o °
. informatics

Article

Benchmarking Deep Learning Methods for Behaviour-Based
Network Intrusion Detection

Mairio Antunes L%#*

check for
updates

Citation: Antunes, M.; Oliveira, L.;
Seguro, A.; Verissimo, J.; Salgado, R.;
Murteira, T. Benchmarking Deep
Learning Methods for
Behaviour-Based Network Intrusion
Detection. Informatics 2022, 9, 29.
https://doi.org/10.3390/
informatics9010029

Academic Editor: Antony Bryant

Received: 6 February 2022
Accepted: 17 March 2022
Published: 20 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Luis Oliveira

3,% 4

, Afonso Seguro , Joao Verissimo %, Ruben Salgado * and Tiago Murteira

Computer Science and Communication Research Centre (CIIC), School of Technology and Management,
Polytechnic of Leiria, 2411-901 Leiria, Portugal

Institute for Systems and Computer Engineering, Technology and Science (INESC TEC, CRACS),

4200-465 Porto, Portugal

3 Smart Cities Research Center (Ci2), Polytechnic Institute of Tomar, 2300-313 Tomar, Portugal

4 Polytechnic Institute of Tomar, 2300-313 Tomar, Portugal; aluno21086@ipt.pt (A.S.); aluno21072@ipt.pt (J.V.);
aluno21374@ipt.pt (R.S.); aluno21087@ipt.pt (T.M.)

Correspondence: mario.antunes@ipleiria.pt (M.A.); loliveira@ipt.pt (L.O.)

Abstract: Network security encloses a wide set of technologies dealing with intrusions detection.
Despite the massive adoption of signature-based network intrusion detection systems (IDSs), they
fail in detecting zero-day attacks and previously unseen vulnerabilities exploits. Behaviour-based
network IDSs have been seen as a way to overcome signature-based IDS flaws, namely through
the implementation of machine-learning-based methods, to tolerate new forms of normal network
behaviour, and to identify yet unknown malicious activities. A wide set of machine learning methods
has been applied to implement behaviour-based IDSs with promising results on detecting new
forms of intrusions and attacks. Innovative machine learning techniques have emerged, namely
deep-learning-based techniques, to process unstructured data, speed up the classification process,
and improve the overall performance obtained by behaviour-based network intrusion detection
systems. The use of realistic datasets of normal and malicious networking activities is crucial to
benchmark machine learning models, as they should represent real-world networking scenarios and
be based on realistic computers network activity. This paper aims to evaluate CSE-CIC-IDS2018
dataset and benchmark a set of deep-learning-based methods, namely convolutional neural networks
(CNN) and long short-term memory (LSTM). Autoencoder and principal component analysis (PCA)
methods were also applied to evaluate features reduction in the original dataset and its implications
in the overall detection performance. The results revealed the appropriateness of using the CSE-CIC-
IDS2018 dataset to benchmark supervised deep learning models. It was also possible to evaluate
the robustness of using CNN and LSTM methods to detect unseen normal activity and variations of
previously trained attacks. The results reveal that feature reduction methods decreased the processing
time without loss of accuracy in the overall detection performance.

Keywords: network security; intrusion detection systems; convolutional neural networks; long
short-term memory; deep learning; CSE-CIC-IDS2018 dataset

1. Introduction

Computer network security entails a broad set of technologies, applications, and
protocols to protect a given organization’s assets and user operations . For example, at the
application layer, a set of secure protocols (e.g., HTTPS or SMTPS) can be used to implement
confidential channels between client and server and hide the exchanged messages. The
configuration of virtual private networks (VPN) and firewalls are also two examples of
technologies to implement confidentiality and protection in client/server communication.

Regarding intrusion detection systems (IDSs), their primary function is to monitor the
network traffic and distinguish between regular and malicious activity. The sense of normal
network activity is defined by recurrent patterns, easily identified by common network

Informatics 2022, 9, 29. https:/ /doi.org/10.3390/informatics9010029

https://www.mdpi.com/journal /informatics

https://doi.org/10.3390/informatics9010029
https://doi.org/10.3390/informatics9010029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/informatics
https://www.mdpi.com
https://orcid.org/0000-0003-3448-6726
https://orcid.org/0000-0001-9412-5012
https://doi.org/10.3390/informatics9010029
https://www.mdpi.com/journal/informatics
https://www.mdpi.com/article/10.3390/informatics9010029?type=check_update&version=2

Informatics 2022, 9, 29

20f18

flows features, such as the number of packets exchanged and error rate. On the other hand,
network intrusions usually explore software vulnerabilities and correspond to a drift of
context, observed by abnormal fluctuations of patterns or features values, when compared
with the normal network activity patterns.

The signature-based IDSs are largely used in real-world networks. They take ad-
vantage of a database of known attacks and vulnerability exploits signatures, but fail to
detect malicious unseen activity that never appeared. In this type of IDS, an alert is trig-
gered when a match is found between the pattern analysed and an entry in the signatures
database. Behaviour-based IDSs are designed to detect zero-day attacks and exploits and
take advantage of machine learning (ML) algorithms characteristics to detect unknown
and previously unseen patterns. Although they may theoretically detect unknown attacks,
their applicability in real-world networks is low, mainly due to the complexity of the
development and the high number of false positives they usually produce.

