmentation method. In this way, problems such as a lack of population diversity and
falling into the local optima prematurely can be solved. Firstly, we converted individual
beetles into beetle swarms to search for the best solution and to increase the diversity of the
beetle populations. Secondly, we introduced a balanced direction strategy so that the beetles
can explore extreme values in new directions before updating their positions. Finally, the
spiral flight mechanism was introduced to change the situation of the beetle flying in the
direction of the antennae in a straight line to prevent the traditional algorithm from easily
falling into a certain local area and not being able to jump out. The enhanced algorithm was
subjected to benchmark test function experiments and combined with the random point
method to solve four typical chemical dynamic optimization examples. By comparison
and analysis of different algorithms, the results show that the EBSO algorithm has better
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optimization performance, and satisfactory experimental results were obtained, supporting
key application advantages in solving chemical dynamic optimization problems.

The paper is organized as follows: Section 2 describes the dynamic optimization
problem and the non-fixed points discrete method, which are compared with the equal
division method and the unequal division method. Section 3 briefly reviews the classic
beetle antennae search algorithm and its process. Section 4 explains the main contribution
of this paper, which is the enhanced beetle algorithm, and describes the benchmark function
tests performed on it. Section 5 uses the EBSO algorithm to calculate the experimental
results on the four chemical dynamic optimization cases.

2. Problem Description and Non-Fixed Points Discrete Method
2.1. Description of Dynamic Optimization Problem

The dynamic optimization problem (DOP) means that the optimal control range
gradually tends to the current dynamic operating volume under the condition of safety and
constraints [13]. The research object is usually a time-varying system in mathematics. The
mathematical model of the dynamic optimization problem is described as a differential–
algebraic optimization problem, which dynamically solves the optimal solution of general
dynamic optimization problems [14]. The mathematical model of the dynamic problem
describes the goals as follows:

MinJ(u) = φ[x(t f )] +
∫ t f

t0

ψ[x(t), u(t)]dt (1)

s.t.


•
x = f [x(t), u(t), t]
uMin ≤ u(t) ≤ uMax
xMin ≤ x(t) ≤ xMax
x(0) = x0

(2)

where J is the performance index, f is the differential equation constraint, x(t) represents
the state variable, and x0 is the starting value of the state variable at time t0, u(t) represents
the control variable, uMin and uMax respectively represent the upper and lower bounds of
the control variable, xMin and xMax respectively represent the minimum and maximum
value of the state variable, and t0 and t f respectively represent the start and end time of the
reaction process. Solving the dynamic optimization problem requires finding the optimal
control strategy u(t) to minimize the performance index J obtained by the process under
the condition of satisfying the constraints.

2.2. Non-Fixed Points Discrete Division Method

According to the analysis of the above dynamic optimization model, the dynamic
optimization problem can be transformed by the parameterization of the control vector. The
parameterization of the control vector involves the use of a limited number of parameters
to approximate the control vector u(t), which changes continuously with time. The time
interval is usually divided into n sub-intervals to solve the problem of the control trajectory
change problem. Currently, the equal division method [8,15] and the unequal division
method [16] are mostly used for the division of time intervals in dynamic optimization.
Israel et al. [17] used the derivative-free trust region algorithm to divide the time interval
to solve the dynamic optimization problem. Tian et al. [18] used the symbiosis algorithm to
solve the problem of equal division of the time interval for an appropriate solution. The time
interval is equally divided, the length of each sub-region is d = (t f − t0)/n, and each sub-
region (σk

i (k = 1, 2, . . . , N)) is solved by the Runge–Kutta method. At the same time, the
corresponding method is used to optimize the control variables so that the control variables
produce a series of trajectories. However, compared to the equal time interval distribution,
the variable time interval distribution can produce a more precise control trajectory by
adjusting the length of the sub-intervals, thereby obtaining a better solution effect. Xu
et al. [19] used an improved seagull optimization algorithm to solve the chemical dynamic
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optimization problem with the unequal division of the time interval and obtained better test
results. The unequal division of the time interval involves initializing a set of parameters
in the time domain [t0, t f ] according to certain rules, namely (t1, t2, . . . , tn ∈ (t0, t f )), the
division formula of the unequal division method [19], as follows:

ti = t0 +
(t f − t0)×∑i

k=1 τk

∑n
i=1 τi

, i = 1, 2, . . . , n (3)

Unequal division is based on equal division, and the length of each segment is changed
into an increasing interval length according to an equal interval. The Runge–Kutta method
is used [20] to solve each sub-interval (σk

i (k = 1, 2, . . . , N)) obtained after division and to
obtain the running trajectory generated by the control variable.

Based on the idea of the piecewise constant method in the parameterization of control
variables, we proposed a new method of determining time nodes in the time domain—the
non-fixed points discrete method. The basis of the idea is to randomly broadcast n time
separation points ti, i = 1, 2, . . . , n within the start and end time interval [t0, t f ] of the
reaction process. The distance between two different adjacent points may be longer or
shorter, and the position of the nodes may be sparse or dense. The [ti, ti+1] is calculated
in turn to obtain the control trajectory. Compared to the equal division method and the
unequal division method, the non-fixed points discrete method determines the time node
more randomly. Equal length interval division and unequal length interval division are
used to solve the location of specific time nodes. The non-fixed points discrete method
can refine the control process due to the randomness of the scattered points, produce a
more precise control trajectory, and more closely match the actual control variable changes,
eventually obtaining better performance indicators. Figure 1 is a comparison diagram
of three different types of division. Figures 2–4 are the model diagrams of the division
methods of different point setting methods.
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It can be seen from the figures above (Figures 1–4) that the selection of the dividing
points for the equal division is a fixed value within the range. According to Formula (3), the
distance between the adjacent division points of the unequal division is shown to increase
according to the discipline, and the position of the division point can be calculated. The
method proposed in this paper can be used to determine the time sub-interval based on
random points by randomly selecting the value of the division point within the interval. As
shown in Figure 4, the division points can be sparse in one part and dense in the other part.
Such a division method has better randomness compared to equal and unequal division,
which can calculate the fitness value of the positions of the fixed points and, meanwhile,
avoid only calculating the value of the related control variable at the fixed position, more
accurately reflecting the reaction situation in the chemical process control. At the same
time, the Runge–Kutta method is used to solve each sub-interval (σk

i (k = 1, 2, . . . , N)).
Finally, according to the function approximation theory combined with the EBSO algorithm
proposed in this paper, each optimal result is approximated by a linear combination to
obtain the optimal control variable result.

