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Abstract: An important direction of informatics is devoted to the protection of privacy of confidential
information while providing answers to aggregated queries that can be used for analysis of data.
Protecting privacy is especially important when aggregated queries are used to combine personal
information stored in several databases that belong to different owners or come from different sources.
Malicious attackers may be able to infer confidential information even from aggregated numerical
values returned as answers to queries over large collections of data. Formal proofs of security
guarantees are important, because they can be used for implementing practical systems protecting
privacy and providing answers to aggregated queries. The investigation of formal conditions which
guarantee protection of private information against inference attacks originates from a fundamental
result obtained by Chin and Ozsoyoglu in 1982 for linear queries. The present paper solves similar
problems for two new classes of aggregated nonlinear queries. We obtain complete descriptions of
conditions, which guarantee the protection of privacy of confidential information against certain
possible inference attacks, if a collection of queries of this type are answered. Rigorous formal security
proofs are given which guarantee that the conditions obtained ensure the preservation of privacy
of confidential data. In addition, we give necessary and sufficient conditions for the protection of
confidential information from special inference attacks aimed at achieving a group compromise.

Keywords: privacy protection; aggregated database queries; inference attacks; nonlinear queries

1. Introduction

A large and rapidly developing area of modern informatics deals with security and
privacy of data (see, for example, [1–6]). In particular, the preservation of privacy is crucial
for broad adoption of digital payments [7], healthcare applications [8], location-based
services [9], telemedicine [10], monitoring industrial infrastructure [11] and the Internet of
things [12,13].

The investigation of formal conditions which guarantee the preservation of private
information against inference attacks using aggregated database queries originates from
a fundamental result obtained by Chin and Ozsoyoglu [14] in the case of linear queries
and linear inference attacks. It belongs to an important research direction devoted to
the protection of privacy of confidential information and provides answers to aggregated
queries that can be used for analysis of data [9,15]. Protecting privacy is especially important
when aggregated queries are used to combine personal information stored in several
databases that belong to different owners or come from different sources [16]. Malicious
attackers may be able to infer confidential information even from aggregated numerical
values returned as answers to queries over large collections of data [17]. Formal proofs of
security guarantees are important, because they can be used for implementing practical
systems protecting privacy and providing answers to aggregated queries.
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The present paper obtains novel rigorous formal conditions, which guarantee the
protection of privacy of confidential information against certain possible inference attacks
for two new classes of aggregated nonlinear queries motivated by the main result of [14].
Section 2 of our paper gives a review of related previous work. Section 3 contains technical
details on the materials and methods used in this paper. Section 4 presents main results of
our article. Section 4.1 defines MEAN and VARIANCE queries (MVQ) and introduces a new
class of inference attacks, quadratic equation attacks (QEA). In order to protect confidential
information from QEA attacks we design a quadratic audit system (QAS). Theorems 2
and 3 establish that QAS systems guarantee the protection of confidential data from QEA
attacks. Rigorous formal security proofs are given to ensure the preservation of privacy of
confidential data. Section 4.2 introduces interval inference attacks (IIA). To protect sensitive
data from IIA attacks, we design an interval audit system (IAS). Theorems 4 and 5 prove
that the IAS ensures protection against IIA attacks. Finally, Theorem 6 in Section 4.3 gives
rigorous matrix conditions for the protection of confidential information from a group
compromise. The results obtained are discussed in Section 5, where directions for future
research are also proposed. A conclusion is given in Section 6.

The present paper contributes to the advancement of knowledge on the preservation
of privacy of confidential information by developing formal theory, designing new formal
systems for the protection against inference attacks and obtaining novel rigorous conditions
that guarantee that the confidential information remains protected. In summary, a point-
by-point list of the main contributions of this paper can be presented as follows:

• Formal definitions of the MVQ queries and a new class of inference attacks, the
QEA attacks.

• The design of a QAS system for the protection of confidential information against the
QEA attacks.

• Rigorous formal proofs of Theorems 2 and 3, which establish that QAS systems
guarantee the protection of confidential data from the QEA attacks.

• Formal definition of a new class of inference attacks, the IIA attacks.
• The design of an IAS system for the protection of sensitive data from the IIA attacks.
• Rigorous formal proofs of Theorems 4 and 5, which demonstrate that IAS systems

ensure protection against IIA attacks.
• Rigorous formal proof of Theorem 6, which provides stringent matrix conditions for

the protection of confidential information from a group compromise.

2. Previous Work

This section is devoted to the existing literature related to the results of [14] and a
brief review of other relevant research. The paper [14] investigated linear queries and
designed the concept of an audit expert, which maintains a dynamic matrix for processing
such queries. The paper [18] suggested using a static audit expert for arbitrary linear
queries, where the query basis matrix is prepared and fixed by the system beforehand. The
paper [19] proposed to apply a hybrid audit expert, which combined the advantages of the
dynamic and static expert systems. The effectiveness of hybrid audit experts was further
investigated in [20].

The majority of previous papers devoted to linear queries concentrated on studying
the more special case of so-called SUM queries (see Section 3 for a mathematical definition).
The databases where the clients are allowed to submit SUM queries, were investigated
in [21–23]. The readers are referred to our survey article [24] for more details.

Wu et al. [25] used the concept of differential privacy and designed a differentially
private mechanism for answering linear queries, which achieves a near-optimal data utility
subject to a fixed privacy protection constraint. Mckenna et al. [26] applied advanced
optimisation methods to develop a mechanism for accurate answers to a user-provided set
of linear queries under local differential privacy. Khalili et al. [27] proposed an incentive
mechanism and a randomized response algorithm for generating differentially private
answers to linear queries. Xiao et al. [28] devised a fine-grained strategy of adding Gaussian
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noise to query answers in the special case of answering linear queries under differential
privacy subject to per-query constraints on accuracy.

Differential privacy has also been applied for privacy protection in various more ad-
vanced scenarios recently. For example, the paper by Qu et al. [29] proposed a customizable
reliable differential privacy (CRDP) model and developed a modified Laplacian mechanism
that enables CRDP to simultaneously minimize background knowledge attacks and elimi-
nate collusion attacks in cyber-physical social networks. An application of the differential
privacy for the development of personalised privacy protection in cyber-physical social
systems was investigated in [30].