The benchmark and assessment of ML methods are pivotal to leveraging behaviour-
based IDS adoption and implementation. Besides implementing ML models in real-world
scenarios, the assessment and tuning of this type of IDSs take advantage of realistic datasets
that represent normal and abnormal network activities. Several incursions have been made
in recent decades to develop realistic datasets [1-3]. However, the narrow scope, the lack of
heterogeneity, the reduced available formats, and the level of criticism for some of them [4]
have allowed researchers to adopt and evaluate other promising and recent ones.

Despite being recent, CSE-CIC-IDS2018 dataset has been adopted to test and bench-
mark several approaches to develop behaviour-based IDS. It is very well organized and is
publicly available at [5]. The scientific community has widely used the dataset to bench-
mark IDS, as it includes a wide range of attacks, executed with different tools, organized
in a timeline, and mixes normal and anomalous network packet flows. In addition, the
traffic was dynamically generated to simulate a corporate network. Besides the features
collected from the network flows, the dataset also includes the original PCAP files with all
the packets collected, which increases the flexibility to apply different preprocessing and
processing methods.

The CSE-CIC datasets have been evaluated by several authors, namely by bench-
marking distinct methods. In [6], the authors benchmark the CSE-CIC-IDS2017 dataset
against several ML and deep learning models. Ferreira et al. [7] evaluate CSE-CIC-IDS2017
dataset with two bio-inspired ML methods, namely CLONALG artificial immune system,
learning vector quantization (LVQ), and back-propagation multi-layer perceptron (MLP).
The detailed survey in [8] analysed several intrusion detection methods evaluated with the
CSE-CIC-IDS2018 dataset. In [9], Ferrag et al. present a survey and a comparative study of
deep learning approaches for behaviour-based intrusion detection. The authors describe
35 well-known datasets and provide their classification into 7 categories. In [10], the authors
compare a comprehensive set of deep learning frameworks in detecting network intrusions
and also in classifying common network attack types through the CSE-CIC-IDS2018 dataset.

Among the multiplicity of existing ML methods, this paper evaluates a subset of
deep-learning-based algorithms widely implemented by ML common tools, namely con-
volutional neural networks (CNN) and long short-term memory (LSTM) ML methods.
Additionally, autoencoder and principal component analysis (PCA) methods were used
to reduce the features involved in the dataset processing. The former reduces the number
of perceptrons by compressing all the information, where the input and output layers are
the same but in the hidden layers in the neural network. The latter correlates with the
variables creating components that enable the clustering of several characteristics shared by
themselves. The CSE-CIC-IDS2018 dataset was used to assess the deep learning methods,
mainly due to the diversity of network traffic it encloses and by being massively adopted
to benchmark behaviour-based IDS.

CNN and LSTM methods have already been successfully applied to evaluate other
public IDS datasets, besides CSE-CIC-IDS2018. Some recent works described below rein-
force the appropriateness of using CNN and LSTM methods to detect and classify intrusion

Informatics 2022, 9, 29

30f18

detection in a wide range of public datasets, such as CSE-CIC-IDS2018, which was used in
our experiments.

In [11], the authors evaluate these methods evaluated on NSL-KDD and ISCX datasets.
In [12] the authors evaluate bi-directional LSTM deep learning method with KDDCUP-
99 and UNSW-NB15 datasets, which result in an average of 99.5% accuracy for softmax
and ReLu. NSL-KDD dataset has also been evaluated by several authors [12,13]. The
former applies an RNN method with feature reduction, for combining a correlation and
information gain, while the latter train an IDS model based on CNN and benchmark the
performance of the model with traditional machine learning methods, such as random
forest (RF) and support vector machine (SVM), and LSTM.

The significant contributions of this paper are the following: (i) the evaluation of
the CSE-CIC-IDS2018 dataset processing with CNN and LSTM; (ii) the evaluation of the
dataset with two features reduction methods, namely autoencoder and PCA; and (iii) a
set of publicly available Python scripts to assess the dataset and replicate the experiments
described in this paper.

The outcomes of the paper, namely the overall architecture and the processing pipeline,
are the foundation to evaluate this learning strategy with other public datasets. The aim is
to benchmark CNN and LSTM methods and to evaluate the influence of features reduction
in the overall performance.

The rest of the paper is organized as follows: Section 2 describes the background
behind the IDS, deep learning methods, and features reduction techniques. Next, the
overall architecture, the tools and the tests setup is described in Section 3. The results
analysis is detailed in Section 4 and, finally, the conclusions and future work suggestions
are delineated in Section 5.

2. Fundamentals

This section details the most relevant topics related to this paper’s research, namely the
fundamentals behind the intrusion detection systems (IDS) and the deep learning methods
used to evaluate the dataset.

2.1. Behaviour-Based IDS

IDSs aims to process logs generated by the active network equipment, such as com-
puters or routers, to detect deviations to the normal network behaviour. Generally, this
anomalous activity is named network intrusions, and, initially, the intrusion detection
software was designed to process and analyse the logs generated by different systems [14].
The same motivation has been applied to network traffic processing, being IDSs the most
popular application to collect, analyse, and classify network traffic content.