3. Beetle Antennae Optimization Search

Beetle antennae search (BAS) [21] is a heuristic optimization algorithm proposed by
Jiang and Li. The algorithm uses a mathematical model established by simulating the
foraging behavior of beetles to optimize and solve complex problems. In the process
of foraging, beetles do not know the location of the target food source, but use the two
antennae on their heads to gather the strength of the smell to forage. When the intensity of
the smell received by the beard on the left is greater than that on the right, the beetles will fly
to the left in the next step; otherwise, they will fly to the right. According to this principle,
beetles can effectively find food. The bionic behavior diagram is shown in Figure 5.
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3.1. Basic Principles

The foundation of this algorithm is that the smell of food is equivalent to a function.
Each point value of the function is different in space. The beetles’ two antennae can collect
the smell values of two points nearby. The purpose of the beetles is to find the point with
the highest smell value in the search range. The specific orientation of food is equivalent to
the maximum point of the objective function, and the smell is equivalent to the function
itself. Beetles move step by step to the orientation with the heaviest food smell. The beetle
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antennae optimization algorithm is different from other optimization algorithms. The
beetle antennae search only needs one individual, that is, one beetle, and the amount of
computation is greatly reduced.

Therefore, the process of beetle foraging is the optimization process of the beetle
antennae algorithm. The steps are as follows:

The following is the initial position vector of the beetle:

→
d =

rands(D, 1)
‖ rands(D, 1) ‖ (4)

where rands(•) is the random function and D is the dimension of space. For the selection
of step factor step, the initial step can be as large as possible, preferably equivalent to
the maximum length of the independent variable. Equation (5) is used in each iteration,
as follows:

stept+1 = eta ∗ stept(t = 1, 2, . . . , n) (5)

The value range of decline factor eta is between [0, 1], usually taken as eta = 0.95. t is
the current number of iterations and n is the total number of iterations.

The following are the position coordinates of the left and right antennae of beetle:{
xr = xt + d0 ∗ dir/2
xl = xt − d0 ∗ dir/2

(t = 1, 2, . . . , n) (6)

where xl represents the coordinate position of the left antennae, xr represents the coordinate
position of the right antennae, xt represents the centroid coordinate of the beetle in the
t − th times iteration, and d0 represents the distance length between the left and right
antennae. We set its value large enough to cover part of the search interval—d0 = 3.

The fitness function f (•), where f (•) represents the odor concentration values to be
obtained, is expressed as f (xl) and f (xr) respectively. The fitness function is determined
according to the actual needs, and its selection is described later.

The beetle position is updated by comparing the fitness values of the left and right
antennae. If f (xl > xr), the beetle moves to the left; if it is the opposite, the beetle moves to
the right. The following is the next position update formula:

xt+1 = xt −
→
d ∗ sign( f (xl)− f (xr)) ∗ stept (7)

where step represents the step size factor of t− th times the iterations. In this paper, we set
the initial beetle step size as step = 1, and sign(•) is the symbolic function to return the
positive and negative of the parameter value.

3.2. Performance Analysis

The algorithm relies on the left and right antennae of the beetle to distinguish the
odor intensity of the food obtained from their respective positions. Although the algorithm
can quickly speed up the update and optimization of the beetle position, it will cause the
beetle to fall into the local minima, and the beetle will not jump out of the local area. For
optimal ability, the beetle moves in a single random direction in each iteration, but there is
no guarantee that the movement of the beetle will make the objective function value better.
Therefore, the results of the BAS algorithm are different each time. Secondly, the BAS
algorithm is a search algorithm for an individual beetle. A single beetle has a weak ability
to distinguish food odor concentration in a high-dimensional space, making it difficult to
find the optimal solution in such a space, completely falling into the local minima, and
weakening the search ability of the algorithm in the space. The pseudo-code of the BAS
algorithm is shown in Algorithm 1:
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Algorithm 1: BAS Algorithm

Initialize the position of beetle x = rands(k, 1);
Assign free parameters—the distance between the beetle’s two antennae d = 1; step size

step = 1; max iteration n; spatial dimension k;
1. Calculate the fitness of the x: f best = f itness(x);
2. for i = 1 to n,
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4. Enhanced Beetle Antennae Optimization Algorithm (EBSO)

In the search space of different dimensions, the typical beetle antennae algorithm a
has fast convergent solution and less time-consuming search capabilities. However, due
to the complex dynamic optimization control system, the BAS algorithm will lose its own
advantages in some cases, making it computationally inefficient and time-consuming,
especially for complex engineering optimization problems. The main reason is that in the
beetle antennae algorithm, the beetle directly flies in the direction of its antennae based
on its individual optimization and position update, eventually resulting in a decrease in
the solution value diversity of a later iteration. With an in-depth analysis of the beetle
antennae algorithm and dynamic optimization problems, we proposed the following
improvement strategies for the beetle antennae algorithm, which greatly improve the
solution performance of the BAS algorithm.

