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Abstract: The nonlinear behavior of metabolic systems can arise from at least two 

different sources. One comes from the nonlinear kinetics of chemical reactions in 

metabolism and the other from nonlinearity associated with regulatory processes. 

Consequently, organisms at a constant growth rate (as experienced in a chemostat) could 

display multiple metabolic states or display complex oscillatory behavior both with 

potentially serious implications to process operation. This paper explores the nonlinear 

behavior of a metabolic model of Escherichia coli growth on mixed substrates with 

sufficient detail to include regulatory features through the cybernetic postulate that 

metabolic regulation is the consequence of a dynamic objective function ensuring the 

organism’s survival. The chief source of nonlinearity arises from the optimal formulation 

with the metabolic state determined by a convex combination of reactions contributing to 

the objective function. The model for anaerobic growth of E. coli was previously examined 

for multiple steady states in a chemostat fed by a mixture of glucose and pyruvate 

substrates under very specific conditions and experimentally verified. In this article, we 

explore the foregoing model for nonlinear behavior over the full range of parameters, γ (the 

fractional concentration of glucose in the feed mixture) and D (the dilution rate). The observed 

multiplicity is in the cybernetic variables combining elementary modes. The results show 

steady-state multiplicity up to seven. No Hopf bifurcation was encountered, however. 

Bifurcation analysis of cybernetic models is complicated by the non-differentiability of the 

cybernetic variables for enzyme activities. A methodology is adopted here to overcome this 

problem, which is applicable to more complicated metabolic networks.  
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1. Introduction 

Historically, microorganisms have been utilized for the production of valuable products in our  

daily life, e.g., bread, vinegar, wine and beer. With the advent of recombinant DNA technology several 

decades ago, it is common practice to make genetic modifications to microbes for the  

industrial production of food, energy, medicine and other valuable products. Towards ensuring the 

economic competitiveness of those commercial processes, maximizing productivity is one of the goals 

to achieve. 

It is a challenge to manipulate cellular metabolism due to its complexity. Metabolic systems often 

exhibit intricate nonlinear behaviors, such as steady-state multiplicity and dynamic oscillations. It is 

necessary to understand what triggers this breadth of behavior and to predict when and under what 

conditions they would occur. Such a study is also practically important, as nonlinear behavior should 

be avoided if it prevents stable operations [1] or may be induced if it can lead to  

higher productivity [2].  

A basic source of nonlinearity in a metabolic system is the intrinsic kinetics of biochemical 

reactions. More importantly, however, nonlinear metabolic behavior becomes much more complex and 

diverse due to regulation that dynamically drives individual reactions in response to environmental 

changes. Dramatic shift between multitudes of metabolic pathways often arises in a dynamic 

environment as a consequence of metabolic regulation. For the nonlinear analysis of metabolic 

systems, therefore, it is essential to employ metabolic models that are able to appropriately account for 

dynamic regulation. Various modeling ideas have been developed for the analysis of metabolic 

systems, including metabolic pathway analysis [3,4], constraint-based approaches [5,6], kinetic  

models [7] and the cybernetic approaches [8]. In the discussion of the conceptual distinctions and 

commonalities among different modeling frameworks, Song et al. [9] highlighted the essential need  

for dynamic modeling frameworks in a wide range of applications, such as the study of complex 

nonlinear behavior of metabolic processes. Our preference for cybernetic models has been based on its 

comprehensive accounting for dynamic regulation, not present in other dynamic approaches.  

A full kinetic description of metabolic regulation requires detailed knowledge of its molecular 

mechanism, which is incomplete in most cases. Alternatively, the cybernetic approach [8] provides a 

rational description of regulation based on optimal control theory. The cybernetic description of 

metabolic regulation is based on the assumption that a cell is frugal in using its resources and optimally 

allocates them among a subset of enzymes to achieve a certain metabolic objective (such as the carbon 

uptake rate or growth rate). The resulting selective activation of reactions is realized by the cybernetic 

control variables without introducing additional parameters.  

Cybernetic models have been successfully used to perform bifurcation analysis of metabolic 

systems, such as Klebsiella oxytoca [10], hybridoma cells [11] and Saccharomyces cerevisiae [12]. 

While these analyses were made using lumped reaction networks, it is possible to consider a detailed 
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network structure using the hybrid cybernetic modeling (HCM) framework [13–15]. Recently,  

Kim et al. [16] built an HCM of the anaerobic growth of Escherichia coli on glucose and pyruvate. 

