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Abstract: Over the last few years, a rich amount of research has been conducted on remote vital sign 
monitoring of the human body. Remote photoplethysmography (rPPG) is a camera-based, unobtru-
sive technology that allows continuous monitoring of changes in vital signs and thereby helps to 
diagnose and treat diseases earlier in an effective manner. Recent advances in computer vision and 
its extensive applications have led to rPPG being in high demand. This paper specifically presents 
a survey on different remote photoplethysmography methods and investigates all facets of heart 
rate analysis. We explore the investigation of the challenges of the video-based rPPG method and 
extend it to the recent advancements in the literature. We discuss the gap within the literature and 
suggestions for future directions. 
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1. Introduction 
Heart rate (HR) is a performance indicator of a person’s total cardiac output and a 

prospective clinical diagnosis tool. The gold standard for analyzing cardiac measure-
ments is an electrocardiogram (ECG), which measures the electrical activity of the heart 
through sensors (called electrodes) attached to the skin. These electrodes are connected 
by wires to an ECG recording machine, and this type of contact measurement is appro-
priate for clinical setting. Another method is photoplethysmography (PPG), an optical 
and non-invasive technique that detects the changes in the blood volume pulse (BVP) in 
peripheral blood vessels via contact sensors attached to anatomical locations such as the 
wrists, fingers, and toes. Commercial wearable devices such as fitness trackers and smart-
watches make use of this principle, where a sensor emits light to the skin and measures 
the reflected light intensity due to the optical absorption of blood [1]. Even though these 
methods are invasive, they require skin contact, which can cause discomfort, especially in 
neonates [2] and elderly care. 

However, in recent years, remote measurement of HR has been a prominent research 
topic that measures the heart rate (HR) from face images and videos by analyzing tiny 
color variations or body movement [3]. This is a practical application of PPG technology 
in a completely non-invasive manner and is referred to as remote photoplethysmography 
(rPPG). It can predict not only the heart rate but also other vital information, such as heart 
rate variability and blood pressure. thereby inferring mental stress [4], variations in car-
diovascular functions, quality of sleep [5], and drowsiness [6]. The advent of the digital 
camera brought this remote method to the masses. Remote heart rate monitoring applica-
tions have spread across the following fields: 
• Hospital care [7]; 
• Telemedicine [8,9]; 
• Fitness assessment [10,11]; 
• Motion recognition [12]; 
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• Automotive [13,14]. 
This paper aims to provide a critical review of state-of-art signal processing tech-

niques and the learning-based algorithms in remote photoplethysmography We discuss 
the challenges in rPPG measurements and recent advancements in the process. 

2. Outline 
Section 3 focuses on the motivations and problem statements of this work. The rest 

of this paper is organized as follows. Section 4 explains the rationale behind remote pho-
toplethysmography and methods. We review the signal processing-based rPPG methods 
and learning-based methods in Section 5 and show publicly available datasets in the liter-
ature. Section 6 discusses the preceding sections and challenges. Finally, we conclude and 
confer with the research gap and future aspects in Section 7. 

3. Motivations and Problem Statement 
This paper, inspired by recent advances in remote photoplethysmography, allows for 

predicting the heart rate from skin color variations due to blood flow from face videos, as 
it is invisible to the human eye. A breakthrough development of signal processing and 
deep learning methods made rPPG an efflorescence in the current literature. 

Although appreciable progress has made in rPPG methods in the last few years, few 
challenges still remain open, such as motion robustness, illumination, skin tone , and com-
pression artifacts. Some relevant reviews of signal processing-based methods can be 
found in [15–20]. This paper focuses on improving understanding of the physiological 
phenomena represented within remote PPG. We set this paper’s sights on two aims: 
• To discuss rPPG measurement using signal processing methods as well as its recent 

furtherance in the deep learning environment; 
• To harness the insight into the challenges on rPPG, and we anticipate some sugges-

tions on the future direction. 

4. Remote Photoplethysmography 
Photoplethysmography (PPG) is a noninvasive optical technique that is used to de-

tect volumetric changes in blood in the microvascular bed of tissue [21]. This method reck-
ons with the principle that optical absorption of human skin varies with the blood volume 
pulse (BVP), which measures the amount of blood flowing through the tissues with each 
heartbeat. Human skin has three layers: the epidermis with capillaries, dermis with arte-
rioles, and hypodermis with arteries [22]. When the skin is exhibited to light with a spe-
cific wavelength, the epidermis and dermis layer scatter light, whereas the hypodermis 
diffuses light [23,24]. In consonance with Lambert’s law of light intensity [25], the light 
reflected through the skin can be contemplated in the process of diffusion and scattering. 