4.1. Beetle Swarm

The typical beetle antennae algorithm involves finding the best solution result based
on a single beetle search. It can quickly obtain approximate solutions for simple function-
solving problems. However, as the problem scale and the variable dimensions increase, the
solution accuracy of the BAS algorithm gradually decreases, and the convergence effect
becomes worse. Meanwhile, the individual beetle searches for optimization in a single
direction in each iteration, while there is no guarantee that the individual beetle will have a
better objective function value for each optimization. Aiming at the shortcomings of the
beetle antennae algorithm, we optimized a single beetle into a group search model. N
beetles move in N directions to speed up the beetle group’s search for the global optimum,
thereby improving the possibility of a beetle finding a better position and avoiding falling
into the local minima.

The beetle swarm can be expressed as follows:

X =

 x1,1 · · · x1,D
...

. . .
...

xN,1 · · · xN,D

 (8)

where N represents the population number of beetles and D represents the dimension of
the optimization problem. The direction vector of each beetle is expressed as follows:

→
di

t =
rand(i, D)

‖rand(i, D)‖ (9)
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The fitness value corresponding to the beetle population can be represented by the
following vector:

Fx = ( fx1, fx2, . . . , fxN)
T (10)

The value of each column in Fx represents the fitness value of the corresponding
individual beetle. By transforming a single beetle into a group beetle search, the algorithm’s
optimization ability in the search process is greatly improved, the search range is expanded,
and a better solution is produced.

4.2. Balanced Direction Strategy

Before updating the position, the beetle processes its left and right antennae to explore
the food smell, that is, the fitness value of the left and right antennae, and then decides
the direction of the next flight. Due to the position of the two antennae, a single position
is determined according to the direction. In order to allow the beetle to explore more
positions, a balanced direction strategy was introduced to make the next flight direction of
the beetle more random. The following adjustments were made to Formulas (4) and (5):

Rd = rand()
stept+1 = stept(1− (t/Maxiter)) (t = 1, 2, . . . , n)
Balance = step ∗ Rd
→
di

t = Balance ∗ (zbesti
t − xi

t)

(11)

where Rd is a random factor, step represents the step length of the beetle, and the step size
update is used to adjust it accordingly with Formula (5); step is described in detail below.
Balance is a balance factor combined with the step size and is used to adjust the direction
of the beetle. zbesti

t represents the current global optimal solution, and xi
t represents the

current local maximum value. The local and global extreme values are adjusted through
the balance direction strategy to make the next flight direction of the beetle more random.

According to the simulation principle of a typical beetle antennae algorithm, two
important parameters affecting the performance of the algorithm are the step size of the
beetle position update and the moving flight direction. In order to make the algorithm have
a better optimization effect in solving the chemical dynamic optimization problem, these
two parameters were modified to some extent. According to Formula (5), the step size of a
beetle decreases monotonically and linearly. The larger the step size step is, the stronger the
global search ability is. In contrast, the smaller the step size step is, the stronger the local
search ability of beetle is. Therefore, the BAS algorithm has the disadvantage of a slower
convergence speed in the later stage, which makes it easily fall into the local minima and
have low solution accuracy. In order to ensure the calculation efficiency and overcome the
above problems, the step size of the beetle position update can be dynamically adjusted.
Formula (5) was changed as the step size of Formula (11) to improve the performance of
the algorithm. In the early stage of the algorithm optimization, the beetle can expand the
search range in the solution space to quickly find the optimization. The beetle uses a large
step size factor in the later stage of the algorithm optimization. Once the search solution is
stabilized, and in order to make the optimization more accurate, the beetle uses a small
step size factor. The original step size and the decreased dynamic balance adjustment step
size are shown in Figure 6.
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It can be seen from Figure 6 that the step size of the typical beetle antennae algorithm
decreases monotonously and changes uniformly each time. A beetle can easily explore a
certain range and fall into local minima, leading to an error in the solution. With the intro-
duction of the dynamic balance adjustment mechanism, the step size of the beetle antennae
algorithm can perform a large-scale spatial search at the beginning of the search. When
the iteration reaches the middle times, the step size becomes shorter and faster, causing
the search range to shrink. In the later stage of the iteration, the step size is shortened and
weakened, which makes the algorithm search and optimization more accurate, enriches the
global search ability, and improves the search accuracy.

4.3. Introducing the Spiral Flight Mechanism

According to the typical beetle antennae algorithm, the beetle decides the next direction
according to the fitness values of the left and right positions, and moves according to the
step size, which leads to the single-direction update of the beetle’s position and makes
it easy to fall into the local extreme value. For this reason, the spiral motion of hunting
behavior [22] in the whale optimization algorithm is introduced in the step of updating the
position of the beetle. When the beetle is flying to the next step, it will fly to the food in a
spiral motion. The spiral motion behavior in the plane is described as follows:

z = r ∗ cos(θ)
θ = 2 ∗ π ∗ l
r = u ∗ ebl

(12)

where r is the radius of each spiral, and θ is the random angle value within the range [0, 2π].
b is a constant, usually assigned to b = 1; it is used to define the shape of the spiral. u and
l are the relevant constants of the spiral shape, and e is the base of the natural logarithm.
Therefore, the updated mathematical model of the beetle position Formula (8) with the
introduction of the spiral flight mechanism is as follows:

xt+1 = xt +
→
d ∗ z ∗ stept ∗ sign( f (xl)− f (xr)) (13)

By introducing the performance enhancement of the typical beetle antennae optimiza-
tion algorithm, the EBSO algorithm we proposed was obtained. The EBSO algorithm can
effectively solve complex engineering dynamic optimization problems. The pseudo-code
of the enhanced beetle algorithm is shown in Algorithm 2:
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Algorithm 2: Enhanced Beetle Antennae Optimization Algorithm (EBSO)

Input: Establish an objective function f (x);
Output: Optimal search agent zbest and fitness value of optimal position zbestValue;
1. Procedure EBSO
1. Initialize parameters, mainly including maxiter, length, step, u, v, and initialize

beetle positions X = [x1, x2, . . . , xpopsize]
T , where popsize is the number of the

population;
2. Randomly generate N division points in the time interval;
3. Apply CalculateFitness function to calculate fitness value;
4. Use FindZbest function to find zbest and zbestValue;
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8. Return zbest, zbestValue;
9. End Procedure.