Using this model, they predicted three and five steady states in a chemostat and experimentally 

validated them. These predictions were made by generating hysteresis curves using continuation 

methods [17] only at a selected set of parameter values, however.  

In this article, Kim et al.’s HCM is subjected to more comprehensive nonlinear analysis for the 

following two purposes. First, we revisit this model to construct global bifurcation maps over a wide 

range of parameter space. This will lead to the complete identification of domains where the model 

exhibits qualitatively different behavior. Second, we develop a practical method that facilitates the 

nonlinear analysis of the cybernetic models containing the non-differentiable max function. While 

examples for the rigorous nonlinear analyses of cybernetic models are available in the literature [10,12], 

we test a more practical method that can readily be realized using an automated software package, such 

as MATCONT [18,19]. 

This paper is organized as follows. In the subsequent sections, we provide a summarized 

description of the Kim et al.’s HCM of E. coli and discuss an idea of introducing an approximate 

function as a replacement of the non-differentiable max function. Using this idea, we perform 

comprehensive nonlinear analysis of the model to construct global bifurcation diagrams in a  

two-parameter space of dilution rate and feed composition. The effect of the total sugar concentration 

in the feed on bifurcation behavior is also discussed.  

2. Metabolic Model 

2.1. The HCM Framework 

Dynamic mass balances of extracellular metabolites in a chemostat can be represented as follows: 

 d
c D

dt
  x IN

x
S r x x  (1)

where t is time, c is the biomass concentration, x and xIN are the vectors of nx concentrations of 

extracellular components in the reactor and feed, respectively, including substrates, products and 

biomass, r is the vector of nx fluxes, Sx is the (nx × nr) stoichiometric matrix and D is the dilution rate.  

Under the quasi steady-state approximation, the flux vector, r, can be represented as non-negative 

(or convex) combinations of basic pathways, termed elementary modes (EMs) [20], i.e., 

 Mr Zr  (2)

where Z is the (nr × nz) matrix composed of EMs as its columns and rM is the vector of nz fluxes 

through EMs. EMs may be viewed as metabolic pathways composed of a minimal set of reactions that 

can operate alone in steady state. Nonnegative combinations of EMs can represent any feasible 

metabolic state (i.e., flux distribution) in a network.  

The cybernetic approach assumes a certain metabolic objective, such as the maximization of  

the carbon uptake rate (or growth rate) for which metabolic reactions are optimally regulated. The 

HCM framework views EMs as metabolic options to achieve such an objective and describe metabolic 
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regulation in terms of their optimal combinations. Flux through the jth EM is modeled as regulated by 

the control of enzyme level and its activity, i.e., 

, , , ,
rel kin

M j M j M j M jr v e r  (3)

where vM,j is the cybernetic variable controlling enzyme activity, rkin 
M,j is the kinetic term, and erel 

M,j is the 

relative enzyme level to its theoretical maximum, i.e., eM,j/e
max 
M,j .  

Enzyme level eM,j is governed by the following dynamic equation, i.e.: 

,
, , , , , ,     M j kin

M j M j ME j M j M j M j

de
u r e e

dt
 (4)

where uM,j is the cybernetic variable regulating the induction of enzyme synthesis, rkin 
ME,j is the kinetic 

part of the inducible enzyme synthesis rate, βM,j is the degradation rate and µ is the specific growth 

rate. The four terms of the right-hand side denote constitutive and inducible rates of enzyme synthesis 

and the decrease of enzyme levels by degradation and dilution, respectively. The cybernetic control 

variables, uM,j and vM,j, are computed from the Matching and Proportional laws [21,22], respectively: 

, ,;
max( )

j j
M j M j

k k
k

k

u v
 
 

 


 
(5)

where the return-on-investment, ρj, denotes the carbon uptake flux through the jth EM, i.e., fC,je
rel 
M,jr

kin 
M,j, 

and fC,j denotes the factor converting EM flux to the carbon uptake rate. Dynamic shifts among 

different pathways are realized by two controlling variables, uM,j and vM,j.  