Another important relevant direction of research deals with federated learning, which
occurs when a query needs to be answered by using a large database that is a union of
several separate databases that belongs to different data owners not willing to share data
with others due to privacy issues. For example, Wan et al. [31] proposed to integrate
differential privacy and the Wasserstein Generative Adversarial Network (WGAN) for pre-
serving the privacy of sensitive parameters in federated learning. Cui et al. [32] introduced
a blockchain-empowered decentralized and asynchronous federated learning framework
and designed an improved, differentially private federated learning based on generative
adversarial nets. Qu et al. [33] proposed a blockchain-enabled adaptive asynchronous
federated learning paradigm (FedTwin) and designed a tailor-made consensus algorithm
that uses generative adversarial network-enhanced differential privacy and an improved
Markov decision process. A trade-off optimization procedure and a hybrid model were de-
veloped by Qu et al. [34] for simultaneous protection of the identity and location privacy of
smart mobile devices against dynamic adversaries. Blockchain-enabled federated learning
and WGAN-enabled differential privacy were applied by Wan et al. [35] in order to protect
confidential model parameters in the fifth-generation broadband cellular networks and
beyond fifth-generation networks.

Thus, a lot of research has been conducted that investigates related directions. How-
ever, the protection of private information for the classes of nonlinear queries examined in
the present paper has never been considered in the literature before.

3. Materials and Methods

If a data repository processes aggregated numerical queries for subsets of the records
and provides the outcomes of these queries without giving access to individual records,
then such a repository is often called a statistical database (cf. [36,37]). We use standard
concepts and terminology, following [36,38–42]. Our proofs also apply the main theorem
of [43].

The set of all real numbers is denoted by R. The cardinality of a set S is denoted by |S|.
For positive integers a ≤ b, the symbol [a : b] stands for the set

[a : b] = {a, a + 1, a + 2, . . . , b}. (1)

A summary of the main notation used in this paper is given in Table 1.
Let m be the number of attributes in every record of the database, and let

~r = (r1, r2, . . . , rm) (2)

be an arbitrary record. The attributes in the database are denoted by A1, . . . , Am. For
1 ≤ i ≤ m, the attribute Ai is a function such that Ai(~r) = ri.

Let n be the number of records stored in the database. Denote the records by~r1, . . . ,~rn.
We assume that the users can submit aggregated queries regarding the confidential attribute
A1, and the attributes A2, . . . , Am are used to select subsets of records for these queries.
Then A1 is called a quantitative attribute and A2, . . . , Am are called characteristic attributes for
such queries. Let x1, x2, . . . , xn be the (confidential) values of the quantitative attribute A1
in the records.
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Table 1. Main terminology and notation used in the present paper.

Term Notation

Database with confidential data D
Number of records in D n

All records in D ~r1,~r2, . . . ,~rn
Number of attributes in each record m

An arbitrary record in D ~r = (r1, r2, . . . , rm)
Quantitative attribute A1

Characteristic attributes A2, . . . , Am
Values of attribute A1 in~r1,~r2, . . . ,~rn x1, x2, . . . , xn

Boolean expression B ∈ B
Query ( f , B)

Query sample S = B(D)
Query outcome f (S) = f (B(D))

The set of records chosen for a query by specifying conditions for the characteristic
attributes is called the query sample or query set. To select a sample set for a query, the
users can use inequalities and Boolean expressions. Denote by B the set of all Boolean
expressions of inequalities involving the characteristic variables. This set can be defined
inductively by the following rules:

(B1) For any r ∈ R, j ∈ [2 : m], the set B contains inequalities~rj ≤ r,~rj ≥ r,~rj < r,~rj > r
and equality~rj = r.

(B2) If B1, B2 ∈ B, then B1 ∧ B2 ∈ B, B1 ∨ B2 ∈ B,¬B1 ∈ B, where ∧, ∨, ¬ denote the logical
AND, OR and NOT operators, respectively.

Throughout, we consider a query using a Boolean expression B ∈ B to select the query
sample. It specifies records~r stored in the database such that the Boolean expression holds
true for these records. The query sample, i.e., the set of all records in D satisfying condition
B, is denoted by S = B(D).

Thorough investigation in the literature has been devoted to linear queries [14,18,19,44].
A linear query can be recorded as a linear combination

α1x1 + α2x2 + · · ·+ αnxn = β, (3)

where β is the outcome of the query, and α1, . . . , αn ∈ R. Linear queries are also called
weighted sum queries. The COUNT query corresponding to the linear query (3) is defined as
the number of nonzero coefficients αi, for i ∈ [1 : n].

A SUM query is defined as a linear Equation (3), where β is the outcome of the query,
and where

αi =

{
1 if i-th record is included in the sum,
0 otherwise.

(4)

When there is a set of linear queries indexed by j = 1, . . . , k with equations

αj,1x1 + αj,2x2 + · · ·+ αj,nxn = β j, (5)

then we can collect them into the matrix M = [αj,i] and the column vector V = [β j]. We
can represent it as the matrix equation MX = V. Thus, every set of SUM queries (or linear
queries) can be recorded as a system of linear equations of the form

MX = V, (6)

where M = [αj,i], and where V = [β j] is the column vector with the values returned by the
queries corresponding to the rows of the matrix M. Each query corresponds to a row of the
matrix M. To derive the confidential values x1, . . . , xn, the user can try to solve the system
of linear equations.
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For linear queries, it is enough to consider one-dimensional databases, or databases
with only one quantitative attribute. An arbitrary set of linear queries in a multi-dimensional
database can be represented as a disjoint union of linear queries corresponding to different
quantitative attributes, and each of these subsets can be viewed as a set of linear queries of
the corresponding 1-dimensional database.

Every linear combination of linear queries is also a linear query. If the outcomes of
several linear queries are known, then the outcomes of all their linear combinations are
also known. Therefore, row and column operations can be used to simplify (6). Applying
row interchange, row scaling, row addition, and column interchange, the system (6) can be
reduced to a normalized basis matrix form. Therefore, without loss of generality we may
assume that (6) has been simplified and is a represented by a normalized query basis matrix
M = Mk, where

Mk =
(

Ik | M′k
)

(7)

and Ik is the (k× k) identity matrix. Then the matrix M is said to be in normalized form.
The row vectors of Mk form a basis of the space of all queries with outcomes which are
known, because they can all be derived by using linear combinations of query vectors.

Inference attacks can be used to derive private information from legitimately available
data. It may be possible to deduce confidential information by comparing the results of
several different queries. Let x1, x2, . . . , xn be the values of a protected or confidential
attribute in the records. If the value xi of a confidential attribute in one record is revealed
to the user, for some i ∈ [1 : n], then this event is called a compromise of the database. When
it is essential to emphasize that the value in precisely one record has been revealed, then
the terms 1-compromise or classical compromise can also be used. Linear inference attacks occur
when malicious adversaries try to solve the system of linear equations (6) to determine
confidential values.