An IDS taxonomy was proposed by several authors [14,15], to group these systems
according to relevant characteristics. Figure 1 depicts the overall classification of IDSs
according to two of those characteristics, namely audit source location and detection
techniques used.

Network
— Source location
Intrusion Host
Detection —]
Systems Signature-based

— Detection Method

Behavior-based

Figure 1. Intrusion detection systems taxonomy.

Informatics 2022, 9, 29

40f18

The audit source location distinguishes the IDSs based on the source of the information
they analyse. Host- and network-based IDSs are among the most relevant sources from
where the IDS can obtain information. A host IDS collects continuously data from an
active equipment (e.g., PC or router) to identify deviations to normal behaviour, namely by
processing and analysing log files of the services running or by reading activity data, such
as CPU or memory activity.

Regarding the detection methods that can be used, behaviour-based and signature-
based IDSs are the most commonly used techniques. Behaviour-based IDS are also named
as detection by behaviour or anomaly detection IDSs, while signature-based IDSs are also
known as knowledge-based or misuse detection IDSs.

Signature-based IDSs are based on the description of known attacks by the means of a
signature or a pattern, generally termed a “rule”. It examines the network and compares
the collected data (e.g., network traffic) with a rules database (knowledge base) looking
for a match with a sample of an already known misuse. An alert is generated if a match
is found, being otherwise considered not intrusive, all the events that do not match any
signature. The most used approaches for misuse detection are expert system, and pattern
matching analysis. The same methodology can be identified in anti-malware functioning.
Signature-based IDSs are highly efficient in detecting known attacks, that is, those for which
a signature is available. However, these IDSs fail to detect those attacks that correspond
to zero-day exploits to which signatures do not yet exist. A well-known and widely used
signature-based IDS is snort [16].

Behaviour-based IDSs presuppose that all intrusive activities are necessarily anoma-
lous. These systems start by building a model that represents a trained normality profile
for network activity. They then proceed by looking for anomalous activities, which by
definition are those that do not match the previously established profile. Behaviour-based
IDSs have two major advantages over those based on signatures. On the one hand, they
have the ability to detect unknown anomalies and “zero-day” attacks. On the other hand,
the normality profile can be trained for each contextual environment, which potentially
increases the difficulty for an attacker to explore the vulnerabilities that a network may
have. A detailed description of the most relevant profiling techniques, as well as a list of
some behaviour-based IDSs recent developments, can be found in [17,18].

However, while enabling the reaction to unknown attacks, this type of IDS generates a
high rate of false positives, which implies a continuous and efficient tuning of the training
dataset and adjustment of reaction levels [7].

2.2. Long Short-Term Memory

LSTM is an artificial recurrent neural network (RNN) used in deep learning. LSTM
aims to overcome the short-term memory issue observed in RNN by predicting entire
sequences of organized data while maintaining a certain level of memory regarding past
operations [19]. Unlike normal feed-forward neural networks, an LSTM network allows
previous outputs to be used as inputs of next layers while having hidden states at arbitrary
intervals. This way, we have the possibility of using input of any length; therefore, it is
pretty suitable for classifying, processing, and predicting time series, as the traffic collected
in a computers network, with time intervals of unknown length [20].

An LSTM architecture is a chain-based structure, as depicted in Figure 2. Information
is computed in “cells”, while memory management is carried out by “gates”, generally
classified into the following types: forget gate, input gate, and output gate. These gates
contain a sigmoid activation function to compress the data received by cells and learn
which data is essential to keep or forget. Finally, the predictions are made by passing
relevant information to the chain of sequences in the neural network. These networks are
widely used and very useful today, being at the forefront of language modelling, such as in
translation or text generation, in short, any activity related to reading and writing, because
of their ability to recognize patterns throughout time.

Informatics 2022, 9, 29

50f18

Input Output
Gate Gate
Cell

-»-O @ > » h=z:
Modulation

|-
Ll
Gate KQ/
Xt _l
o Forget
i o Gate
hmJ

\ J

Input

Figure 2. Long short-term memory architecture.

2.3. Convolutional Neural Network

A CNN is a neural network that is suitable to automatically detect and group unique
characteristics of the neural network. It is a deep learning algorithm that uses a feed-
forward network, which means that it takes an input and assigns the importance (weights
and biases that can be learned) to its features [21].

Each neuron of this artificial neural network has a non-linear activation function that
produces the final output (Figure 3). Multiple connected neurons in the neighbourhood pro-
duce a kernel or weight matrix, and multiple kernels will produce a so-called “convolution
layer” (CONYV), each one producing an output.The CONV layer carries out convolution op-
erations as it scans an input. It does so by taking advantage of its various hyper-parameters
(a parameter that is set before the learning process begins, which is tunable and can affect
how well a model trains), such as the filter size (denotes the dimensions of a filter which
is applied in the process) and the stride (designates the number of pixels by which the
window moves after each operation). The resulting output is referred as feature map or
activation map. After that, the processing flows through the pooling layer (POOL), which is
a down-sampling operation that takes the average and maximum values of a given region
doing some spatial invariance. After gathering these values, the network reaches the fully
connected layer (FC) where each input is connected to all neurons.