4.4. Benchmark Functions

In order to test the feasibility and effectiveness of the EBSO algorithm, we tested the
improved algorithm with 10 well-known benchmark functions, as shown in Table 1. The
simulation software used in the experiment was MATLAB R2018a.
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Table 1. Benchmark function.

Benchmark Test Function Search Interval Theoretical Value

Sphere f1(x) =
d
∑

i=1
x2

i
[−5.12, 5.12] 0

Griewank f2(x) =
d
∑

i=1

x2
i

4000 −
d
∏
i=1

cos( xi√
i
) + 1 [–600, 600] 0

Rotated Hyper-Ellipsoid f3(x) =
N
∑

i=1

i
∑

j=1
x2

j
[−65.536, 65.536] 0

Sum Squares f4(x) =
d
∑

i=1
i ∗ x2

j
[−10, 10] 0

Drop-Wave f5(x) = − 1+cos(12
√

x2
1+x2

2)

0.5(x2
1+x2

2)+2
[−5.12, 5.12] −1

Ackley
f6(x) =

−a exp(−b
√

1
d

d
∑

i=1
x2

i )− exp( 1
d

d
∑

i=1
cos(cxi)) + a + exp(1)

[−32.768, 32.768] 0

Schaffer n.2 f7(x) = 0.5 + sin2(x2
1−x2

2)−0.5
[1+0.001(x2

1+x2
2)]

2
[−100, 100] 0

Sum of Different Powers f8(x) =
d
∑

i=1
|xi|i+1 [−1, 1] 0

Easom f9(x) = − cos(x1) cos(x2) exp(−(x1 − π)2− (x2 − π)2) [−100, 100] −1

Rastrigin f10(x) = 10d +
d
∑

i=1

[
x2

i − 10 cos(2πxi)
] [−5.12, 5.12] 0

4.4.1. Parameter Settings

To verify the excellent performance of the EBSO algorithm, we selected several typ-
ical meta-heuristic algorithms for comparison, including particle swarm optimization
(PSO) [23], the traditional beetle antennae algorithm (BAS), the whale optimization algo-
rithm (WOA), and the ant lion optimizer (ALO) [24]. In order to make the algorithm obtain
satisfactory results and ensure fairness, the maximum number of iterations of each algo-
rithm was 200. The search population of each algorithm was 100. The specific parameters
of the relevant algorithm included the following: for the PSO, the learning factors c1 and
c2 were 2, and the inertia factor ω was 0.8; for the BAS, the initial step size size was set to
1, each function was run 20 times, and the average, optimal, and worst values of the five
algorithms were respectively counted.

4.4.2. Statistical Result Comparison

Each algorithm was run independently 20 times, and the average value, optimal value,
and worst value of the five algorithms were counted respectively. The results of the test are
listed in Table 2. From the experimental results, we can see the optimization performance
of the EBSO algorithm.

Table 2. Experimental results of 5 algorithms.

Test Function Algorithm Best Value Worst Value Average Value

f1

PSO 3.4405 × 10−9 1.5306 × 10−7 2.1727 × 10−8

BAS 5.0383 × 10−6 1.7522 × 10−5 6.1773 × 10−6

WOA 1.5911 × 10−22 8.3121 × 10−21 6.6598 × 10−22

ALO 7.1305 × 10−15 3.8143 × 10−13 5.2281 × 10−14

HBSO 0 9.3428 × 10−201 1.5928 × 10−204

f2

PSO 0.0074 0.0298 0.0123
BAS 1.7232 × 10−6 1.1102 × 10−5 5.3476 × 10−6

WOA 1.0814 × 10−2 3.4762 × 10−1 1.8842 × 10−1

ALO 8.2277 × 10−2 2.9041 × 10−1 1.0327 × 10−1

HBSO 0 0 0
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Table 2. Cont.