To provide protection against linear inference attacks, Chin and Ozsoyoglu [14] pro-
posed a system called Audit Expert. It uses a normalized basis matrix to store all queries
answered previously. When a new query is added, the Audit Expert adds it to the matrix
and then reduces it to a normalized basis form again.

Theorem 1 ([14]). A statistical database with linear queries is compromised if and only if the
normalized query basis matrix Mk of the Audit Expert has a row with exactly one nonzero entry.
The time complexity of the algorithm dynamically processing the query matrix of the Audit Expert
and maintaining it in a normalized form for a set of k consecutive linear queries is O(k2).

4. Results

This section presents new results obtained in this paper for the protection of confi-
dential information against the quadratic equation attacks (Section 4.1), Interval Inference
Attacks (Section 4.2), and Group Compromise (Section 4.3).

4.1. Quadratic Equation Attacks

In this subsection, we consider a new different class of nonlinear queries by using
variance and mean. These notions play crucial roles in hypothesis testing, significance
analysis, and other studies, see [39].

Let S = B(D) be a query sample, i.e., the set of records chosen by the Boolean
expression B. Denote by V the set {r1 | (r1, . . . , rm) ∈ S} of values of the confidential
quantitative attribute A1 in the records of the sample S with the corresponding probability
distribution. The mean of the values of the quantitative attribute is also called the expected
value of the quantitative attribute. It is denoted by V = E(r1) and is defined by the formula:

V = E(r1) =
1
|S| ∑

(r1,...,rm)∈S
r1. (8)
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The variance of V is the expected value E[(r1− E(r1))
2] of the squared differences r1− E(r1)

of values of the quantitative attribute r1 from the mean E(r1) (see [40]). The variance of V
is denoted by σV and is defined by the following formula:

σ2
V = E[(r1 − E(r1))

2] =
1
|S| ∑

(r1,...,rm)∈S
(r1 −V)2, (9)

where V is the mean given by (8) (see [40,41]). The variance measures the variability of
values of the quantitative attribute from the mean. It is explained in [40] with a complete
proof (see also [41]), that formula (9) can be rewritten in the following equivalent form:

σ2
V = E[(r1 − E(r1))

2] = E(r2
1)− (E(r1))

2 =
1
|S| ∑

(r1,...,rm)∈S
r2

1 −

 1
|S| ∑

(r1,...,rm)∈S
r1

2

. (10)

For more explanations and worked examples, the readers are referred to [40,41].
A MEAN and VARIANCE query, or an MVQ query, can be defined as a pair ( f , B),

where B is a Boolean expression and f is a function f = ( f1, f2), where f1 is defined by (8)
and f2 is defined by (9). This means that an MVQ query submits a Boolean expression B
and asks to return the values of the sample mean and variance for the sample S = B(S).

Equality (10) allows us to recover the outcome of each VARIANCE query from the
mean value of the squares of the values of the confidential attribute. Therefore, in order to
store an MVQ query in computer memory, it is enough to keep a record of the coefficients
that occur in the MEAN query, the outcome of the MEAN query, and the mean value of the
squares of the values of the confidential attribute. Therefore, to store a set of MVQ queries,
we can use the following pair of matrix equalities,

MX = V, MY = W, (11)

where M is the matrix storing the coefficients of the MEAN queries, X = [x1, . . . , xn]T is
the column of the confidential values x1, . . . , xn, Y = [x2

1, . . . , x2
n]

T is the column of the
squares of the confidential values, V is the column vector with the values returned by the
MEAN queries, and where W is the column vector of the mean values of the squares of
the confidential values. In concise matrix notation, the Equation (11) can be stored as the
following matrix:

(M|V|W). (12)

The following example illustrates our matrix notation.

Example 1. Suppose that in a dataset with two records~r1,~r2 the values of the confidential
attribute are x1 = 0, x2 = 2. Suppose that the MVQ queries have been answered for the
following three samples: {~r1,~r2}, {~r1}, {~r2}. Then we get the following matrix equalities 1/2 1/2

1 0
0 1

[ x1
x2

]
=

 1
0
2

, (13)

 1/2 1/2
1 0
0 1

[ x2
1

x2
2

]
=

 2
0
4

. (14)

Here (13) keeps a record of the mean values of the samples, and (14) stores the correspond-
ing mean values of the squares of the confidential attribute. We do not have to store long
records of all coefficients of the VARIANCE queries, because equality (10) makes it easy to
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obtain the values of all VARIANCE queries from (14). The concise matrix notation we are
going to use to keep a record of all MVQ queries is the matrix 1/2 1/2 1 2

1 0 0 0
0 1 2 4

. (15)

Applying the row and column operations, we can reduce M to a normalized form.
Then the system (11), simplifies and reduces to the normalized form

MkX = V′, MkY = W ′, (16)

where the normalized query basis matrix Mk has the form

Mk =
(

Ik | M′k
)
, (17)

where Ik is the (k× k) identity matrix. In concise matrix notation equations (16) can be
stored as the matrix

(Mk|V′|W ′). (18)

Next, we define the first type of a nonlinear inference attack, the QEA attack, which
can be used by an adversary to compromise MVQ queries. Steps of the QEA attack are
explained in Algorithm 1.

To protect sensitive data from QEA attacks, we design a quadratic audit system (QAS).
It is described in Algorithm 2 by using the following matrix notation.

Let v be a vector with n components, and let T be a (k× n)-matrix. Denote by |v| the
number of nonzero components in v. For 1 ≤ i ≤ k, the i-th row of T is denoted by T(i, :).
For 1 ≤ j ≤ n, the j-th column of T is denoted by T(:, j). The deletion of the j-th column
from T is denoted by T[:, j]← [ ]. For 1 ≤ j < ` ≤ n, the interchanging the columns j and `
in T is denoted by T(:, [j `])← T(:, [` j]). The vector [v(j), v(j + 1), . . . , v(`)] is denoted by
v(j : `). The (k + 1× n)-matrix obtained by adding the v as the last row to T is denoted
by [T; v]. Two vectors u and v are said to be parallel or collinear if and only if either at least
one of them is a zero vector, or there exists a nonzero real number α such that u = αv. If
two vectors u, v are collinear, then we write u||v.