A popular input to the CNN is an image vector with a set of enclosed features, which,
after going through all of these layers, end up in a probabilistic approximation to recognize
the desired image. A significant benefit of this algorithm is that the preprocessing required
on a regular CNN is much smaller than the other classification algorithms. The use of
CNN in IDSs is usually due to the accuracy needed in a specific classification related with
patterns. Attack types that happen with a specific pattern are easier to identify using
CNN [22].

The use of CNN and LSTM networks to classify data streams in this dataset has been
carried out a few times [23-25]. From several articles, the results were always identical,
usually above 90% in accuracy, precision, and/or recall. This always depends on the
architecture of the network used, but it is easy to conclude that both are equally good for
stream classification, even without the application of any method for feature reduction.

Informatics 2022, 9, 29

6 of 18

Fully Connected

_--0

Convolution

Input Pooling - =

=
]

Figure 3. Convolutional neural network architecture.

2.4. Features Reduction Techniques

Autoencoder and PCA are two widely used techniques to reduce the features set of a
dataset to a stage that does not compromise the overall classification performance.

Autoencoder is an unsupervised learning technique that aims to reduce the number
of inputs imposed on a neural network without “damaging” its performance. Simply put,
the autoencoder tries to copy its input to output using compression and reconstruction
techniques. Generally, autoencoder has two major components: an encoder and a decoder.
The encoder is the part of the network that compresses the input and transforms it into its
encoded representation. The decoder is the component that aims to reconstruct the given
input through the previously mentioned codified representation [26,27].

An autoencoder is used for unsupervised training methods, knowing that it has the
ability to compress the information to the minimum number of nodes in the inner layers,
this allows, with a proven encoder, the ability to store the same information in a reduced
number of features. Since it is built from a neural networks, its basis are from multi-layer
perceptrons (MLP) or CNN, among others. The methodology applied in this paper is based
on MLP, which is made up of nodes that result from the sum of all the weights plus the bias
wrapped in an activation function.This technique has been used for image compression or
noise reduction, as depicted in Figure 4. It is able to extract given characteristics from a
dataset, as an unsupervised training method, or even to generate new images from noise,
as in videos, predicting the next frame by taking the previous frame as input.

Compressed Data

Encode Decode

I::>I::>

Figure 4. Autoencoder architecture.

PCA is a mathematical method that converts a set of possibly correlated observable
variables into values of linearly uncorrelated variables called principal components. It is
important to note that the number of principal components is always less (or equal) to the
number of original variables, hence why this method was chosen to test it as a possible
input reducer in the network.

PCA functioning is based on decomposing values into correlative synonyms and
is sensitive to the original variables’ relative scale or inputs. The axes of the PCA are
categorized in order of importance, which means that in clusters, or groups of values that

Informatics 2022, 9, 29

7 of 18

are separated, their difference is more critical the further apart they are on the x-axis or the
horizontal axis [28,29].

Diving to how it works practically, considering a matrix with N rows, labelled as
“observations” and K columns, labelled as “variables”, PCA constructs a variable space with
as many dimensions as there are variables, being that each one represents one coordinate
axis (Figure 5). Next, mean centring is the following step, and it involves the subtraction of
the variable averages from the data. The vector of averages formed is interpretable as a
point in space which is situated in the middle of the point swarm. The subtraction of the
averages corresponds to a re-positioning of the coordinate system.

In the “post mean centring” scenario, the data set’s first summary index, or the first
principal component, will be computed. The first principal component is the line that best
accounts for the shape of the point swarm, as it represents the maximum variance direction
on the data. Each observation may be projected onto this line in order to obtain a coordinate
value along the “Principal Component line”. This value is known as a score.

A X2

Figure 5. Principal component analysis architecture.

Usually, the computation of only one principal component is insufficient to complete
the required process. Thus, a second principal component is calculated. It is oriented such
that it reflects the second largest source of variation in the data while being orthogonal
(contrary to being parallel) to the first principal component.

Lastly, when two principal components have been obtained, they together define a
place in the K-dimensional variable space. When projecting all of the data onto the previous
window and plotting the results, it is possible to visualize the structure of the researched
data set.

3. Overall Architecture

The overall architecture is depicted and explained in this section. A description of
the CSE-CIC-IDS2018 dataset and the tools used to process CNN and LSTM methods are
explained.

Figure 6 depicts the overall architecture for preprocessing and processing the dataset.
The initial dataset can be divided and processed by each day or used as a whole. It is

Informatics 2022, 9, 29

8 of 18

CSE-CIC-IDS-2018

Dataset

100%

-

Pre-Processing Data

initially preprocessed by the Orange data mining tool in order to remove inconsistencies
(Infinity, NaN, and null values). The result is a clean CSV file loaded to Pandas framework,
where the headers are removed and passed to a NumPy array.

The tests were made with the initial features set and by resulting set after autoencoder
and PCA methods have been applied. The number of features of each network flow was
reduced from 78 to 18.