Remote photoplethysmography (rPPG) is a contactless measurement that makes use 
of the PPG principle. It relies on a camera and then measures red, green, and blue light 
reflection changes from the skin as the contrast between specular and diffusion reflections, 
as demonstrated in Figure 1. Images or videos of human skin under ambient light sources 
or with dedicated illumination are recorded and processed to recover the plethysmogra-
phy signal from which physiological parameters are extracted. A diffuse reflection com-
ponent carries the information of PPG as it diffuses through the skin, whereas a specular 
reflection component is the one scattered by the surface of the skin. Even though the spec-
ular component has no pulse information, the total reflected light observed by the camera 
depends on the relative contribution of both components. 
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Figure 1. Illustration of remote photoplethysmography from face videos. This method quantifies 
the contrast between specular and diffusion reflection components and measures the changes in 
red, blue and green light reflected from the skin due to blood flow. A physiological signal is pro-
cured using suitable a computational approach and thereby predicting vital information. 

In essence, the changes in blood volume during a cardiac cycle would cause minute 
color changes on the skin. Although these changes are invisible to the human eye, they 
could be captured by optical sensors. Accurate measurement of these changes generates 
a plethysmography signal, from which vital signs of the body such as the heart rate, heart 
rate variability, and respiration rate could be measured. 

5. Remote Methods for HR Detection 
A camera is capable of seizing the subtle pulsation of human skin due to blood cir-

culation and could produce red, green, and blue raw signal traces by sampling different 
regions of the optical spectrum. These raw signals are then processed to obtain a plethys-
mography signal which contains physiological information. The existing remote PPG 
methods for HR measurement from human face videos can be classified as shown in Fig-
ure 2. 

 
Figure 2. Classification of computational techniques used in remote photoplethysmography for re-
covering physiological information from videos. From the input video stream, each frame is ana-
lyzed with different computational approaches to obtain vital information. The signal processing 
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method is an unsupervised approach to processing input video frames, and it is classified into mo-
tion-based and color intensity-based methods. The learning-based approach is the recent trend in 
technology, and based on the perspective of workflow, it could be classified as a supervised (hybrid) 
approach and end-to-end learning. 

The motion-based method for detecting a heart rate (HR) emanated from the ballis-
tocardiogram [26]. This explains the relation between cardiac output and the amplitude 
of human body movements. Later, heart rate measurement using ballistocardiography 
(BCG) motion of the head with a wearable device was explained in [27]. Sooner, the pos-
sibility of heart rate detection from face videos by measuring subtle head motion due to 
the influx of blood at each beat was shown in [28]. In this method, a combination of prin-
cipal combination analysis (PCA) and the filtering method was used to identify the indi-
vidual beats and evaluate them in 18 subjects. A Viola-Jones face detector [29] is used for 
region of interest (ROI) detection. 

A motion-based method was explained in [30], using a single ROI and independent 
component analysis (ICA) subsequently. The technological improvements using BCG 
methods were scrutinized in [31], and it was concluded that more studies were needed to 
mitigate motion artifact challenges. Although these motion-based methods are invariant 
to illumination, the voluntary head motion and complex facial expressions could degrade 
the reliability of this method. 

In this paper, we focus on color intensity-based methods because of their increasing 
attention in the literature, since they enable heart rate detection from a simple camera with 
ambient light as an illumination source. These methods detect heart rates from camera 
recordings with the help of different image and signal processing techniques. The possi-
bility of non-contact physiological computation using a thermal camera was introduced 
in [32], and it was demonstrated that plethysmography signals could be measured from 
the human face from simple consumer-level camera recordings with ambient light condi-
tions[33]. Since then, a substantial amount of research has been conducted in remote pho-
toplethysmography. The rPPG methods can be split into two categories according to the 
previous works: signal processing-based methods and learning-based methods. 

5.1. Signal Processing Methods 
This method is a color intensity-based approach to measuring PPG from face videos. 

First, a region of interest (ROI) of each frame of the input video is detected, and then the 
red, green, and blue channels are spatially averaged to form raw signal traces. These traces 
are then processed by different signal processing techniques to recover the physiological 
signal. The entire process can be divided into three stages as demonstrated below. An 
overview of the general steps in the signal processing-based approach for recovering the 
heart rate is illustrated in Figure 3: 

(1). Pre-processing; 
(2). Signal extraction; 
(3). Heart rate estimation (post-processing). 