A formal proof establishing that the QAS system guarantees protection of sensitive
data from QEA attacks is given in Theorem 3. It relies on Theorem 2, which gives matrix
conditions necessary and sufficient for QEA attack to reveal confidential data.

Theorem 2 uses the concept of c-compromise, where c is a positive integer. This
concept includes as a special case the notion of a classical compromise or 1-compromise
treated in Theorem 1. Namely, the disclosure of a statistic based on c or fewer records in the
database is called a c-compromise. The notion of a c-compromise has already been studied
in the literature (see the survey paper [24] for more references).

For any row r of the matrix Mk in (17), denote by

r(k,∗) = (r1, . . . , rk) (19)

the vector of the first k components of r. Denote by

r(∗,n−k) = (rk+1, . . . , rn) (20)

the vector of the last n− k components of r. Then the row has the form

r = (r(k,∗), r(∗,n−k)). (21)

The vector r(∗,n−k) will be called the projection of the row r on the matrix M′k in (17).
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Algorithm 1 Quadratic Equation Attack.

Input: A set of MVQ queries.
Output: A compromise of the set of queries.

1: First, verify whether a compromise can be achieved by using only the set of MEAN
queries as in Theorem 1. If not, then proceed to the next step.

2: Test all combinations of t ∈ [1 : n] and T ⊆ [1 : n] to find a pair (t, T) with two proper-
ties (A1), (A2):
(A1) The set of linear equations corresponding to the MEAN queries can be used to
derive equalities

xi = γixt + δi (22)

where γi, δi ∈ R, for all i ∈ T.
(A2) The attackers may be able to use the outcomes of the VARIANCE queries to derive
a quadratic equation of the form

q(xi, i ∈ T) = w (23)

depending only on xi, i ∈ T, where w ∈ R.
3: Substitute all expressions (22) into (23) so that it becomes a quadratic equation in one

variable xt.
4: Solve the resulting quadratic equation in one variable xt to achieve a compromise.
5: Output t, xt.

Algorithm 2 Quadratic Audit System.

Input: Normalized matrix Mk =
(

Ik|M′k
)

of the answered MVQ queries and the vector v
of the new MVQ query.

Output: New normalized matrix and answer to the query, or response that the query has
been rejected.

1: u← v−∑k
i=1 vi ·Mk(i, :); j← k + 1

2: if u = 0 then
3: Answer the query, keep the matrix unchanged.
4: else if |u| ≤ 2 then
5: Reject the query, keep the matrix unchanged.
6: else
7: Let uj be the first nonzero component of u. Set u← 1

uj
u; T ← [Mk; u(k + 1 : n)].

8: if j > k + 1 then
9: Mk+1(:, [(k + 1) j])← Mk+1(:, [j (k + 1)])

10: for all i ∈ [1 : k] do
11: T(i, :)← T(i, :)− T(i, k + 1)T(k + 1, :)
12: if T(i, :)(k + 1 : n)||T(k + 1, :)(k + 1 : n) then
13: Reject the query, keep the matrix unchanged.
14: end if
15: end for
16: end if
17: Answer the query and set Mk+1 = [Ik+1; T].
18: end if

Theorem 2. Let D be a database with the set of MVQ queries answered so far stored in matrix
form (11) with the normalized form (16). Then the following conditions are equivalent.

(i) The QEA attack can be used to achieve a compromise of D.
(ii) The attackers can use the set consisting of only the MEAN queries answered so far to

achieve a 2-compromise of D.
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(iii) Either Mk in (16) has a row with at most two nonzero entries, or Mk has two rows with
collinear projections on M′k in (17).

Proof of Theorem 2. As in the proof of the main theorem of [14] and in other previous
publications, it has been customary to assume that the attackers can gain knowledge of
the COUNT query corresponding to each their query. It is important to ensure rigorous
protection of privacy under this assumption, in view of the following three easy ways
enabling the attackers to gain access to the outcomes of the COUNT queries.

(a) The COUNT query is a legitimate query. It can be submitted to the database and
may be answered as a separate query.

(b) The COUNT query can be included as an integral part of every SUM query or
linear query.

(c) It may be easy for the attackers to gain access to the values of some COUNT queries
by using additional information, legal knowledge, or insider knowledge.

Theorem 1 and its proof also assume that the audit system must provide protection
against database compromise even if the attackers can gain access to the COUNT queries.
Without this assumption, Theorem 1 is invalid. Indeed, even if the attackers can manage to
obtain an outcome of the query corresponding to the value of a confidential attribute in
just one record, they will be unable to notice that they have achieved this, since without
the knowledge of a COUNT query they won’t know whether the outcome corresponds to
just one record or many records. This is why it is a common practice to assume that the
attackers can also gain access to the outcomes of the corresponding COUNT queries, and
that audit system must provide protection in these circumstances.

(i)⇒(ii): Suppose that condition (i) holds, i.e., the QEA could be used to achieve a
compromise of D. Let us refer to the definition of the QEA attack in Algorithm 1.

First, we consider the case where the attackers managed to achieve a compromise
in Step 1 of the Quadratic Equation Attack. In this case, Step 1 results in a compromise
achieved by using only the set of MEAN queries. Every classical compromise is an ex-
ample of a 2-compromise required for condition (ii). Therefore in this case condition (ii)
follows immediately.

Now, we assume that the attackers had to proceed to the remaining steps of the QEA.
This means that they found an element t ∈ [1 : n] and a subset T ⊆ [1 : n] with properties
(A1) and (A2). Let us take the equality x1 = γ1xt + δ1, which is the first equality of the
system (22). It implies that x1 − γ1xt = δ1. Therefore, the attackers have managed to derive
the value δ1 of the statistic x1 − γ1xt, which depends on at most two variables. This means
that the attackers have achieved a 2-compromise by using only the set of MEAN queries,
and so condition (ii) holds again.

(ii)⇒(iii): Suppose that condition (ii) holds, i.e., the attackers have managed to achieve
a 2-compromize of D by using only MEAN queries. This means that they derived the value
η of a statistic ν1x`1 + ν2x`2 , for some 1 ≤ `1 < `2 ≤ n, where ν2

1 + ν2
2 6= 0. Denote the rows

of the matrix M by m1, . . . , mk. For i ∈ [1 : k], let us denote by λi the linear combination of
the variables x1, . . . , xn corresponding to the i-th row of the matrix M. This means that

λi = miX, (24)

where X = [x1, . . . , xn]T . Then, as in (35) above, again it follows that there exist ξ1, . . . , ξk
such that

η = ν1x`1 + ν2x`2 = ξ1λ1 + · · ·+ ξkλk. (25)

First, we consider the case where ν1 = 0. Then the value η = ν2x`2 provides a 1-
compromise. Hence, Theorem 1 implies that the normalized basis matrix Mk of the audit
system has a row with only one nonzero entry. Therefore condition (iii) is satisfied.