2.2. HCM for Anaerobic E. coli Growth 

Kim et al. [16] used the HCM framework to model the anaerobic growth of E. coli GJT001 on  

glucose and pyruvate. The metabolic network contains 14 reactions (one reversible and 13 irreversible) 

and 18 metabolites (eight extracellular and 10 intracellular). Among 49 EMs obtained using 

METATOOL 5.1 [23], four key modes that can represent yield data of fermentation products [15] were 

extracted for modeling. Each mode is associated with the consumption of different substrates, i.e., 

EM1 and EM2 with respective consumption of glucose and pyruvate, while EM3 and EM4 are with 

simultaneous consumption of both sugars. Model equations and parameters are summarized in Table 1. 

For a full description of the model, refer to [24].  

3. Methods 

Bifurcation analysis of cybernetic models requires special treatment of the non-smooth max 

function contained in the vM-variables. Among many possibilities, we discuss two ideas of handling 

this issue, i.e., the combinatoric approach used by Namjoshi and Ramkrishna [10] and the smooth 

approximation to the max function.  



Processes 2013, 1 267 

 

3.1. Rigorous Combinatoric Analysis 

Namjoshi and Ramkrishna [10] proposed a strategy to enumerate all combinatorial cases, in each of 

which the model equations are fully differentiable. This leads to four cases by setting one of the vM 

variables to be 1, while the others are less than or equal to 1 (Table 2).  

Table 1. Model equations and parameter values. EM, elementary mode. 

Variables or 
parameters Equations or parameter values 

Extracellular 
metabolites 
and biomass 

Glucose:    
4

, , , , ,
1

rel kinG
G j M j M j M j IN G G

j

dx
s v e r c D x x

dt 

     

Pyruvate:    
4

, , , , ,
1

rel kinP
P j M j M j M j IN P P

j

dx
s v e r c D x x

dt 

     

Acetate:  
4

, , , ,
1

rel kinA
A j M j M j M j A

j

dx
s v e r c Dx

dt 

    

Ethanol:  
4

, , , ,
1

rel kinE
E j M j M j M j A

j

dx
s v e r c Dx

dt 

    

Formate:  
4

, , , ,
1

rel kinF
F j M j M j M j F F

j

dx
s v e r c Dx r c

dt 

     

Biomass:    
4

, , ,
1

where rel kin
M j M j M j

j

dc
D c v e r

dt
 



     

Enzymes  ,
, , , , , , 1 4M j kin

M j M j ME j M j M j M j

de
u r e e j

dt
         

Cybernetic 
variables    , , , , , ,

, ,4
, , ,

1 4, , ,
1

; 1 4
max

rel kin rel kin
C j M j M j C j M j M j

M j M j rel kin
rel kin C k M k M k

kC k M k M k
k

f e r f e r
u v j

f e rf e r  


   

  

Kinetics 

2
max

, , , , , 2 2

,1

,
,2

, ,

; ( 1 4);

where

( 1)

( 2)

( 3,4)

kin kin kin kin F
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F F
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           


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Table 1. Cont. 

Variables or 
parameters 

Equations or parameter values 

Parameters and 
stoichiometric 
coefficients 

 

 
     

max max max
1 2 3

max
4

,1 ,3 ,4

,2 ,3 ,4

, ,

,1 ,2

0.394, 0.171, 0.410,

0.339, 7.998 mmol/ gDW ;

0.08, 0.133, 0.04,

0.07, 0.8, 0.2, 6.997 mM ;

0.004 1/h 1 4 ; 0.05 1/h 1 4 ;

0.44, 0.2

F

G G G

P P P F

M j M j

E E

k k k

k k h

K K K

K K K K

j j

k k

 

  

    
  

   

     

   ,1 ,117, 0.456, 0.385 1/h ;E Ek k 

 

,1 ,1 ,3 ,4

,1 ,1 ,3 ,4

,1 ,1 ,3 ,4

,1 ,1 ,3 ,4

,1 ,1 ,3

35.76, 0, 13.55, 8.81,

0, 150.49, 66.62, 85.59,

31.01, 133.42, 75.43, 89.65,

26.95, 0, 4.74, 0

57.96, 133.42, 80.17,

G G G G

P P P P

A A A A

E E E E

F F F

s s s s

s s s s

s s s s

s s s s

s s s s

      

      

   

   

    
 

,4

,1 ,2 ,3 ,4

89.65 mmol/gDW ,

214.53, 451.48, 281.15, 309.61 C-mmol/gDW

F

C C C Cf f f f



   

 