5.1.1. Pre-Processing 
Face Detection and ROI Tracking 

Since heart rate detection is based on the photoplethysmography signals, which are 
derived from imperceptible skin color variations caused by pulsatile flow, it is essential to 
process the video frames. The process starts with the extraction of the face and localizes 
the measurement region of interest (ROI) for each video frame. In some of the previous 
works, face detection has been explained manually, with a subject standing stock-still. 
However, most of the works have performed face detection automatically by using the 
Viola–Jones algorithm was explained in [29], which is based on a machine learning ap-
proach that provides a bounding box of the subject as a result. This algorithm is a 
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bookmark in rPPG methods, as it possesses a high detection rate and is available in the 
computer vision library of OpenCV and MATLAB. 

 
Figure 3. Workflow of signal processing method. It includes 3 stages. (a) Pre-processing is needed 
to obtain red, green, and blue traces from input video frames. This stage includes face tracking and 
ROI detection. (b) Signal extraction is performed using different signal processing algorithms, and 
it includes a filtering process to obtain a good quality physiological signal. (c) Heart rate estimation 
is the final step, where the physiological signal is processed using peak detection or frequency anal-
ysis to obtain required vital information. 

Other popular algorithms used for face detection are active appearance models 
(AAM), a statistical model that provides facial landmarks [34], dlib [35], mtcnn [36], and 
the Kanade–Lucas–Tomasi approach [37,38], which provides limited assumptions about 
the image and possess high accuracy . 

Selecting a suitable region of interest (ROI) is the next challenging step, as it has a 
direct impact on the accuracy and reliability of the general algorithm. ROI detection finds 
a set of pixels that has the most significant PPG information, and these pixels are spatially 
averaged to obtain the plethysmography signal [39]. 

Several studies were explained the quality of the ROI having a direct influence on the 
quality of the signal. Heart rate estimation utilizing the whole face has been proposed in 
some of previous works , although eye movements near the eye area may cause artifacts. 
Due to the high amount of light absorption, the skin regions with capillaries would pro-
duce a strong signal [40]. However, many researchers selected the forehead and cheeks 
[41–43] as the most significant ROI areas, as they are less susceptible to muscle movements 
compared with other regions of the face. Table 1 describes the summary of different meth-
ods of face selection and ROI detection. The authors of [44] were proposed that the fore-
head and cheeks would be computationally efficient ROIs. They divided and analyzed 
different face regions and evaluated the quality by using evaluation matrices. 
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Raw Signal Trace Extraction 
To obtain the raw signal traces, the detected ROIs were separated into RGB channels. 

Then, the three channels were averaged spatially over all the pixels to obtain the red, 
green, and blue signal traces. Subsequent processing would be performed on these raw 
traces. 

5.1.2. Signal Extraction 
This stage includes filtering and dimensionality reduction. The raw signal obtained 

from the ROI might have unwanted noise due to motion or illumination. To remove the 
noise, a filtering process was performed on the raw RGB traces, and thereby the signal-to-
noise ratio (SNR) would be increased. An increased SNR value provides a good quality 
plethysmography signal. 

Filtering 
Filtering is the process in which digital filters were applied to the raw signal traces 

based on some prior knowledge of HR frequencies. Before applying dimensionality re-
duction, a filtering process would be performed on the raw signals to achieve a good sig-
nal-to-noise ratio. A frequency band (0.7 Hz–4 Hz) is normally selected which leads to 42–
240 beats per minute HR [45]. The filtered signal can be directly used for plethysmography 
signal detection [46]. According to [47], the green channel signal carries more PPG infor-
mation compared with the other channels. However, the red and blue channels also carry 
some complementary information. In the green channel approach, the filtered green chan-
nel component is taken for further processing to obtain a PPG signal. It uses the spatially 
averaged pixel value of green traces and then normalizes the traces. Then, it performs an 
FFT to transform the signal from the spatial domain to the frequency domain and calculate 
the power spectral density (PSD) distribution. 

Dimensionality Reduction 
Dimensionality reduction methods are used to minimize the dimensionality from 

raw signals to achieve a more accurate and robust PPG information signal. The major 
classifications of the rPPG methods are based on how they extract plethysmography sig-
nals from the raw traces. The signal extraction methods can be classified broadly into three 
categories [48]: 
• Blind source separation; 
• Model-based methods; 
• Design-based methods. 

A PPG signal is considered a one-dimensional signal which is represented as a linear 
combination of the weighted sum of the raw signals, and it is taxing to estimate their 
weights [49]. Blind source separation (BSS) algorithms were introduced in [50], and the 
purpose of BSS algorithms is to separate the desired PPG signal from noise and artifacts 
due to statistical independence and correlation. Principle component analysis (PCA) and 
independent component analysis (ICA) are typical BSS techniques that are widely applied 
for dimensionality reduction. 