Second, if ν2 = 0, then it follows in the same way that condition (iii) holds true, as well.
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Third, it remains to treat the case where ν1, ν2 6= 0. Note that Mk = [Ik | M′k] as in (7).
Let us keep in mind that because Ik is an identity matrix, it follows that every nonzero linear
combination of the rows of M has at least one nonzero component in the first k columns.
Applying this to the linear combination (25), we see that `1 ≤ k. Furthermore, the following
two subcases are possible and we consider them separately.

Subcase 1. `2 > k. This means that x`2 belongs to the columns of the matrix M′k, which
is the right block of the matrix Mk = [Ik | M′k] in (7). Clearly, the sum ν1x`1 + ν2x`2 has
only one nonzero component in the first k columns. More specifically, the only nonzero
component of this sum in the first k columns is the `1-th component. Because Ik is an
identity matrix, it follows from (25) that ξ`1 6= 0 and

ξ1 = · · · ξ`1−1 = ξ`1−1 = · · · = ξk = 0. (26)

Hence, η = ξ`1 λ`1 . It follows that the `1-th row of Mk has precisely two nonzero entries,
and so condition (iii) holds.

Subcase 2. `2 ≤ k. This means that x`1 , x`2 belong to the columns of the matrix Ik in
Mk. Hence, we get ξ`1 , ξ`2 6= 0 and all the other coefficients xi are equal to 0, i.e.,

ξ1 = ξ2 = · · · = ξ`1−1 = ξ`1+1 = ξ`1+2 = · · · = (27)

ξ`2−1 = ξ`2+1 = ξ`2+2 = · · · = ξk = 0. (28)

Therefore, all entries in the last (n − k) columns of η are equal to zero. Denote by p`1
and p`2 the projections of the rows m`1 and m`1 on the matrix M′k, respectively. It follows
that ξ`1 p`1 + ξ`2 p`2 = 0. This implies that the projections p`1 and p`2 are collinear, and so
condition (iii) is satisfied.

(iii)⇒(i): Suppose that condition (iii) holds. The following two cases are possible.
Case 1. The matrix Mk in (16) has a row with at most two nonzero entries. Denote by

` the index of this row, where 1 ≤ ` ≤ k. By using the same notation m` for this row and
the same linear combination λ` of the variable as in (24), we get

λ` = m`X. (29)

Let `1, `2 be the indices of the two nonzero entries in m`, where 1 ≤ `1 < `2 ≤ n. Denote
these two nonzero entries of m` by ν1 and ν2. Then it follows from (29) that

m`X = ν1x`1 + ν2x`2 . (30)

The `-th linear equation of the system (16) shows that

m`X = v`, (31)

where v` is the `-th component of the column vector V′ in (16). Therefore the value of the
statistic ν1x`1 + ν2x`2 is equal to v`. This establishes a 2-compromise derived by using only
the set of MEAN queries. Thus, condition (ii) holds.

Case 2. The matrix Mk in (16) has two rows with collinear projections on the matrix
M′k in (17). Denote by `1, `2 the indices of these rows, where 1 ≤ `1 < `2 ≤ k. Denote by p`1
and p`2 the projections of the rows m`1 and m`2 on the matrix M′k, respectively. Given that
p`1 and p`2 are collinear, we can multiply one of these vectors by an appropriate coefficient
and obtain the second vector. Without loss of generality, we may assume that there exists a
coefficient ϕ such that p`1 = ϕp`2 . Because Ik is an identity matrix and the projection of the
vector m`1 − ϕm`2 on the matrix M′k is equal to p`1 − ϕp`2 , it follows that

λ`1 − $λ`2 = x`1 − $x`2 = v`1 − $v`2 . (32)

This establishes a 2-compromise again, because equalities (32) show that the value of the
statistic x`1 − $x`2 is known and is equal to the constant v`1 − $v`2 . This establishes that
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condition (ii) is satisfied in each of the cases, i.e., the attackers can achieve a 2-compromise
by using only the set of MEAN queries.

Let us introduce notation for the set of MVQ queries answered so far. Suppose that a
set of k queries consisting of the corresponding pairs of mean and variance for the set of the
corresponding k samples S1, . . . , Sk have been submitted to the audit system. Applying (8),
we can record the set of MEAN queries as a system of linear equations

αi1x1 + αi2x2 + · · ·+ αinxn = βi, (33)

where i ∈ [1 : k], where βi is the outcome of the MEAN query, and where

αij =


0 if j-th record is not included

in i-th sample Si,
1
|Si |

otherwise,
(34)

for j ∈ [1 : n]. Denote the left-hand-side of equality (33) by qi.
Given that the attackers have achieved a 2-compromise by using only the queries

of the system (33), they have derived the value η of a statistic ν1x`1 + ν2x`2 , for some
1 ≤ `1 < `2 ≤ n, where ν2

1 + ν2
2 6= 0. It follows that there exist coefficients ξ1, . . . , ξk

such that
ξ1q1 + · · ·+ ξkqk = ν1x`1 + ν2x`2 , (35)

and the value of the statistic ν1x`1 + ν2x`2 is equal to η = ξ1β1 + · · ·+ ξkβk.
For each MEAN query of the system (33), the corresponding VARIANCE query of the

form (9) can be rewritten in the form (10). It follows that all VARIANCE queries can be
recorded as the following system of equations expressed in terms of the quadratic variables
x2

1, x2
2, . . . , x2

n
γi1x2

1 + · · ·+ γinx2
n = δi, (36)

where i ∈ [1 : k], where δi = σ2
i + β2

i , where σ2
i is the outcome of the i-th VARIANCE query

and βi is the outcome from (33), and where

γij =


0 if j-th record is not included

in i-th sample Si,
1
|Si |

otherwise.
(37)

Denote the left-hand-side of equality (36) by $i. Equalities (34) and (37) show that the
coefficients αi1, . . . , αin in the system (33) coincide with the corresponding coefficients
γi1, . . . , γin in the system (36). Therefore, it follows from (35) that

ξ1$1 + · · ·+ ξk$k = ν1x2
`1
+ ν2x2

`2
= η. (38)

Because at least one of the coefficients ν1, ν2 is nonzero, without loss of generality we may
assume that ν1 6= 0. Hence, (35) implies that

x`1 =
η

ν1
− ν2

ν1
x`2 . (39)

Substituting (39) for x`1 in (38), we get

ν1

(
η

ν1
− ν2

ν1
x`2

)2
+ ν2x2

`2
= η. (40)

This is a quadratic equation in one variable x`2 . It can be solved to determine the value of
x`2 , which achieves a compromise of D. Thus, condition (i) is satisfied.