Notations 

c: biomass concentration, g/L  
D: dilution rate, 1/h  
eM,j, e

max 
M,j : level of enzyme that catalyzes the jth EM flux and its maximal level  

fC,j: factor converting the EM flux (i.e., growth rate) to the carbon uptake rate,  
C-mmol/gDW (DW = dry weight) 
kF: rate constant for formate decomposition  
kmax 

j : maximal rate constant for the jth EM flux, 1/h  
KF: Michaelis constant for formate decomposition, mM  
KG,j, KP,j: Michaelis constants for the jth EM flux, mM  
rF: specific rate of formate decomposition into CO2 and H2, mmol/(gDWh)  
rM,j, r

kin 
M,j: regulated and unregulated fluxes through the jth EM, mmol/(gDW h)  

rkin 
ME,j: kinetic part of inducible enzyme synthesis rate, 1/h  

sA,j, sE,j, sF,j, sG,j, sP,j: stoichiometric coefficients, mmol/gDW  
t: time, h 
uM,j: cybernetic variable regulating the enzyme induction  
vM,j: cybernetic variable regulating the enzyme activity 
xA, xE, xF, xG, xP: concentrations of acetate, ethanol, formate, glucose and pyruvate, mM  
xIN,G, xIN,P: feed concentration of glucose and pyruvate, mM  
Greek letters  
αM,j: constitutive enzyme synthesis rate, 1/h  
βM,j: rate of enzyme degradation, 1/h  
µ: growth rate, 1/h 
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Table 2. Four combinatorial cases for Kim et al.’s E. coli model. 

Case vM,1 vM,2 vM,3 vM,4 

I 1 1 1 1 
II 1 1 1 1 
III 1 1 1 1 
IV 1 1 1 1 

In each case, we force vM,j to be 1 by replacing the denominator of vM,j, i.e., 
 , , ,

1 4
max rel kin

C k M k M k
k

f e r
  , with 

fC,je
rel 
M,j r

kin 
M,j , leading to four independent sets of model equations. Figure 1 shows the resulting four 

hysteresis curves in the D − c space with a fixed value of γ (i.e., 0.2), obtained from the analysis of 

Cases I to IV, respectively. Segments highlighted in color represent feasible branches satisfying the 

constraint, i.e., vM,j = 1 (j = 1 − 4), i.e., green (b), cyan (c) and magenta (d), respectively. Note that no 

such colored branch is found in Figure 1a, indicating that there exists no feasible solution satisfying 

vM,1 = 1 along the whole profile.  

Figure 1. Hysteresis curves obtained from four cases considered in Table 2 (xIN,total = 50 mM 

and γ = 0.2): (a) Case I (vM,1 = 1), (b) Case II (vM,2 = 1), (c) Case III (vM,3 = 1) and (d) Case 

IV (vM,4 = 1). Solid and dotted lines indicate stable and unstable branches, while colored 

and uncolored lines, feasible and infeasible branches, respectively.  

 
(a) (b) 

 
(c) (d) 
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Finally, we put together individual pieces of feasible branches of each case to obtain the hysteresis 

curve over the whole range of D (Figure 2a). Throughout this article, we use colors to distinguish one 

branch from others characterized with different dominant (i.e., most activated) modes. That is, blue, 

green, cyan and magenta lines imply that their dominant modes are EM1, EM2, EM3 and EM4, 

respectively. The black line, on the other hand, indicates the trivial solution with nonzero biomass  

(i.e., wash-out as marked with W). In Figure 2a, other than typical limit points (also called folds, turning 

points or saddle nodes), there are two sharp corners (C) (solid red circles), as well. These non-smooth 

folds represent catch-up points at which the maximally activated mode is overtaken by another. That 

is, around catch-up points in Figure 2a, the most dominant mode is switched between EM2 and EM4 

(left) and between EM3 and EM4 (right). This clearly manifests the pathway shift by regulation. 

The shape of the hysteresis curve becomes somewhat different at a higher fractional concentration 

of glucose, γ = 0.4 (Figure 2b). The dominant mode at lower values of D is EM1 (instead of EM2), the 

mode taking up glucose only. Interestingly, one of the two catch-up points (open red circle) does not 

correspond to a limit point. Thus, we differentiate this simple transition (T) (open red circle), which 

does not form a sharp limit point, from non-smooth catch-up points (C). The existence of simple 

transition points has not been reported in earlier studies using lumped network-based cybernetic 

models. As simple transitions are not bifurcation points, we do not trace them.  

Figure 2. Overall hysteresis curve generated by integrating individual pieces of feasible 

branches: (a) γ = 0.2, (b) γ = 0.4. 