CSE-CIC-IDS-2018

Training
Dataset

Classifier Training

Evaluation of
base classifiers

90%

Transform data,
removing invalid
values, normalize

Attack Recognition | i, 5 10

=

10% Testing test ++
° Dataset Detection Model Experimental
Result
if test < 10

Removing NaN

and null values

Withdraw target
features

Normalize data
scaling it between
0 and 1 with
a MinMaxScaler

Introduce the input
data into the encoder
in order to reduce the

number of features

Figure 6. Overall processing architecture.

The initial dataset is then split into training and testing sets. In the test setup described
in Figure 6 which represents the validation process of the dataset, the training set is 90%
length and the remaining examples correspond to 10% for testing. The training phase
builds the separated models for LSTM and CNN deep learning methods. The testing phase
process each model with the testing set to recognize the enclosed network attacks. The
dataset is cross-validated ten times and the global results are presented. The results identify
the metrics obtained by each run and the global result regarding accuracy, precision, recall,
and F1 score.

The processing of CNN was made through Keras and the K-fold cross-validation use
Python scripts developed under Scikit- learn library.

3.1. Dataset

CSE-CIC-IDS2018 is a dataset created by the Canadian Institute for Cybersecurity
(CIC) and the Communications Security Establishment (CSE) and has been used to train
predictive models to detect intrusions based on network traffic anomalies [5,30]. The
dataset contains a different type of attack each day and is divided into two parts: (i) 1 TB of
PCAP files with all the packets captured in the test network; (ii) an already processed CSV
file, ready to be processed by machine learning algorithms.

Table 1 details the nine days of activity used to benchmark the dataset with the CNN
and LSTM methods. It is possible to observe a more significant number of flows related to
DoS and DDoS attacks, respectively, on 16 and 21 February. The brute force attack observed
on 14 February is the third attack in the number of malicious flows. By their nature, these
three attack types are expected to have a larger number of packets and flows compared
with other malicious activities.

Informatics 2022, 9, 29

90f18

Table 1. Detailed of the attacks used for benchmark.

Attack

Date Type Malicious Flows Total Number of Flows

14 February 2018 BruteForce 380,943 1,044,751
15 February 2018 DoS 52,498 1,040,548
16 February 2018 DoS 601,802 1,048,574
21 February 2018 DDoS 687,746 1,048,575
22 February 2018 V‘fﬁ ::Ep 362 1,042,965
23 February 2018 V\g’t a’zip 566 1,042,867
28 February 2018 Infiltration 68,236 606,902

1 March 2018 Infiltration 92,403 328,181

2 March 2018 Botnet 286,191 1,044,525

The dataset has six different types of attacks, namely BruteForce, Botnet, denial of
service (DoS), distributed DoS (DDoS), web attacks, and infiltration attacks, distributed by
specific dates. Table 2 describes the different tools and frameworks used in the execution of
each attack. For example, DoS attacks were executed with the following tools: GoldenEye,
Slowloris, SlowHTTPTest, and Hulk [31]. Regarding BruteForce, two penetration testing
tools of Patator BruteForce suite, available on Kali Linux were used, namely FTP-Patator
and SSH-Patator [32]. Damn Vulnerable Web Application (DVWA) was used to generate
malicious traffic [33] produced by various web attacks. Infiltration attacks were inflicted
by nmap and portscan tools. Both scanners employ passive attacks and collect precious
information to initiate a remote access for infiltration purposes [34]. IoT Botnet ARES com-
munications were used to produce Botnet-related traffic [35]. DDoS traffic was generated
through the Low Orbit Ion Cannon (LOIC) network stress testing and denial of service
attack application [36].

Table 2. Tools used in each attack.

Attack Type Tools Used
BruteForce FTP-Patator and SSH-Patator
DoS Hulk, GoldenEye, Slowloris, Slowhttptest
Web Applications Attack Damn Vulnerable Web Application (DVWA)
Infiltration nmap and port scan
Botnet Ares-botnet
DDoS Low Orbit Ion Cannon (LOIC)

The tools used to generate the attacks have produced distinct network traffic patterns
for the same vulnerability exploits. For example, the various tools used to generate DoS
attacks, namely Hulk, GoldenEye, Slowloris, and Slowhttptest, have the same goal and
aim to attain similar results; however, the procedures employs and the network traffic
generated by each one is necessarily different. This fact challenges the detector, as for the
same attack distinct patterns should be trained to consequently have a better detection,
regardless the tool used to generate the attack.

3.2. ML Tools

ML algorithms are widely implemented in various tools, as well as applications to
support data preprocessing tasks.

Informatics 2022, 9, 29

10 0of 18

Orange data mining [37] was used to remove incomplete and missing data in the
dataset. It is an open-source data processing tool equipped with an appealing GUI and a
set of machine learning algorithms. However, it is essential to mention that this tool does
not have non-blocking interfaces, so handling large amounts of data is challenging.