Test Function Algorithm Best Value Worst Value Average Value

f3

PSO 1.7935 × 10−7 9.5516 × 10−5 5.6821 × 10−6

BAS 1.0297 × 10−7 2.0875 × 10−5 1.8439 × 10−6

WOA 1.1697 × 10−22 5.5903 × 10−15 6.7422 × 10−21

ALO 3.2245 × 10−12 5.8248 × 10−10 9.3217 × 10−11

HBSO 0 3.7692 × 10−198 9.2261 × 10−201

f4

PSO 1.5277 × 10−9 3.5208 × 10−7 1.5627 × 10−8

BAS 9.2061 × 10−7 1.8449 × 10−5 4.3599 × 10−6

WOA 5.6546 × 10−21 1.9977 × 10−19 1.0534 × 10−20

ALO 6.6134 × 10−13 1.9892 × 10−11 2.3597 × 10−12

HBSO 7.1755 × 10−200 1.3631 × 10−199 9.3572 × 10−200

f5

PSO −1 −0.9962 −0.9999
BAS −0.9323 −0.5747 −0.8824

WOA −0.9362 −0.9362 −0.9362
ALO −1 −0.9362 −0.9809

HBSO −1 −1 −1

f6

PSO 4.2921 × 10−4 2.3037 × 10−1 2.0335 × 10−3

BAS 5.0334 × 10−3 3.5262 × 10−2 2.1812 × 10−2

WOA 4.8258 × 10−10 1.8859 × 10−7 1.3449 × 10−9

ALO 1.1114 × 10−6 1.3602 × 10−5 8.4639 × 10−5

HBSO 8.8818 × 10−16 4.4409 × 10−15 9.3579 × 10−16

f7

PSO 3.1446 × 10−9 1.3792 × 10−8 9.3415 × 10−9

BAS 1.2486 × 10−9 6.6837 × 10−3 2.0355 × 10−5

WOA 1.1775 × 10−4 3.0943 × 10−3 4.6371 × 10−4

ALO 1.3589 × 10−15 2.1957 × 10−13 1.5957 × 10−14

HBSO 0 0 0

f8

PSO 1.3672 × 10−13 6.5523 × 10−9 9.0066 × 10−11

BAS 2.0241 × 10−6 9.1889 × 10−5 4.3081 × 10−6

WOA 3.0748 × 10−33 6.6872 × 10−26 5.8416 × 10−30

ALO 3.0309 × 10−12 9.3178 × 10−9 1.6180 × 10−11

HBSO 1.1078 × 10−205 2.5512 × 10−204 4.8596 × 10−205

f9

PSO −1 −1 −1
BAS −1 −0.9997 −0.9999

WOA −0.9999 −0.9984 −0.9993
ALO −0.9999 −0.9999 −0.9999

HBSO −1 −1 −1

f10

PSO 4.1513 × 10−7 1.2533 × 10−4 1.4602 × 10−6

BAS 0.9980 7.5814 3.9862
WOA 7.1054 × 10−15 1.9996 3.0965 × 10−9

ALO 1.9899 4.9748 2.9848
HBSO 0 0 0

According to the data in Table 2, the benchmark test functions f2, f5, f7, f9, and f10
were run independently 20 times, and the EBSO algorithm could solve the optimal value
each time. Some of the results of the benchmark test functions f1 and f3 could be solved to
the optimal solution; meanwhile, the average solution value was nearly 10 times higher
than the other four algorithms in solution accuracy. Although the solution results of the
benchmark test functions f4, f6, and f8 do not reach the optimal solution, the accuracy of
the solution was greatly improved compared to the traditional beetle antennae algorithm,
and it was better than the solution result of the whale optimization algorithm, with an
increase of about 6–170 orders of magnitude. In order to show the excellent performance of
the EBSO algorithm more intuitively, Figures 7–16 show the iterative convergence diagrams
of the five algorithms. To show the convergence effect of the algorithms more clearly, some
functions adopted logarithmic function expressions for fitness values.
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According to the iterative convergence graph of 10 benchmark test functions for five
optimization algorithms, it can be seen that the test functions f1, f3, f4, and f8 could be
solved to the optimal solution after about 160 iterations. Functions f2, f5, f6, f7, and f10
had better solution accuracy and faster convergence speed due to the rapid convergence of
the beetle antennae algorithm. For function f9, the EBSO algorithm had a slightly worse
convergence effect than the PSO algorithm at the beginning of the iteration. This is because
the EBSO algorithm needs to be determined at the beginning of the iteration. Once the
target orientation is determined, the variable energy can quickly converge and be solved.
At the same time, for the test function f9, the EBSO algorithm can solve the optimal solution
-1, and the solution results of other algorithms cannot reach the optimal solution. Through
the above analysis, the effectiveness of the EBSO algorithm in this paper is further proved.
It also provides a feasible basis for the enhanced beetle antennae algorithm to solve the
complex control equations in the chemical process control.

5. Application of EBSO Algorithm in Chemical Process Control

The EBSO algorithm achieved relatively ideal performance results in the benchmark
test. Next, we tested whether the EBSO algorithm still has good solution performance
in chemical dynamic optimization problems. In this study, we chose common cases in
chemical problems for optimization, including inequality constrained optimization, a batch
reactor, a tubular reactor, the parallel reaction of a tubular reactor, and so forth. When using
the EBSO algorithm to solve chemical problems, the control time interval [t0, t f ] is divided
into n segments according to random points, and each point is randomly selected within the
interval, t0 < t1 < . . . < tn−1 < tn. Then, the control variable µ is expressed as a constant
function in each interval, namely µ = [µ1, µ2, . . . , µn], which represents the solution of the
optimized objective function. Finally, each interval is solved by the EBSO algorithm.

5.1. Experimental Process Analysis

The specific process steps of using the proposed EBSO algorithm to solve the chemical
process control optimization problem are as follows:

• The optimization problem of chemical process control is segmented by the random
point method. The number of segments is N.

• We used the Runge–Kutta method to solve each segment after segmentation.
• We used the EBSO algorithm to optimize different chemical reactors.

In the EBSO algorithm, the position information of the beetle swarm was expressed
as the optimal control variable. The product concentration of the chemical reactor was
used as the fitness function value of the optimization algorithm. Each chemical reactor
was operated independently 20 times. The data presented below are the average values of
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20 iterations. The specific flow chart of the experiment is shown in Figure 17. The specific
experiment parameters were set as shown in Table 3.
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Table 3. Experimental parameter setting.

Parameter Represent Value

popsize Beetle population 50
D Spatial dimension 20
maxiter The maximum number of iterations 100
u, l Correlation coefficient of spiral shape 0.0001
d The distance between the two antennae 1
step Beetle step size 1
eta Beetle step size decreasing factor 0.95

5.2. Test Case and Analysis
5.2.1. Case 1: Inequality Constrained Optimization

This example is a classical dynamic optimization problem in chemical process control.
It consists of a mathematical system without equality constraints. The optimization problem
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contains two state variables and solves the minimum value of one state variable under the
condition. The mathematical model of the problem is as follows:

min J(u) = x2(t f )

s.t.


dx1
dt = u

dx2
dt = x2

1 + u2

−1 ≤ u ≤ 0, t f = 1
x(0) = [1 0]T

(14)

where x1 and x2 are the two state variables of the problem model, u is the control variable,
and t f represents the termination time of the process. Using the enhanced beetle antennae
optimization algorithm based on the non-fixed points discrete method, the calculation
results of different segments of the model are shown in Figures 18–20.

The comparison of solution results of different algorithms for the chemical control
problem is shown in Table 4.