 

3.2. Smooth Approximation to the Max Function 

While the combinatoric approach described above allows for rigorous bifurcation analysis in theory, 

it is ineffective in cases where the number of EMs is large. Alternatively, we may mollify the pain of 

handling non-smooth functions by making smooth approximations. Lp-norm is considered as an 

accurate approximation to the max function when p is sufficiently large. That is, we may approximate 

 , , ,
1 4

max rel kin
C k M k M k

k
f e r

   with 
 

1/4

, , ,
1

p
prel kin

C k M k M k
k

f e r


 
  


.  



Processes 2013, 1 271 

 

Figure 3 shows the reproduction of the hysteresis curve using the Lp-norm approximation with 

different p-values. No appreciable errors are found when p ≥ 30, while some deviations are observed 

when p-values are lower than that.  

Figure 4 provides an enlarged view of two red windows in Figure 3 around the catch-up points. 

Approximate models progressively approach the rigorous solution (obtained with the combinatoric 

method described above) as the value of p increases. While small deviations are unavoidable 

regardless of how large p is, these tiny errors of below 1 percent are acceptable. Stable and unstable 

branches are also successfully reproduced using this approximate function. In all calculations 

hereafter, therefore, we use the Lp-norm approximation with a p value of 70. 

The usefulness of the smooth approximation depends on THE cases in consideration [25]. In a 

number of studies, introduction of smooth approximation facilitated the bifurcation analysis by 

providing the system with global differentiability. On the other hand, approximate functions may 

become stiffer to integrate or may generate more complex bifurcation diagrams than the original 

function. Thus, it would be critical to have a previous check if smooth approximation yields any 

unexpected difficulties or errors. 

Figure 3. Reproduction of the hysteresis curve of Figure 2a using the Lp-norm 

approximation with different p-values.  
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Figure 4. Magnified views of two red windows around the catch-up points in the  

lower-right panel of Figure 3: (a) left upper window, (b) right lower window. 

 

If the approximate representation is acceptable as in our case, nonlinear analysis of piecewise-smooth 

functions is greatly facilitated by using an automated software, such as MATCONT, a standard 

continuation software package [18].  

3.3. Integration of Two Methods  

As a compromise, we may integrate combinatoric enumeration and smooth approximation. That  

is, we can sketch a bifurcation diagram conveniently using the smooth approximation and refine  

non-smooth folds using rigorous computations based on the combinatoric approach, because they are 

only the regions where errors may occur. Catch-up points are readily identified from the hysteresis 

curve using the approximate function. This combined approach is more accurate than the approximate 

function alone and more convenient than the full combinatoric enumeration.  

4. Results and Discussion 

Among three methods discussed in the previous section, we use the Lp-norm approximation 

(Section 3.2) to explore the nonlinear behavior of the HCM model by Kim et al. presented in Table 1. 

The smooth approximation is conveniently implementable with no appreciable errors in our case. The 

main parameters subject to variation include dilution rate (D) and the fractional molar concentration of 

glucose in the feed (γ), i.e., 

/D F V  (6)

,

, ,

IN G

IN G IN P

x

x x
 


 (7)

where F is the volume flow rate of the feed, V is the culture volume and xIN,G and xIN,P are 

concentrations of glucose and pyruvate in the feed, respectively. The total sugar concentration (xIN,total) 

is the sum of xIN,G and xIN,P. 
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4.1. Hysteresis Behaviors and Bifurcation Diagram 

Figure 5 shows the concentration profiles of all components (including glucose, pyruvate, biomass, 

formate, acetate and ethanol) at a specific condition (i.e., γ = 0.4 and xIN,total = 50). The implication of 

different colors and solid and dashed lines is the same as before. This parameter set yields up to  

five steady states in a range of D between 0.325 and 0.335. A catch-up point is observed between EM3 

and EM4. 

To get a global bifurcation diagram, we explore the whole parameter space spanned by D and γ. In 

the comprehensive search of all possible bifurcation points using MATCONT, we ended up with only 

two different kinds of bifurcations: limit and catch-up points. No Hopf bifurcation was detected. That 

is, the nonlinear behaviors we could identify are limited to steady-state multiplicity, and no existence 

of metabolic oscillation is found. 

Figure 6 shows a global map of multiplicity when xIN,total is fixed to 50 mM. It shows two closed 

curves in black and gold (left) and four pairs of lines highlighted in the same color, respectively (right). 