Keras [38] is an open-source high-level Python API used for a deep neural network.
It can run on top of TensorFlow [39] (our case), Microsoft Cognitive Toolkit, R, Theano,
or PlaidML. It is a user-friendly and extensible tool, which helps to adjust the model if
needed to try out different scenarios. It is also used alongside TensorFlow to implement
into the pipeline any functionality that may not be present within Keras framework. Ten-
sorFlow [39], an open-source machine learning platform developed by Google, was used to
train and test the chosen models.

Scikit-learn [40] is a machine learning library that encompasses several machine
learning algorithms, namely for regression and classification as well as data processing
functions. This tool was used to prepare training and testing sets, and to calculate ROC
curves and confusion matrix. MatplotLib [41] is a library for Python that was used for data
visualization and graphical plotting.

3.3. Evaluation Metrics

The following metrics were used to evaluate the results depicted in Section 4:

e False positive rate (FPR) refers to the ratio of wrongly predicted attacks to the total
observations. This number should be as low as possible.

* Accuracy (A) is the ratio of correctly predicted observation to the total observations.

* Precision (P) means the ratio of correctly predicted positive observations to the total
predicted positive observations. Higher precision is related to the low false positive
rate—the higher the better.

* Recall (R) should be also the higher the better and indicates the ratio of correctly
predicted positive observations to all observations.

¢ Flisan harmonic and weighted average of Precision and Recall.

4. Results

This section presents the results obtained with the benchmark of CNN and LSTM.
Their models were initially evaluated with an 80-20 rule (80% of the dataset for training and
the remaining 20% for testing) and then validated by applying a 10-fold cross-validation.

4.1. Evaluation of the Models with 80-20 Rule

This subsection describes the results obtained with an 80-20 rule applied to the dataset,
in which 80% was used for training and the remaining was used for testing. The input
sequence size for the LSTM nets for the next iteration was set to 12 and the following
parameters were also chosen for both models: activation, loss functions, and optimizers.

The activation functions used in the LSTM layers were “arctang”, “sigmoid”, and
“ReLu”. For CNN layers, namely in the last layer of each model, the “softmax” function
was used to make the model probabilistic. Since these models are probabilistic and devoted
to classification purposes, the loss function chosen was “Sparse Categorical Crossentropy”.
The chosen optimizer was “Adam” in both models, an already developed evolution of the
“gradient descent” base algorithm. This optimizer was used in both models with a learning
rate of 0.00025.

The results summarized in Table 3 express a high level of precision and accuracy
attained with the experiments. As brute force attacks present a sparsity of malicious traffic
when added to the total number of attacks in the dataset do not represent a large enough
percentage to be noticeable in the end, it is hard to know if there was any improvement
with the merging of the data. However, another conclusion that can be drawn is the
significant improvement in recognizing infiltration attacks. This is due to the improvement
in recognition of benign traffic. With the more significant amount and diversity of data in a
single model, the recognition of attacks is substantially better than in individual models.

Informatics 2022, 9, 29

110f18

Table 3. Results obtained with LSTM and CNN models with a split of 80% training and 20% testing.

Models Precision Recall Accuracy FPR F1
CNN 0.9967 0.9982 0.9993 0.0005 0.9974
LSTM 0.9985 0.9970 0.9994 0.0002 0.9977

4.2. Evaluation of the Models with 10-Fold Cross-Validation

Cross-validation is a technique designed to evaluate predictive models, by partitioning
the original dataset into a training set to train the model, and a test set to evaluate it. The
models generated through LSTM and CNN were tested with a 10-fold cross-validation, in
which in each one of the 10 interactions , 90% of the dataset is used for training, while the
remaining 10% was used for testing.

Table 4 summarizes the results obtained with both models but applies a stratified
10-fold cross-validation method, where the dataset is randomly divided into 10 different
parts. The training set corresponds to 90% of the dataset, while the remaining 10% is used
to test and evaluate each one of the ten iterations.

Table 4. Results obtained with LSTM and CNN models by applying 10-fold cross-validation.

Models Precision Recall Accuracy FPR AUC F1
CNN 0.9929 0.9981 0.9987 0.0011 0.9984 0.9955
LSTM 0.9942 0.9932 0.9983 0.0009 0.9961 0.9937

The results attained still reveal a high level of precision and recall on detecting the
attacks present in the dataset. The area under the curve (AUC) measures the classifier’s
performance to distinguish between two classes, in this case, normal traffic and network
attack. AUC can be seen as a summary of the ROC curve, and the higher the AUC, the
better the model’s performance to distinguish between normal traffic and intrusions. The
values attained for the AUC measure are above 99%, which reveals the high performance
of both methods.

4.3. Feature Reduction Methods Evaluation

A feature reduction attempt was made to reduce the number of features being pro-
cessed and, at the same time, to decrease the training processing time of each model.
The reduction in the parameters set was applied to each flow, and autoencoder and PCA
techniques were evaluated.

To evaluate the gain in processing time for CNN model, we picked up the dataset of
2 March 2018. Table 5 summarizes the processing time and the accuracy with the initial set
of 78 features, where it is possible to identify the processing time, accuracy, and loss for the
first five epochs.

Table 5. Training dataset of 2 March 2018 with the initial features set.