This completes the proof of Theorem 2.
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Theorem 3. Let Mk =
(

Ik|M′k
)

be the normalized matrix of the answered MVQ queries, and let v
be the vector of the coefficients of the mean in the next MVQ query. Then Algorithm 2 answers the
next query only if it is safe to do so and the QEA attack cannot be used to disclose sensitive data.
Algorithm 2 ensures that the next query is rejected if the QEA attack can reveal sensitive data after
an answer to this query.

Proof. The proof establishing that QAS system guarantees protection of sensitive data from
QEA attacks follows from Theorem 2. It follows immediately, because Algorithm 2 verifies
condition (iii) of Theorem 2 and answers the next query only if Theorem 2 guarantees that
sensitive data cannot be revealed by using the QEA attack after the query is answered.

4.2. Interval Inference Attacks

The class of IIA inference attacks is defined in Algorithm 3. It uses the following
concepts. For a positive real number ε, we say that an ε-approximate compromise or an
approximate compromise with precision ε has been achieved, if the attackers can determine
x ∈ R such that they can deduce that the value of the confidential attribute in a record
belongs to the interval [x, x + ε]. We say that an approximate compromise occurs if there exists
ε such that an ε-approximate compromise has been achieved.

To protect sensitive data from IIA attacks, we design an interval audit system (IAS). It
is described in Algorithm 4.

A formal proof that the IAS system protects sensitive data from IIA attacks is presented
in Theorem 4. It relies on Theorem 5, which gives necessary and sufficient conditions for
an approximate compromise to occur.

Algorithm 3 Interval Inference Attack.

Input: A set of MVQ queries with query sample Sj, mean mj, variance σ2
j , for j ∈ [1 : `].

Output: Index s of a record and the upper and lower bounds U, L for the sensitive attribute
in the record.

1: S = ∪`j=1Sj.
2: for all~r ∈ S do
3: L~r ← −∞; U~r ← +∞.
4: end for
5: for all j ∈ [1 : `] do
6: for all~r ∈ Sj do

7: L~r ← max{L~r, mj − σj

√
|Sj| − 1};

8: U~r ← min{U~r, mj + σj

√
|Sj| − 1}.

9: end for
10: end for
11: L← −∞; U ← +∞; s = −∞.
12: for all~r ∈ S do
13: if |U~r − L~r| < |U − L| then
14: L← L~r; U ← U~r; s← the index of~r in D.
15: end if
16: end for
17: Output s, L, U.

Theorem 4. Let ε be a positive real number, let the set of already answered MVQ queries consist of
` queries with means mj and variances σ2

j , for j ∈ [1 : `]. Let S be the set of all records occurring in
any of these already answered queries, and let L~r, U~r be the values defined for~r ∈ S in Algorithm 3.
Let T be the sample of records of the next submitted MVQ query. Then, Algorithm 4 answers the
next query only if it is safe to do so and the IIA attack cannot result in a ε-approximate compromise
of sensitive data. Algorithm 4 ensures that the next query is rejected if the IIA attack can result in
an ε-approximate compromise after an answer to this query.
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Proof. The proof establishing that IAS system guarantees protection of sensitive data from
IIA attacks follows from Theorem 5. It follows immediately, because Algorithm 4 verifies
condition (iii) of Theorem 5 and answers the next query only if Theorem 5 guarantees that
ε-approximate compromise does not occur after the query is answered.

Algorithm 4 Interval Audit System.

Input: ε > 0 such that the system must protect from ε-approximate compromise. The set
of ` already answered MVQ queries with mj, σ2

j , j ∈ [1 : `], S, and L~r, U~r defined for
~r ∈ S in Algorithm 3. The new MVQ query with sample T.

Output: Reject the query if it leads to ε-compromise. Otherwise, return m and σ2 for the
new query.

1: Compute the mean m and variance σ2 for T.
2: for all~r ∈ S ∩ T do
3: L~r ← max{L~r, m− σ

√
|T| − 1};

4: U~r ← min{U~r, m + σ
√
|T| − 1}.

5: end for
6: for all~r ∈ T \ S do
7: L~r ← m− σ

√
|T| − 1;

8: U~r ← m + σ
√
|T| − 1.

9: end for
10: if min{|U~r − L~r| : ~r ∈ S ∪ T} ≤ ε then
11: Reject the query.
12: else
13: Output m, σ.
14: end if

Theorem 5. Algorithm 3 returns the index s of a record~r = (r1, . . . , rn) ∈ D and an interval
[L, U] = [L~r, U~r] such that it is guaranteed that r1 ∈ [L, U] and the length |U~r− L~r| of the achieves
the minimum value. There exist two databases DL and DU such that the record~rL with index sL
found by Algorithm 4 in DL has confidential attribute r1 equal to L, and the record~rU with index
sU in DU has confidential attribute equal to U.

Proof. Suppose that Algorithm 3 is applied to a set of samples of MVQ queries indexed
by j ∈ [1 : `], with query sample Sj consisting of records~r = (r1, . . . , rn) ∈ Sj such that the
mean and variance of the confidential components r1, for~r ∈ Sj, are equal to mj and σ2

j ,
respectively.

For each j ∈ [1 : `] and each record~r ∈ S = ∪`j=1Sj, it is easily seen that lines 2 to 9 of
Algorithm 3 compute the following values

L~r = max
j:~r∈Sj

{
mj − σj

√
|Sj| − 1

}
, (41)

U~r = min
j:~r∈Sj

{
mj + σj

√
|Sj| − 1

}
. (42)

For any sample Sj, where j ∈ [1 : `], and any record~r = (r1, . . . , rn) ∈ Sj, the following
Samuelsen’s inequalities were proven in [43]:

mj − σj

√
|Sj| − 1 ≤ r1 ≤ mj + σj

√
|Sj| − 1. (43)

Combining equalities (41) and (42) with all inequalities (43) for one fixed record~r ∈ S and
all samples Sj, for j ∈ [1 : `], containing~r ∈ S, we get

L~r ≤ r1 ≤ U~r. (44)
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It is clear that lines 11 to 16 of Algorithm 3 find the index s of the record~r such that the
length |U~r − L~r| of the interval [L~r, U~r] achieves the minimum value.