According to the above experimental data, with the increasing number of segments
in the time interval, the calculation results are more accurate, but the more segments, the
more time-consuming the calculation was. In random scatter segments N = 10, N = 20,
N = 40, and N = 50, the EBSO algorithm obtained better results when N = 20. This is not
available in other algorithms. When N = 40, the optimal junction value reached 0.76135774,
which is more accurate than other algorithms in N = 50 segments. This gives full play to
the advantages of the fast convergence optimization and improved strategy of the beetle
antennae algorithm.
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Table 4. Comparison of methods of Case 1.

Comparison of Other Segment Points

Methods Segments Optimum

Reference [25] 4 0.76238
EBSO 10 0.76240714
EBSO 20 0.76188931
EBSO 40 0.76135774

IWO-CVP [26] 50 0.76159793
ADIWO-CVP [26] 50 0.76159417

EBSO 50 0.76238
ACO-CP [25] - 0.761594156

OCT [27] - 0.761594156
IACO-CVP [28] - 0.76160
IGA-CVP [29] - 0.761595

5.2.2. Case 2: Batch Reactor Consecutive Reaction ( A→ B→ C )

A batch reactor is common equipment in chemical production. The temperature
control of a batch reactor is the key to producing qualified products and improving product
quality. After the reaction material is put into the equipment, in order to reach the reaction
temperature, it needs to be provided with a certain amount of heat before the reaction
starts. Once the reaction temperature is reached, it will release heat continuously with
the progress of a chemical reaction. In this process, the reactor temperature needs to be
controlled to avoid potential safety hazards. In the reaction process of a batch reactor,
A is used as the raw material to produce target product B and by-product C, so as to
maximize the concentration of target product B at the end of the reaction. That is, the
reaction temperature T needs to be controlled in this process to make the concentration of
B reach the optimal value at the end of the reaction. The device of the reactor is shown in
Figure 21. The mathematical model [25] of the reactor problem is shown as follows:

max J(t f ) = CB(t f )

s.t.


dCA

dt = −k1C2
A

dCB
dt = k1C2

A − k2CB
298 ≤ T ≤ 398, CA(0) = 1, CB(0) = 0, t f = 1
k1 = 4× 103 × e−2500/T , k2 = 6.2× 105 × e−5000/T

(15)

where CA and CB represent the concentrations of reactant A and target product B, respec-
tively, T is the reactor temperature control, and t f represents the reaction terminal time.
The greater the time division number N is, the higher the accuracy of the control strategy is
and the greater the calculation is. Its value should be selected according to the actual needs.
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In order to better form the comparison of experimental results, we selected N = 10, N = 20
and other segments to summarize. The EBSO algorithm was tested and analyzed with
Case 1, and the results were compared with other algorithms to solve Case 1. These include
the following: Zhang et al. [12] proposed a sequential execution ant colony (SACA); Peng
et al. [15] proposed an improved knowledge evolution algorithm (IKEA); Sun et al. [30]
proposed a differential evolution algorithm based on control variable parameterization
(CVP-DE); Liu et al. [31] proposed an improved knowledge guided culture algorithm
(IKBCA); Mo et al. [32] proposed an adaptive cuckoo algorithm (VSACS); Renfro et al. [33]
proposed a method combining quasi-Newton and global spline sampling; Zhang et al. [34]
proposed an iterative ant colony algorithm (IACA); Jiang et al. [35] proposed an artificial
raindrop algorithm (MOARA) and other relevant paper data.
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When the number of segment points is N = 10, the reactant concentration results
produced by different algorithms are shown in Table 5. The optimal temperature control
sequence, iterative convergence diagram, and optimal trajectory of state variables in the
process of EBSO reaching the optimal concentration are shown in Figures 22 and 23.

Table 5. Comparison of methods of batch reactor (N = 10).

Methods J/(mol/L)

SACA [12] 0.6100
IKEA [15] 0.6101

IKBCA [31] 0.6101
VSACS [32] 0.6101

Reference [33] 0.610
IACA [34] 0.6100

MOARA [35] 0.60988
AEPF [36] 0.610070

This work (EBSO) 0.610558922
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When the number of segment points is N = 20, the reactant concentration results
produced by different algorithms are shown in Table 6. The optimal temperature control
sequence, iterative convergence diagram, and optimal trajectory of state variables in the
process of EBSO reaching the optimal concentration are shown in Figures 24 and 25.

Table 6. Comparison of methods of batch reactor (N = 20).

Methods J/(mol/L)

SACA [12] 0.6104
IKEA [15] 0.610426

IKBCA [31] 0.610454
VSACS [32] 0.610454
IACA [34] 0.6104
AEPF [36] 0.610453

This work (EBSO) 0.61064758
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The comparison of other segment points and the algorithm comparison results of
different segment numbers are shown in Table 7. The optimal concentration is shown in
Figure 26. We present Figure 27 to more clearly observe the difference between the solution
results of the EBSO algorithm and the other algorithms.

Table 7. Comparison of methods of batch reactor.

Comparison of Other Segment Points

Methods Segments J/(mol/L)

Reference [25] 4 0.61045
EBSO 4 0.61047235

PSO-CVP [8] 25 0.6105359
AEPF [36] 25 0.610535

EBSO 25 0.61055712
AEPE [36] 50 0.610708

Reference [37] 50 0.6107
EBSO 50 0.61071215

CVP-DE [30] 60 0.6173
EBSO 60 0.61744916

AEPF [36] 80 0.610775
EBSO 80 0.61078114
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It can be clearly seen from Figure 27 (green bar column) that the accuracy of our pro-
posed EBSO algorithm in solving for a batch reactor is higher than that of other algorithms.