An ICA-based algorithm was explained in [51] as an optimal combination of the raw 
signals, in which the raw signals are separated into independent non-Gaussian channels. 
In this method, the authors arbitrated that the second component produced after the ICA 
is considered a periodic one used for further processing. Several authors adopted this 
method in their works.  

Principal component analysis (PCA) has been proposed [52], and these authors 
claimed the effectiveness of their approach on ICA, which may lead to the same result in 
some applications. Later, different methods for rPPG investigated in [53] and deferred to 
ICA to yield better accuracy and reliability. This BSS approach was further investigated 
and adopted in the literature [54], explaining the performance limits of ICA-based 
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techniques down the line. In the BSS method, the raw signal traces are combined, and the 
most periodic independent signal selected is the PP signal. The main drawback of this 
method is that this does not also consider motion in the given periodic signal. Thus, the 
major limitation of BSS can be concluded to be motion intolerance.  

Chrominance-based (CHROM) algorithms [55], which belong to the model-based ap-
proach, mitigates the subject motion issues in the BSS algorithm. The authors proposed a 
method in which the RGB pixels in each frame of the input video have been identified 
using a color filter method and claimed that white illumination is successfully eliminated 
by the proposed skin tone standardization approach. CHROM eliminates the specular re-
flection component by using a color difference chrominance signal and taking advantage 
of the BSS method. However, both methods still do not considered illumination, as it is a 
significant noise source in the recovered signal. 

To overcome this, the spatial subspace rotation (2SR) method was proposed in [56], 
which exploits the benefits of statistical measurement of multiple pixel sensors in a cam-
era. This method is performed in both the spatial and temporal domains. First, a subspace 
of skin pixels is constructed, and then the rotation angle between the frames is measured 
to determine the PPG information. The authors claimed the 2SR method outperformed 
ICA and CHROM. 

5.1.3. Heart Rate Estimation 
The heart rate (HR) is evaluated from the recovered PPG signal either by peak detec-

tion or frequency analysis. In the peak detection approach, individual peaks are used to 
extract the heart rate. Later, the authors of [57] showed the physiological measurements 
using five-band camera sensors. Based on the error range of the reliable methods of heart 
rate detection, the medically tolerable accuracy is set to three beats per minute (BPM), 
which represents the accuracy of the rPPG method to be the same as traditional contact 
methods. A photoplethysmography signal is considered a time-varying intensity signal. 
From the resulting physiological signal, the heart rate (HR) is the inverse of the average 
time difference between two consecutive beats in the time domain. However, in the fre-
quency domain, the HR is extracted with the highest energy power spectrum of the phys-
iological signal. We could calculate the instantaneous HR by measuring the beat-to-beat 
HR, and this is more informative, but this requires accurate peak detection. 

An automated method has been proposed to detect the peak-to-peak time between 
systolic and diastolic inflexion using the second-order derivative of the recovered signal. 
An analysis of HR detection methods was performed [58] based on the variations of the 
inter-beat intervals. A short-time Fourier transfer (STFT) method for HR detection was 
proposed in [59], and it is more effective when the heart rate pattern changes rapidly. A 
predictive model was also developed using workout video frames, and it would be more 
productive under real-time scenarios. 

However, frequency analysis is the commonly adopted method in the literature. In 
this method, the extracted PPG signal is converted to the frequency domain using an FFT 
[60] or DCT [61], where Welch’s method is used for density estimation. The strongest pe-
riodic signal within the frequency band is considered the signal with PPG information 
and computes the main heart rate over a particular period. Later, the authors of [62] in-
troduced a generative adversarial network (GAN), a deep learning-based technique to 
learn rPPG noise impacts. An analysis of some of the relevant signal processing-based 
rPPG methods can be found in Table 1. 
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Table 1. Analysis of some signal processing-based methods for rPPG. 

Publication 
Prepro-
cessing 

Signal Extraction 
and 

HR Estimation 
Methods 

Database 
Performance and Com-

ments 

(Verkruysse, 
2008) Manual 

Bandpass filter, 
FFT 

Self-col-
lected 

Recorded with a simple 
digital camera and am-

bient 
light, performance 

measured qualitatively 

(Poh, 2010) 

Automated 
face  

tracker faces 
(Viola and 
Jones (VJ), 

Lienhart and 
Mad) 

ICA, FFT Self-col-
lected 

With movement arti-
facts, 

root mean square devi-
ation (RMSE): 4.63 bpm 

(Poh, 2011) 
Automated 

face  
tracker 

ICA, five-points  
moving average fil-

ter, 
and bandpass filter 

Self-col-
lected 

RMSE: 1.24 bpm 
Correlation coefficient: 