Epoch Time (s) Accuracy Loss
1 167 0.981 0.047
2 166 0.999 0.004
3 179 0.999 0.003
4 249 0.999 0.002
5 252 0.999 0.002

For this particular training/testing, an 80-20 distribution was used (80% of the data for
training and 20% for testing). When applying the PCA and autoencoder reduction methods

Informatics 2022, 9, 29

12 0f 18

to the same dataset (2 March 2018), the processing time reduces, and the performance
remains intact compared with the initial features set results. Table 6 summarizes the results
obtained with autoencoder, while Table 7 summarizes the results obtained with PCA. In
both cases, the initial set of 78 features was reduced to 18 and only the results of the first
5 epochs are detailed.

Table 6. Training dataset of 2 March 2018 with the feature set reduction through autoencoder.

Epoch Time (s) Accuracy Loss
1 45 0.933 0.157
2 44 0.998 0.010
3 44 0.998 0.008
4 44 0.999 0.006
5 44 0.999 0.005

Table 7. Training dataset of 2 March 2018 with the feature set reduction through PCA.

Epoch Time (s) Accuracy Loss
1 44 0.945 0.129
2 43 0.998 0.010
3 43 0.999 0.006
4 42 0.999 0.005
5 40 0.999 0.005

Analysing both approaches, it is possible to conclude that, despite there being fewer
data in training with autoencoder and PCA methods, they both attain almost the same level
of accuracy as with the initial features set (Table 5). The processing time has greatly reduced
in both models, as the size of the networks has also reduced. A reduction in convergence
time is observed of more than five times the initial time.

4.4. Intrusion Detection Evaluation

Intrusion detection is a compound technique with a deep learning method (CNN or
LSTM) and a features reduction approach (autoencoder or PCA). Table 8 summarizes the
results obtained with CNN model employing PCA to reduce the features set.

Table 8. Results obtained with a training CNN and PCA.

Day/Attack F1 Precision Recall FPR TNR Accuracy
2 March 2018 /Botnet 0.9992 0.9993 0.9993 0.0002 0.9997 0.9996
21 February 2018/DDoS 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000
15 February 2018/DoS 0.9972 0.9951 0.9994 0.0002 0.9997 0.9997
16 February 2018/DoS 0.7293 0.5739 1.0000 1.0000 0.0000 0.5740
1 March 2018 /Infiltration 0.3463 0.7896 0.2218 0.0232 0.9768 0.7642
28 February 2018/Infiltration NaN NaN 0.0000 0.0000 1.0000 0.8876
14 February 2018/SshFtpBruteForce 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000
22 February 2018 /WebXssBruteForce 0.6909 1.0000 0.5278 0.0000 1.0000 0.9998

23 February 2018/ WebXssSQLBruteForce 0.4865 1.0000 0.3214 0.0000 1.0000 0.9996

Informatics 2022, 9, 29 13 of 18

Table 9 summarizes the results obtained with CNN model employing autoencoder
method to reduce the features set.

Table 9. Results obtained with a training CNN and autoencoder.

Day/Attack F1 Precision Recall FPR TNR Accuracy
2 March 2018/Botnet 0.9990 0.9984 0.9996 0.0005 0.9994 0.9995
21 February 2018/DDoS 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000
15 February 2018/DoS 0.9960 0.9928 0.9992 0.0003 0.9996 0.9996
16 February 2018/DoS 0.7293 0.5739 1.0000 1.0000 0.0000 0.5739
1 March 2018/ Infiltration 0.3421 0.7595 0.2208 0.0274 0.9726 0.7609
28 February 2018 /Infiltration NaN NaN 0.0000 0.0000 1.0000 0.8876
14 February 2018 /SshFtpBruteForce 0.9998 0.9995 1.0000 0.0002 0.9997 0.9998
22 February 2018 /WebXssBruteForce 0.5600 1.0000 0.3889 0.0000 1.0000 0.9998
23 February 2018/ WebXssSQLBruteForce 0.2769 1.0000 0.1607 0.0000 1.0000 0.9995

The same datasets were evaluated with the LSTM, PCA, and autoencoder methods.
Table 10 summarizes the results obtained with LSTM model employing PCA method to
reduce the features set.

Table 10. Results obtained with a training LSTM and PCA.

Day/Attack F1 Precision Recall FPR TNR Accuracy
2 March 2018 /Botnet 0.9994 0.9992 0.9997 0.0003 0.9997 0.9997
21 February 2018/Ddos 0.9987 1.0000 0.9975 0.0001 0.9999 0.9983
15 February 2018/Dos 0.9958 0.9945 0.9971 0.0003 0.9997 0.9996
16 February 2018/Dos 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000
1 March 2018 /Infiltration 0.4852 0.7757 0.3530 0.0400 0.9600 0.7891
28 February 2018 /Infiltration NaN NaN 0.0000 0.0000 1.0000 0.8876
14 February 2018 /SshFtpBruteForce 0.9998 0.9997 0.9999 0.0002 0.9998 0.9999
22 February 2018 /WebXssBruteForce 0.8174 0.7224 0.9412 0.4444 0.0001 1.0000
23 February 2018/ WebXssSQLBruteForce 0.4658 1.0000 0.3036 0.0000 1.0000 0.9996

Table 11 summarizes the results obtained with LSTM model employing autoencoder
method to reduce the features set.