Let DL be a database with n records
−→
r[1], . . . ,

−→
r[n]. Suppose that there is just one sample

S containing all records of DL and that the mean µ and variance σ2 are given and fixed. Let
us define

−→
r[1]1 = L, (45)
−→
r[2]1 = · · · =

−→
r[n]1 = µ + (µ− L)/(n− 1), (46)

where L and U are defined by (41) and (42), respectively. It is routine to verify that the
mean of the confidential attributes of all records in DL is equal to µ and the variance is
equal to σ2. Then Algorithm 4 computes

L−→
r[1]

= · · · = L−→
r[n]

= L, (47)

U−→
r[1]

= · · · = U−→
r[n]

= U. (48)

Therefore, Algorithm 4 returns sL = 1, L, U. Because
−→
r[1]1 = L, this example shows that in

full generality, the value L cannot be improved.
A dual example of database DU with

−→
r[1]1 = U, (49)
−→
r[2]1 = · · · =

−→
r[n]1 = µ− (U − µ)/(n− 1), (50)

shows that in general the value U cannot be improved either.

4.3. Group Compromise

Let c, k be positive integers such that c ≤ k, and let Mk = (Ik | M′k) be the normalized
basis matrix of a set of linear queries as in (6) and (7). We use the following well-known
definitions and facts of the matrix theory (see [38]). The rank of a matrix is equal to the
dimension of the vector space spanned by the rows of the matrix. It is also equal to the
maximum number of linearly independent rows of the matrix. The rank of a matrix with k
rows is less than k if and only if the rows of the matrix are linearly dependent, i.e., there
exists a nontrivial linear combination of the rows equal to zero. The rank of the matrix Mk
is equal to k.

Theorem 6. Let c, k be positive integers such that c ≤ k, and let Mk = (Ik | M′k) be the
normalized basis matrix (7) of a set of linear queries for the database D. Then the following
conditions are equivalent.

(i) The database D is c-compromised by the set of linear queries with the normalized basis matrix Mk.
(ii) There exist c columns in Mk such that after deletion of these columns the rank of the remaining

matrix becomes less than k.
(iii) There exist s and t with s + t = c such that it is possible to remove s columns of M′k and in

this new matrix find t rows that span a space of dimension less than t.

Proof. Let n be the number of columns in the matrix Mk in the hypothesis of this theorem.
Denote the rows of Mk by m1, . . . , mk, and the rows of the matrix M′k by m′1, . . . , m′k. For
j ∈ [1 : n], let

ej = (ej1, ej2, . . . , ejn) (51)

be the vector with components ej`, for ` ∈ [1 : n], defined by

ej` =

{
1 if j = `,
0 otherwise.

(52)
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Let X = [x1, . . . , xn]T be the column of the confidential variables.
(i)⇒(ii) Suppose that condition (i) holds. Then there exist coefficients ν1, . . . , νk such

that the linear combination ∑k
i=1 νimi has at most c nonzero components. Therefore it can

be represented in the form

k

∑
i=1

νimi =
c

∑
`=1

ξ`ei` (53)

for some positive integers 1 ≤ i1 < · · · < ic ≤ n and some ξ1, . . . , ξc ∈ R. Let Mk be the
matrix obtained from the matrix Mk by deleting all columns with indices i1, . . . , ic. Denote
by m1, . . . , mk the rows obtained from the rows m1, . . . , mk by deleting all columns i1, . . . , ic.
It follows from (53) that ∑k

i=1 νimi = 0. Therefore the rows of the matrix Mk are linearly
dependent. It follows that the rank of Mk is less than k. Thus, condition (ii) is satisfied.

(ii)⇒(i) Suppose that condition (ii) holds. Then there exist c columns in the matrix
Mk such that the rank of the matrix Mk obtained by deleting these columns is less than
k. Denote the indices of these columns by i1, . . . , ic, where 1 ≤ i1 < · · · < ic ≤ n. Let
m1, . . . , mk be the rows obtained from the rows m1, . . . , mk by deleting all columns i1, . . . , ic.
It follows that the rows m1, . . . , mk are linearly dependent, i.e., there exist coefficients
ν1, . . . , νk such that ∑k

i=1 νimi = 0. Hence, equality (53) holds true, for some ξ1, . . . , ξc.
Therefore the statistic (53) produces a c-compromise of the database D. Thus, condition (i)
is satisfied.

(i)⇒(iii) Suppose that there is a c-compromise. As above, then there exist coeffi-
cients ν1, . . . , νk such that the sum ∑k

i=1 νimi can be represented in the form (53), for some
1 ≤ i1 < · · · < ic ≤ n and ξ1, . . . , ξc. Let s be the number of the indices 1 ≤ i1 < · · · < ic ≤ n
that are greater than k. Put t = c− s. Then

i1 < · · · < it ≤ k < it+1 < · · · < ic (54)

Denote by Ñ the matrix obtained from M′k by deleting the columns with indices

it+1 − k, it+1 − k + 1, . . . , ic − k. (55)

Let M̃ be the matrix obtained from Mk by deleting the columns with indices

it+1, it+1 + 1, . . . , ic. (56)

This means that M̃ is obtained from Mk by replacing M′k with M̃. Then (7) implies that

M̃ = [Ik | Ñ]. (57)

Denote the rows of the matrix M̃ by m̃1, . . . , m̃k. Let ε1, . . . , εk be the rows of the identity
matrix Ik, and let p̃1, . . . , p̃k be the rows of the matrix Ñ. Then we have

m̃i = (εi | p̃i), (58)

for i ∈ [1 : k]. Denote by ẽ1, . . . , ẽn the vectors obtained from e1, . . . , en by deleting the
columns with indices (55). Clearly,

ẽit+1 = · · · = ẽic = 0. (59)

Therefore, equality (53) implies that

k

∑
i=1

νim̃i =
t

∑
`=1

ξ` ẽi` (60)
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It follows that the sum ∑k
i=1 νim̃i has at most t nonzero components corresponding to the t

vectors ẽi` in the right-hand side of (60). Therefore (58), (60) and the definition of εi show that

νi = 0 whenever i /∈ {i1, . . . , it}. (61)

Hence, (58), (60) and (61) imply that

t

∑
`=1

νi` m̃i` =
t

∑
`=1

νi`(εi` | p̃i`) =
t

∑
`=1

ξ` ẽi` . (62)

It follows that ∑t
`=1 νi` p̃i` = 0. This means that the vectors p̃i1 , . . . , p̃it are linearly dependent.