1.00 

(Lewandowska, 
2011) Manual 

Principle component 
analysis (PCA) 

Self-col-
lected 

Pulse rate from two-
color 

channels 

(Haan, 2013) 
Automatic 

face  
detection 

Chrominance-based 
approach (fixed 

signal combination, 
FFT) 

Self-col-
lected RMSE: 0.4 bpm 

(Mannaperuma, 
2015) 

Automatic 
face  

detection 

ICA, the channel with 
the strongest  

blood volume pulse 
signal is selected, 

inverted, and interpo-
lated, 

and then peaks are 
detected 

Self-col-
lected 

Find band camera 
sensor 

(correlation: 1.00) 

(Wang, 2015) 
Face detec-

tion 
by VJ 

FFT, bandpass, and 
adaptive 

bandpass, motion-re-
sistant 

Remote PPG method 

Self-col-
lected 

Peak detection 
performance compared 

with ICA 
method using bland 

Altman plot 

(Wang, 2015) Manual Spatial pruning +  
temporal filtering 

Self-col-
lected 

SNR improvement 3.34 
to 6.74 dB 

on state-of-the-art 
methods 

(Wang, 2016) 
Spatial distri-

bution of 
skin pixel 

2SR algorithm 
Self-col-
lected 

Results compared with 
ICA, CHROM, 

AND PBV 
SNR-6.55 
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(Yu, 2019) 
Spatial ROI 

selection  
and tracking 

Novel semi-blind 
source extraction 
method, MAICA 

UBFC-
rPPG 

MMSE-HR 

UBFC-rPPG (MAE-
O.55BPM) 

MMSE-HR (MAE-3.91) 

(Fouad, 2019) Automatic 
face tracking 

Uses BSS algorithm, 
FT 

Self-col-
lected 

Studied factors affect-
ing accuracy 

(Gudi, 2020) 

Active ap-
pearance 

model (AAM) 
Head orienta-

tion 

Unsupervised 
method operates 

in real time 
FFT 

PURE 
VIPL-HR 

CO-
HAFACE 

0.34 bpm 
0.57 bpm 
0.46 bpm 

5.2. Learning-Based Methods 
Signal processing-based rPPG methods were explained in the previous sections. In 

the literature, recent trends include learning-based PPG measurements. The major benefit 
is that they could detect the heart rate directly from video input, and the system learns the 
rPPG mechanism from the beginning. Learning-based techniques can be divided into two 
categories for better understanding: supervised learning methods and end-to-end learn-
ing methods. An illustration of the workflow can be seen in Figure 4. With the supervised 
learning approach, the feature extraction should be performed manually, whereas deep 
learning methods extract features directly from the input video without any human inter-
vention. 

 
(a) 

 
(b) 

Figure 4. Functional diagram of learning-based methods. (a) The supervised method is a hybrid 
method where feature extraction is manually performed before feeding the input frames into the 
learning algorithm. (b) The end-to-end method is an unsupervised method, with no manual pre-
processing needed. 

5.2.1. Supervised Learning Methods 
This method is a combination of both the manual and learning-based approaches, in 

which the preprocessing part is performed manually and the result feeds into the learning 
networks. The motivation to develop this algorithm is to mitigate the issues of signal pro-
cessing-based methods, and it was a successful strategy to a certain extent. 

A machine learning approach was proposed in [63] to improve the accuracy of the 
conventional method, which evaluated and compared the ICA method with two machine 
learning techniques: linear regression and the k-nearest neighbor (kNN) classifier in a 
controlled situation. Linear regression is a model between a dependent variable and ex-
planatory variables, whereas kNN is a learning-based approach [64] that measures the 
training instance closest to the known test instance. The kNN takes the average heart rate 
of the k-nearest neighbors, and the results have shown that it would outperform the ICA 
method. Later on, more advanced machine learning techniques such as convolutional 
neural networks [65,66] and temporal neural networks were proposed. 

Input Videos Preprocessing Learning 
Algorithms

Heart Rate 
Evaluation

Input Videos Deep Learning 
Algorithms

Heart Rate

Evaluation 
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A two-layer LSTM was explained in [67] and showed that noise signals can preserve 
functional signals. Synthetic signals are used to train the model, and the results are ana-
lyzed on a public domain database. A feature extraction stream can be observed in [68], 
which learned a robust feature representation and developed a complementary stream to 
extract reliable vital signals. A unified neural network was reported for estimating the 
HR, and performance analysis was performed using the COHFACE dataset. 