By comparing the experimental results of the test batch reactor under different num-
bers of segments, it can be concluded that the EBSO algorithm proposed by us has a
better optimal solution when the segment numbers are N = 10, N = 20, and other seg-
ments. In the case of N = 10, compared to the other six methods for solving for a batch
reactor, the solution results of EBSO show relatively excellent performance, and the best
value is 0.610558922, while the results of other algorithms are mostly 0.6101, and the so-
lution accuracy of the EBSO algorithm has been significantly improved. In the case of
N = 20, compared to the other six algorithms, the optimal solution of the EBSO algo-
rithm is 0.61064758, but the optimal value of the other algorithms is about 0.6104. Further
comparing the solution results of other numbers of segments, different algorithms refined
the temperature control with the increase in the number of segments, and the solution
accuracy was improved accordingly. Similarly, the results of obtaining the optimal value of
EBSO were further improved. Taken together, these results suggest that EBSO has good
performance for solving for batch reactors.

5.2.3. Case 3: Tubular Reactor ( A↔ B→ C )

A tubular reactor is also called a catalyst mixing problem. This optimization problem
was proposed by Gunn [38] et al.; there is a mixture of two catalysts that react under
its action ( A↔ B→ C ). The optimal control problem involves the maximization of the
production of product C under a given reactor length, and can be further improved by
changing the catalyst mixture along the reactor. The mole fractions of substances A and
B in the mixture are represented by xA and xB, respectively, and it is assumed that all
reactions are carried out in an isothermal tubular reactor. Then, the mathematical model
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of the optimization problem of maximizing the concentration of the final product C is
as follows:

max J(z f ) = 1− xA(z f )− xB(z f )

s.t.


dxA
dz = −u(z)[10× xB(z)− xA(z)]

dxB
dz = u(z)[10× xB(z)− xA(z)]− [1− u(z)]× xB(z)

0 ≤ u(z) ≤ 1
xA(0) = 1, xB(0) = 0, z f = 12

(16)

where z is the length of the tubular reactor, and u(z) represents the content of the first
catalyst in the tube from the starting point z. In order to improve the utilization of raw
materials and obtain the maximum concentration maxJ of target product C at the end of
the reaction, it is necessary to optimize the distribution of catalyst in the tube. The model
diagram of tubular reactor is shown in Figure 28.
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B  in the mixture are represented by Ax  and Bx , respectively, and it is assumed that all 

reactions are carried out in an isothermal tubular reactor. Then, the mathematical model 
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where z  is the length of the tubular reactor, and ( )u z  represents the content of the first 
catalyst in the tube from the starting point z . In order to improve the utilization of raw 
materials and obtain the maximum concentration max J  of target product C  at the 
end of the reaction, it is necessary to optimize the distribution of catalyst in the tube. The 
model diagram of tubular reactor is shown in Figure 28. 
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Figure 28. Tubular reactor.

The EBSO algorithm was used in the experiment of process control reaction of the
tubular reactor. The number of beetle populations was 100 and the maximum number
of iterations was 100. The example was tested 20 times independently and the average
result was selected. In order to better form the comparison of experimental results, N = 10,
N = 20, and other segments were summarized in this paper.

The reactant concentration results produced by different algorithms are shown in
Table 8 for when the number of segment points was N = 10. The optimal temperature
control sequence and the iterative convergence diagram of EBSO reaching the optimal
concentration are shown in Figure 29.

Table 8. Comparison of methods of tubular reactor (N = 10).

Methods J/(mol/L)

IKEA [15] 0.475
VSACS [32] 0.473630

ndCVP-HGPSO [39] 0.47363
STA [40] 0.47363
GA [40] 0.47363
PSO [40] 0.47363

This work (EBSO) 0.47502183
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The reactant concentration results produced by different algorithms are shown in
Table 9 for when the number of segment points was N = 20. The optimal tempera-
ture control sequence, the iterative convergence diagram, and the optimal trajectory of
state variables in the process of EBSO reaching the optimal concentration are shown in
Figures 30 and 31.

Table 9. Comparison of methods of tubular reactor (N = 20).

Methods J/(mol/L)

PWV-CVP [3] 0.4752719
IKEA [15] 0.4757

IKBCA [31] 0.4753
VSACS [32] 0.475272
AEPF [36] 0.475272

ndCVP-HGPSO [39] 0.47527
DE [41] 0.475269

TDE [41] 0.475269
This work (EBSO) 0.47627191
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The comparison of other segment points and the algorithm comparison results of
different segment numbers are shown in Table 10.

Table 10. Comparison of methods of tubular reactor.

Comparison of Other Segment Points

Methods Segments J/(mol/L)

ndCVP-HGPSO [39] 5 0.47260
STA [40] 5 0.47260
GA [40] 5 0.47260
PSO [40] 5 0.47260

EBSO 5 0.47426117
UD-CVP [3] 15 0.47363

PWV-CVP [3] 15 0.47363
ndCVP-HGPSO [39] 15 0.47363

STA [40] 15 0.47453
GA [40] 15 0.47453
PSO [40] 15 0.47453

EBSO 15 0.46011742
AEPF [36] 40 0.476946

DE [41] 40 0.476827
TDE [41] 40 0.476826

EBSO 40 0.47697288

The optimal control sequence and iterative convergence diagram are shown in Figure 32
for when the random points were N = 40.
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We present Figure 33 to more clearly observe the difference between the solution
results of the EBSO algorithm and the other algorithms.

Reply and Modification Instructions 
1.For the Algorithm 2，we explained the meaning of zbest at the beginning of the pseudo 
code (line 2: Output). At the same time, we added the explanation of zbestValue, and in (line2: 
Output), we marked the added content in red. 
 
2. After our verification, all the pictures we provide contain coordinate axes. This problem may 
occur during typesetting. 
 

  
  

  
  
  

 

Figure 33. Statistical charts of algorithm results.

It can be seen from Figure 33 (green bar column) that the EBSO algorithm we proposed
has good computational performance in solving for the tubular reactor. Only when the
number of discretization points is N = 15, the solution value is slightly worse than that of
the PWV–CVP algorithm.