The gold curve represents the neutral saddles, equilibrium points characterized by two real eigenvalues 

with the opposite sign. Neutral saddles are, however, not bifurcation points of interest and have 

nothing to do with steady-state multiplicity. Solid lines (other than neutral saddle lines) represent 

typical limit points, while thick dotted lines, catch-up points. Therefore, inside each envelop, there 

exist three multiple steady states (i.e., domains I, II, III, IV and V), at least. In the region where two 

envelops overlap (i.e., domains VI, VII and VIII), five steady states exist. In the remaining region, a 

unique solution exists.  

Figure 5. Hysteresis curves of all components when γ = 0.4. 
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Figure 6. A global bifurcation diagram in the D − γ space when xIN,total = 50 mM. 

 

To clarify the implication of this global bifurcation diagram, hysteresis curves drawn with nine 

different values of γ are presented in Figure 7.  

Figure 7. Hysteresis of biomass concentration profiles with different γ values. 
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4.2. Bifurcation Diagram at a Higher Sugar Concentration in the Feed 

The effect of the total sugar concentration in the feed (xIN,total) on nonlinear behavior of the E. coli 

model is examined. When lowering the total sugar concentration from 50 to 25 mM, no qualitative 

change is observed in bifurcation behavior. Increasing xIN,total to 100 mL, on the other hand, leads to an 

additional domain not observed previously.  

Figure 8 shows a global bifurcation diagram in the D − γ space at xIN,total of 100 mL. The 

implication of lines and colors is the same as before. Unlike the previous case, this condition leads to 

multiplicity regimes with up to seven steady states. That is, seven steady states emerge in the domain 

(IX) where three different envelops (i.e., red, orange and purple ones) are overlapped. We have 

highlighted this domain in the figure.  

Figure 9 shows hysteresis curves of biomass (a) and pyruvate (b) concentrations when γ = 0.83. We 

can see seven steady states in a small range of D around 0.34. The figure also provides zoomed-in 

views of seven steady states existing between two vertical dashed lines. For instance, pyruvate can 

have seven different concentrations in this domain, i.e., if enumerated from the top, one on the black 

line, one on the cyan, two on the magenta and three on the blue. 

Figure 8. A global bifurcation diagram in the D − γ space when xIN,total = 100 mM.  
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Figure 9. Hysteresis curves of all components when γ = 0.83. 

 

4.3. Experimental Validation  

Kim et al. [16] have provided an experimental verification of the stable steady states for the 

foregoing two sets of conditions, i.e., at γ = 0.2 and xIN,total = 50, yielding a total of three steady states 

and five steady states, γ = 0.4 and xIN,total = 25, with a total of five steady states.  

Through the comprehensive bifurcation analysis in this work, we could identify a new domain  

with seven steady states. Experimental verification would require precise control of conditions and 

concentration measurements, however.  

5. Conclusions 

Since the cybernetic variables for enzyme activity control are max functions and, therefore,  

non-smooth, nonlinear analysis of cybernetic models has had to rely on a suitably convenient 

methodology to confront this issue. The Lp-norm approximation of the max function tested in this  

work is a practically useful idea, as it is applicable to general cases considering a large number of 

metabolic pathway options (i.e., EMs). Replacement of the max function with the Lp-norm 

representation allows for accurate computation of bifurcation points. While slight errors around  

non-smooth folds (or catch-up points) are unavoidable, they are negligibly small in our case. When 

these errors are appreciable in certain cases, however, we can redo rigorous computation only for the 

non-smooth folds based on the combinatoric idea of Namjoshi and Ramkrishna [10]. Such a 
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combination of these two methods guarantees rigorous results at a minimal level of inconvenience, 

thus serving as a promising strategy.  

Using the approximate function, we could construct global bifurcation diagrams on the D − γ space 

to identify various multiplicity domains, including the one with seven steady states. Considering the 

narrowness of that domain, however, there are some issues to be resolved for experimental validation. 

Despite such a comprehensive analysis performed in this work, dynamic nonlinear behaviors, such as 

metabolic oscillations, were not detected. This could be a consequence of the condensed set of 

elementary modes in the model.  

Clearly, more detailed models comprising more EMs could produce a considerably greater number  

of steady states, which may be difficult to observe experimentally without accurate analytical 

measurements and precise control of experimental conditions. It is our premise that this is an area for 

extensive future exploration by researchers concerned with modeling metabolism. 
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