A single-photon avalanche diode (SPAD) camera-based method was introduced in 
[69] and provided a hybrid method that analyzed the frame stream with a neural network 
followed by signal processing techniques for HR detection, and it showed its effectiveness 
in unrestrained illumination. A deep HR method was proposed in [70], and the authors 
also explained a machine learning approach with a frontend and backend component. The 
front end learns independently from training video samples, whereas the back end is a 
fully connected neural network for HR estimation and evaluated on two different da-
tasets. 

A Siamese rPPG network [71] proposed feature learning from two facial regions sim-
ultaneously. A two-branch model was trained jointly, and the results were evaluated on 
three benchmark datasets and shown to surpass the results of the existing methods. 

5.2.2. End-to-End Learning-Based Approach 
With the emergence of the deep learning end-to-end method, extensive opportunities 

are opening up for performing tasks more efficiently in a better way. The first end-to-end 
learning model ‘DeepPhys’ was introduced in [72], which is based on a convolutional at-
tention network (CAN) and enables spatiotemporal visualization of the signals. This pa-
per proposed a skin reflection model that is exceptionally robust in different illumination 
conditions. Since it is an end-to-end system, the intermediate steps in the state-of-the-art 
method could be removed successfully. The authors evaluated the proposed method on 
three different datasets and have shown surpassing results when compared with the state-
of-the-art approaches. 

Subsequently, SynRhythm was proposed [73] for HR estimations and it is an unsu-
pervised learning based approach. Two successive convolutional neural networks (CNN) 
are used to extract the blood volume pulse from a sequence of images and thereby the 
heart rate. RhythmNet [74] exploits the CNN and gated recurrent units to form a spatio-
temporal representation. A VPL-HR database [75]containing 2378 visible light subjects 
was introduced to study the algorithm’s robustness with motion and illumination vari-
ance. Nonetheless, a compression artifact challenge has yet to be investigated. Belatedly, 
a deep spatiotemporal network for regenerating the HR from videos was proposed in [76] 
and used the MAHNOB HCI and OBF databases for experiments. The results were eval-
uated and compared with RNN and 3DCNN-based PhysNet algorithms and showed bet-
ter performance. Three signal processing methods, including the CHROM and POS meth-
ods, were replicated, and the results were compared with the proposed algorithm. The 
main advantage is that the proposed algorithm allows HRV features, and it would be a 
beneficial method in realistic situations. 

A two-step convolutional network was introduced in [77], where it was trained by 
alternating optimization, and the results were validated on three publicly available da-
tasets as well as on a newly collected dataset of 204 fitness-themed videos. However, com-
pression is still a challenging scenario. The authors of [78] proposed a transfer learning 
strategy from a limited number of face videos and used a deep HR estimator from syn-
thetic rhythm signals. This algorithm uses a sine function to represent the periodic part of 
the synthetic signal and limit the frequency to overcome the challenges, such as a large 
volume of training data and illumination. Even if the proposed approach showed effec-
tiveness with the state-of-the-art methods, it still needs a large database for a more accu-
rate HR. 

A neural architecture called AutoHR was proposed in [79], which evaluated the con-
volution difference in the spatial domain. Subsequently, the authors of [80] performed a 
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comparative evaluation and showed the learning-based method to achieve better perfor-
mance in the signal processing methods. They also showed a low error rate, which makes 
learning-based methods applicable in real-time scenarios. Some relevant papers on deep 
learning-based rPPG can be found in Table 2. 

Table 2. Analysis of some learning-based methods for rPPG. 

Serial 
No Paper Network Description Datasets  

1 (Weixuan, 2018) DeepPhys 
First end-to-end net-

work  

RGB VIDEO 1  
RGB VIDEO 11 
MAHNOB-HCI 

IR VIDEO  

2 (Niu, 2018) SynRhythm 

Transfer learning 
strategy 

and synthetic 
rhythm signals 

MAHNOB-HCI 
MMSE-HR  

3 (Spetlik. R, 2018) HR-CNN Uses 2-step CNN 
MAHNOB-HCI 

PURE 
COHFACE  

4 (Wang, 2020) Two stream CNN 
Two-stream end-to-

end network 
COHFACE  

5 (Niu.X, 2020) RhythmNet 
End-to-end spatial-

temporal representa-
tion 

MAHNOB-HCI 
MMSE-HR 
VIPL-HR 

6 (Yu.Z, 2020) AutoHR 
 Neural architecture 

search (NAS) 

MAHNOB-HCI 
MMSE-HR  
VIPL-HR 

7 (Min Hu, 2021) ETA-rPPGNet 
Time domain atten-

tion mechanism 

PURE 
MMSE-HR  
COHFACE  
UBFC-rPPG 

8 (Hao LU, 2021) NAS-HR 
 A neural network-

based method 
PURE 

VIPL-HR 

An end-to-end three-dimensional (3D) spatiotemporal convolutional network was 
introduced in [81] which used a multi-hierarchical feature fusion-based attention module. 
It efficiently minimized the impact of motion and noise. Two publicly available datasets 
were used for evaluation, and it reconstructed the physiological signals accurately. 