Because these vectors are rows of the matrix Ñ, we see that these t rows of the matrix Ñ
span a space of dimension less than t. Thus, condition (iii) is satisfied.

(iii)⇒(i) Suppose that condition (iii) holds. Then there exist s and t such that it is
possible to remove s columns with indices it+1 − k, . . . , ic − k from the matrix M′k and in
this new matrix Ñ find t rows m̃i1 , . . . , m̃it that span a space of dimension less than t. (For
consistency, here we introduce and use the same notation as in the proof of the preced-
ing implication, so that the numbers it+1, . . . , ic refer to the indices of the corresponding
columns in the matrix M.) Then these rows are linearly dependent, and so there exists a
linear combination equal to zero,

t

∑
`=1

νi` m̃i` = 0 (63)

for some νi1 , . . . , νit . Consider the following linear combination

ϕ =
t

∑
`=1

νi`mi` . (64)

Because Ik is the identity matrix, it follows from (58) that, if we look at the last n− k
components of the vector ϕ, then we see that all nonzero values among these components
correspond to the s columns it+1, . . . , ic of Mk of the matrix Mk corresponding to the
columns of the submatrix M′k that were deleted in the discussion above. All the other
values among the last n− k components of ϕ are equal to zero by (63). Therefore, there are
at most s nonzero values among the last n− k components of the vector ϕ.

On the other hand, because Ik is an identity matrix and ϕ is a sum of t rows of Mk, it
follows that there are at most t nonzero coordinates among the first k components of the
vector ϕ. In total, we see that ϕ has at most s + t = c nonzero components. It follows that
the linear combination (64) of the rows of the matrix Mk produces a c-compromise of the
database D. Thus, condition (i) is satisfied. This completes the proof of Theorem 6.

Note that the running times of the algorithms for the detection of a c-compromise
using conditions (ii) and (iii) are O

(
k2(n

c)
)

and O
(
2cc2(n

c)
)
, respectively.

5. Discussion

The results obtained in this paper advance theoretical knowledge devoted to the protec-
tion of private and confidential information and prepare a foundation for the development
of future comprehensive privacy protection systems.

At the same time, the results obtained have certain limitations, which motivate future
work. Next, we formulate and discuss examples of directions for future research, which are
motivated by our results and will need to be addressed in separate subsequent publications.

The first limitation of our results is explained by the general approach adopted in
the previous papers [14,18–24]. This approach gives only exact and correct answers to
the queries submitted by the clients. However, if the system detects that a query can
compromise confidential information, then it only replies that the query cannot be answered.
The present paper also uses this approach.
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The advantage of this approach is that in the case where it is determined that a new
query submitted by a client does not lead to a disclosure of confidential information,
then the client will be happy to receive an exact answer to the query. However, if it is
discovered that a query leads to disclosure of confidential information, then no answer is
given. Therefore, the client does not receive any helpful response in the latter case.

To tackle this issue, it may be a good idea to investigate how to supply the client with
some additional information expressed, for example, in terms of evaluation of probabilities.
We suggest the following direction for future research.

Direction 1. Investigate and develop hybrid systems, which provide exact answer to a query
if it does not lead to disclosure of confidential information, and which use differential privacy
techniques to provide a randomised probabilistic response to a query if it leads to disclosure of
confidential information.

The second limitation of our proposed systems is their focus on the particular novel
classes of attacks that have not been considered previously. However, if a system provides
protection against these attacks, then it can remain vulnerable to various other types of
attacks. Therefore, for practical applications it is essential to consider systems providing
simultaneous protection against various types of attacks without incurring a prohibitive
computational overload.

Direction 2. Design and investigate combined comprehensive systems providing answers to aggre-
gated queries with simultaneous protection of confidential data against various different types of
attacks without incurring a prohibitive computational overhead. Consider novel approaches to the
optimisation of the performance of these systems.

The third limitation of [14,18–24] and our systems is explained by the fact that this
research still remains at the theoretical stage of development, when it is paramount to
develop a comprehensive theory. Clearly, useful systems can be implemented as practical
software only when there is sufficient rigorous theoretical foundation and only after signifi-
cant advances on Direction 2 are achieved. After that, it will become important to design
software implementations and conduct experimental studies comparing their performance
for various categories of practical datasets. This motivates the following direction.

Direction 3. Design software implementations of new systems proposed during future develop-
ments of Direction 2. Conduct comprehensive experimental studies comparing their performance for
various categories of practical datasets.

The fourth limitation of our systems is in the assumption that the whole collection
of data is known to the system answering queries. Therefore, the systems cannot operate
in the federated learning scenario. Because federated learning is a rapidly growing area
of research where aggregation techniques play significant roles (see, for example, the
surveys [45,46]), we propose the following direction for future research.

Direction 4. Develop systems for protecting the privacy of confidential information in the federated
learning scenario.

Directions 1 to 4 are recorded here in general form for arbitrary queries, even though
the present article motivates the investigation of these directions with a focus on the MVQ
queries as the very first option for consideration.

6. Conclusions

This paper investigated nonlinear queries, which had not been considered in the
literature before. It contributed to the development of formal theory designing new systems
for the protection against inference attacks and obtaining novel rigorous conditions that
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guarantee that the confidential information remains protected. The paper presented the
following contributions to the advancement of knowledge on the preservation of privacy
of confidential information:

• Definitions of the MVQ queries (Section 4.1) and the QEA attacks (Algorithm 1).
• The design of a QAS system for the protection of confidential information against the

QEA attacks (Algorithm 2).
• Theorems 2 and 3 prove that QAS systems guarantee protection against the QEA attacks.
• Definition of the IIA attacks (Algorithm 3).
• The design of an IAS system for the protection of sensitive data from the IIA attacks

(Algorithm 4).
• Theorems 4 and 5 prove that IAS systems ensures protection against IIA attacks.
• Theorem 6 provides stringent matrix conditions for the protection of confidential

information from a group compromise.

Four directions for future research were discussed and presented in Section 5.
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Abbreviations
The following abbreviations are used in this paper and subsections where they are explained:

Abbreviation Meaning Subsection
IAS Interval Audit System Section 4.2
IIA Interval Inference Attack Section 4.2
MVQ Mean and Variance Query Section 4.1
QAS Quadratic Audit System Section 4.1
QEA Quadratic Equation Attack Section 4.1
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