By comparing the results obtained in different random segments of the test tubular
reactor, it can be seen that the EBSO algorithm has good optimization results. When the
random point value was N = 10, the calculation result of EBSO reached 0.47502183, while
the results of the compared algorithm were around 0.7363, which is more accurate than that
of the IKEA algorithm. When the random point was N = 20, the optimization results of
the compared algorithms were improved. Only the solution value of the EBSO algorithm
reached 0.47627191, and the other algorithms were around 0.47527. The comparison of
the solution of other algorithms with different segment numbers is shown in Table 9.
Taken together, these results suggest that the EBSO algorithm has good solution results in
low segment numbers to a large number of random segments, which further proves the
effectiveness of the EBSO algorithm proposed in this paper.

5.2.4. Case 4: Parallel Reaction Problem of Isothermal Tubular Reactor ( A→ B, A→ C )

In an isothermal tubular reactor, there is a parallel reaction process in which reactant
A can produce target products B and C or more different products at the same time. This
parallel reaction process is described as ( A→ B, A→ C ). After the end of the reaction
process, the concentration of target product B is maximized. This process is called the
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main reaction. The process of producing other products from reactant A is called the
side reaction.

A→ B, rB = k1cA(main reaction)

A→ C, rC = k2cA (side reaction)
(17)

The model of the process control optimization problem is as follows:

max J(t f ) = xB(t f )

s.t.


dxA
dt = −[u(t) + 0.5u2(t)]xA(t)

dxB
dt = u(t)xA(t)

0 ≤ u(t) ≤ 5
xA(0) = 1, xB(0) = 0, t f = 1

(18)

where xA(t) represents the concentration of reactant A and xB(t) represents the concen-
tration of substance B produced by the main reaction in the product. u(t) represents the
saturation of the control variable, t f is the control time at the end of the reaction, J is the
performance index, and the control process involves solving the control time t f to get the
maximum concentration of J, that is, max J(t f ).

Similarly, in the experiment of the parallel reaction process of an isothermal tubular
reactor using the EBSO algorithm, the number of beetle populations was set as 100 and the
maximum number of iterations was 100. The example was tested independently 20 times
and the average result was selected. In order to better form the comparison of experimental
results, N = 10, N = 20, N = 40, and other segments are summarized in this paper.

The optimal temperature control sequence and iterative convergence diagram of EBSO
reaching the optimal concentration are shown in Figure 34 for when the number of segment
points was N = 10.
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The optimal temperature control sequence and iterative convergence diagram of EBSO
reaching the optimal concentration are shown in Figure 35 for when the number of segment
points was N = 20.
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The optimal temperature control sequence, iterative convergence diagram, and optimal
trajectory of state variables in the process of EBSO reaching the optimal concentration are
shown in Figures 36 and 37 for when the number of segment points was N = 40.
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Figure 37. Optimal trajectory of state variables (N = 40).

The comparison of the optimization results of different algorithms for the chemical
process control problem is shown in Table 11. Figure 38 shows the solution statistics of the
EBSO algorithm and other algorithms when N = 40.
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Table 11. Comparison of methods of parallel reaction problem of isothermal tubular reactor.

Comparison of Other Segment Points

Methods Segments J/(mol/L)

Reference [25] 4 0.57284
EBSO 4 0.57296913

AEPF [36] 10 0.572241
EBSO 10 0.57317785

AEPF [36] 20 0.57330
EBSO 20 0.57342901

AEPF [36] 40 0.57348
Equal Division (ISOA) [19] 40 0.573073

Unequal Division (ISOA) [19] 40 0.573535
EBSO 40 0.57412271

AEPF [36] 80 0.57353
CP-APSO [42] - 0.573544
CP-PSO [42] - 0.573543

Reference [43] - 0.5738
CVP [44] - 0.56910
CVI [44] - 0.57322

Reference [45] - 0.57353
MCB [46] - 0.57353
CPT [47] - 0.57353

By comparing the results of different random segments of an isothermal tubular
reactor in parallel reaction, it can be seen that the EBSO algorithm proposed by us has good
optimization results. When the random point value was N = 10, the EBSO calculation
result reached 0.57317785, while the comparison algorithm results were near 0.5722. When
the random point was N = 40, the optimization results of the compared algorithms were
improved. Only the solution value of EBSO algorithm reached 0.57412271, and the other
algorithms were near 0.573. Other different algorithms in Table 10 solved the process
control results. From the data, it can be seen that the solution results are somewhat different
from the EBSO algorithm. The EBSO algorithm has good results in a low to high number of
random segments, which further proves the effectiveness of the EBSO algorithm proposed
in this paper.

6. Conclusions

In this paper, an enhanced beetle antennae optimization algorithm is proposed to
solve the dynamic optimization problem in chemical process control. By changing the
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typical equal division method and unequal division method commonly used in solving
chemical dynamic optimization problems, a new interval division non-fixed points discrete
method is proposed. The discretized segmentation points are randomly generated in the
time region without any law. In this way, the control process is refined, a more precise
control trajectory is generated, and a better performance index is obtained. The individual
beetle is transformed into a beetle swarm for search optimization, and the balance direction
strategy is introduced to change the direction of the beetle when updating its position so
as to increase the population diversity. The spiral flight mechanism is introduced to make
the beetle have the ability of spiral flight when updating the position so as to overcome
the defect that makes it easy for it to fall into local minima in the original algorithm. The
enhanced beetle antennae algorithm can be applied to solve typical chemical dynamic
optimization problems. The experimental results show that the EBSO algorithm has
good performance.

In the future, we will do more research (1) to further optimize the reactor dynamic
optimization problem of chemical process control with constraints; (2) to study and discuss
new methods of time interval division, such as random segmentation method, and the
matching and coordination between determining the optimal number of segments and
the number of random segments and the population number and spatial dimension of an
intelligent optimization algorithm.
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