A three-domain segment network, ETA-rPPG Net, was illustrated in [82] along with 
a time domain attention module that used a convolutional kernel. A two-part loss function 
was proposed for supervised training, and it could effectively reduce the noise interfer-
ence from illumination variation. However, despite showing better results, more robust 
models in low-constraint environments are still needed. 

A major drawback of the learning-based approach is the large amount of data needed 
for training the network to achieve robustness and accuracy. To overcome this difficulty, 
the authors of [83] proposed an approach to training a deep HR estimator from synthetic 
PPG signals and a limited number of available face data. The authors showed the effec-
tiveness of their approach using public datasets. The authors explained the effectiveness 
of extracting the HR from face videos deprived of video processing. 

Later, the authors of [84] came up with a meta-learning approach (Meta-rPPG) that 
focuses on using a synthetic gradient generator, and it requires several transductive infer-
ence steps and achieves a greater accuracy than the state-of-the-art methods. A metaphys-
ical model that works well with supervised and unsupervised models was proposed in 
[85] and evaluated on two different datasets. However, the performance degraded when 
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the subject was darker. This paper demonstrated better performance than the state-of-the-
art approaches. Even if it outperformed the results of the state-of-the-art signal processing 
methods, it still needs manual feature extraction. The main challenges still need to be mit-
igated are the following: 
• It requires a large volume of training data; 
• Poor performance under realistic conditions; 
• Low accuracy due to compression; 
• Complexity due to intermediate steps. 

An end-to-end model proposed in [85] using undercomplete independent compo-
nent analysis U-LMA was tested under three scenarios to estimate the nonlinear cumula-
tive density function (CDF). Another skin segmentation method was introduced in [86] to 
process low-resolution inputs, make use of depth-wise convolutional layers, and localize 
skin pixels. The authors proved the real-time better performance on a small IoT device. 

6. Datasets 
To evaluate the rPPG algorithms, most of the authors used privately recorded da-

tasets which are not available publicly. DEAP is a multimodal dataset which was put for-
ward in [87] for human emotion analysis. The authors made the dataset available publicly 
with the physiological signals of 32 participants and 40 videos. Later, in [88], MAHNOB-
HCI, a dataset with a large collection of modalities was recorded and made open to the 
public. High synchronization accuracy makes this database beneficial for researchers who 
need to assess their methods and algorithms in challenging databases. The authors of [89] 
conducted analysis and evaluated different public datasets. They also introduced a 
cleaner PPG set with a collection of truth peaks for 13 major datasets to overcome the noise 
and miscalculations in public datasets. 

Practically, the main challenge regarding datasets is the lack of publicly available da-
tasets under realistic conditions. Most of the papers in the literature were assessed on pri-
vately owned databases, which makes it difficult to generalize the algorithms. Selections 
of datasets that are publicly available are shown in Table 3. 

Table 3. Publicly available datasets. 

Dataset Subject Camera 
Physiological 

Signal  

PURE 
10 Subjects 
59 Videos 

480p@30fps 
Lossless PNG im-

ages 

Ground truth 
PPG @60 Hz 

Recorded Move-
ment such as 

talking, rotation, 
translation 

MAHNOB HCI 27 Subjects 
627 Videos 

780 × 580P@51fps 
H.264 format 

Ground Truth 
PPG @256 Hz 

Subject recorded 
while watching 
video stimuli 

COHFACE 40 Subjects 
164 Videos 

480p@20fps 
MPEG4 Part 

2format 

Ground Truth 
PPG @256 Hz 

Subject recorded 
illuminated by a 

spotlight and 
natural light 

MMSE-HR 
40 Subjects 
102 Videos 

1040 × 
1392@25fps 

JPEG Images 

Instantaneous 
HR@1 kHz 

Part of a large 
multimodal cor-
pus, subject ex-
hibit facial ex-

pressions 

Vicar PPG 10 Subjects 
20 Videos 

720p@30fps 
H.264 format 

Ground Truth 
PPG @30 Hz 

Subject recorded 
before and after 

workout 
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UBFC – RPPG 
42 Subjects 
42 Videos 

480p@30fps 
Raw video for-
mat (lossless) 

Ground Truth 
PPG @30/60 Hz 

Subject recorded 
while playing 

game 

7. Challenges 
The preceding sections explained different approaches to HR detection from face vid-

eos. From the literature, it is clear that learning-based methods are robust and flexible and 
work better in practical applications. Since remote photoplethysmography is a camera-
based technology, certain challenges such as skin melanin tone, illumination conditions, 
subject motion, and compression impacts need to be addressed for accurate measurement 
of heart rates. In the literature, we could find different works carried out to overcome 
these challenges. Deep learning networks can overcome these limitations to an extent by 
training large datasets. 

The influence of the compression schemes of motion in different video formats has 
been investigated, and the quality loss against compression artifacts was investigated [90], 
addressing the compression problem in detail and evaluating the significant decrease in 
performance of rPPG algorithms with the increase in compression. The authors observed 
the compression to degrade the accuracy of the measured physiological signals in real-
time processing. Since most of the datasets were recorded under laboratory settings with 
good conditions, the rPPG-based HR gives better results compared with the traditional 
contact-based techniques. However, in real-world applications, video compression is in-
evitable, as it helps to reduce storage, transmission time, and bandwidth. The videos cap-
tured through the commercial cameras undergo different compression codecs and bi-
trates, and so the frames observed from a camera significantly affected the compression 
artifacts. Since compression plays an important role in signal detection, the compression 
artifact impact remains open, and only a few pieces of research have been carried out in 
this area. 

In [91], the authors explained the types of compression artifacts and proposed a sin-
gle-channel framework to reduce the effects of compression. They claimed that the red 
and blue color components are the ones most affected by video compression due to the 
low bit rate. The authors of [85] developed a STVEN autoencoder to convert video from 
one bit rate to another. They performed an image enhancement procedure to overcome 
the compression effects. Subsequently, the authors of [92] proposed a deep super-resolu-
tion network for low-resolution video which enhanced the rPPG method in compressed 
video and conducted a performance analysis at varying compression levels and in differ-
ent formats. The authors proposed an approach to recover PPG signals from compressed 
videos rather than enhancing them and also evaluated the effects of compression on dif-
ferent skin types. However, the authors did not consider the effects of compression from 
motion. 

To sum up, video compression degrades the quality of PPG measurements, since it 
relies upon subtle changes in the signal from the camera. However, the compression does 
not affect the quality of the videos, as it is typically optimized for visual quality. Since the 
remote methods consider minute changes in the signal, it is important to develop methods 
that can mitigate compression loss. Other significant gaps can be seen in the data and 
privacy concerns. 

7.1. Data Implication 
Different datasets contain different amounts of motion, resulting in the difficulty of 

generalizing an algorithm. It is important to have benchmarks to evaluate the efficiency 
of different approaches[93]. A public benchmark dataset, Vicar Vision, has been devel-
oped to overcome the reproducibility problem in rPPG research, which defines the illu-
mination and motion challenges. There is no benchmark dataset available to address the 
challenges in the rPPG environment. Another issue is skin tone, as greater amounts of 
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melanin absorb more light than other skin types, and thus the pixels may become satu-
rated. This results in a weaker physiological signal measurement. 

Most of the datasets contain lighter skin tone participants because they were collected 
from European countries and the United States of America. A meta-analysis method ex-
plained the significant drop in performance for darker skin tones. To study the impact, 
the authors combined three datasets with different participants and concluded that da-
tasets with better representation are needed for more accurate vital sign measurements 
using rPPG. The skin tone biases in the rPPG environment were investigated in [94], and 
a physically driven approach was proposed in [95]. 

7.2. Privacy Concern 
Since this is camera-based technology, there is potential risk in terms of ethics and 

the privacy of the subject. Researchers proposed innovative methods to mitigate this con-
cern. The Privacy-Phys model was proposed in [96] based on a pretrained model of a 3D 
CNN. A novel algorithm, pulse edit, was proposed in [97] to edit the facial video physio-
logical signal to protect the subject’s privacy disclosure. 

8. Conclusions 
In this paper, we performed a critical review of different remote photoplethysmog-

raphy methods for heart rate detection from facial videos. This survey also aids in high-
lighting the advantages and disadvantages of different techniques and approaches to HR 
detection. Additionally, we observed the impact of compression artifacts on rPPG meth-
ods and reviewed some works that took video compression into account. A significant 
research gap can be seen in the literature for taking compression into consideration. An-
other crucial challenge that needs to be addressed is the performance gap between skin 
color tones, as this plays a key role in real-time scenarios. We hope that recent advance-
ments in neural networks can help to mitigate the current issues. In our future work, we 
would like to develop some hybrid approaches to increase the accuracy and investigate 
the possibilities of advancing remote methods by using neural models to alleviate the ex-
isting challenges. 
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