Table 12 summarizes the average F1 of the respective models with both feature reduc-
tion methods, for each trained attack.

By analysing the results obtained with the experiments, it is possible to elaborate the
following main conclusions:

* The difference of the results obtained between PCA and autoencoder is not signifi-
cantly large to be able to say that the data reduction method affects the performance
of the deep learning models;

* The difference in the results obtained with the different attacks is minimal. The
results obtained with LSTM on 16 February 2018 were a bit lower, but also with good
performance;

* The results with brute force attacks reveal inconsistency, despite the good performance
on day 14 February 2018;

e Infiltration attacks were the least successful, as none of the models were able to classify
the traffic correctly.

Informatics 2022, 9, 29 14 of 18

Table 11. Results obtained with a training LSTM and autoencoder.

Day/Attack F1 Precision Recall FPR TNR Accuracy
2 March 2018/Botnet 0.9745 0.9788 0.9702 0.0079 0.9921 0.9861
21 February 2018/DDoS 0.9990 1.0000 0.9979 0.0000 1.0000 0.9986
15 February 2018/DoS 0.9917 0.9894 0.9941 0.0006 0.9994 0.9992
16 February 2018/DoS 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000
1 March 2018/Infiltration 0.4407 0.7878 0.3059 0.0323 0.9677 0.7814
28 February 2018/ Infiltration NaN NaN 0.0000 0.0000 1.0000 0.8876
14 February 2018/SshFtpBruteForce 0.9998 0.9996 0.9999 0.0000 0.9998 0.9998
22 February 2018/WebXssBruteForce 0.4444 1.0000 0.2857 0.0000 1.0000 0.9998
23 February 2018/ WebXssSQLBruteForce 0.3824 1.0000 0.2364 0.0000 1.0000 0.9996

Table 12. Averages of the F1 measure obtained for each pair of deep learning and feature reduction
methods, and for each attack type.

Attack CNN-PCA CNN-Autoencoder LSTM-PCA LSTM-Autoencoder
Botnet 0.9992 0.9990 0.9994 0.9745
DDoS 1.0000 1.0000 0.9987 0.9990
DoS 0.8632 0.8626 0.9979 0.9958
Infiltration - - - -
BruteForce 0.7258 0.6122 0.7610 0.6089

The results obtained with the experiment denoted that both models generally achieved
excellent detection performance for attacks that produce more network traffic flows, such
as Botnet or DoS attacks. Infiltration attacks, however, fell short of expectations. Despite the
good result on the 14 February 2018, there are not enough data to gather any well-supported
conclusion for brute force attacks.

4.5. Related Work Comparison

The CSE-CIC-IDS2018 dataset has been widely used by several authors to benchmark
network intrusion detection techniques, mainly those based on machine learning and deep
learning methods. Table 13 details the comparison of our best results with those obtained
by other authors, for the CSE-CIC-IDS2018 dataset.

Table 13. Comparison with other works available in the literature.

Models Accuracy Precision Recall AUC
CNN—our results 0.9987 0.9929 0.9981 0.9984
LSTM—our results 0.9983 0.9942 0.9932 0.9961
CNN [23] 0.9999 0.8175 0.8225 n/a
LSTM [25] 0.9620 0.9600 0.9600 n/a
XGBoost [42] 0.9600 0.9900 0.7900 n/a
Deep autoencoder [43] 0.9920 0.9500 0.9890 n/a
Random Forest, Decision Tree [44] 0.9999 1.000 0.999 n/a

Logistic Regression, Decision Tree, and Gradient Boosting [45] 0.9880 0.9880 0.9710 0.9410

Informatics 2022, 9, 29

150f18

The results we have obtained with CNN and LSTM methods are competitive with
those presented from other authors. The accuracy is above 0.96 in all the models and our
results are also very competitive regarding the precision and recall, when comparing with
the models that present the best results. Some of the models being compared do not use
cross validation and, in some cases, the results are global and do not give information
about which attacks are being detected. Although some additional experiments have to
be made to compare our results with the methods described in the literature, the overall
results obtained show the appropriateness of applying CNN and LSTM methods to detect
intrusions in the dataset. The use of these methods together with PCA and autoencoder, as
depicted in Table 4, while lowering slightly the performance obtained still keep the results
benchmarked with other related work results.

5. Conclusions

This paper presented a comparative study about using deep learning methods to
detect network intrusions. The dataset CSE-CIC-IDS2018 was used to benchmark CNN
and LSTM deep learning models, employing feature reduction through autoencoder and
PCA methods.

Globally, the results revealed a good detection performance with both CNN and LSTM.
It is also possible to conclude that feature reduction methods did not impact the overall
detection performance while reducing the processing time. Autoencoder only compresses
the data, so the processing is not slower than PCA. Regarding the fact that PCA may lose
an amount of information to the point that it is not suitable for detecting certain types
of attacks, the results show a slight decrease in “hits” with PCA, but not too significant.
Both feature reduction methods converged to almost the same results, using both CNN
and LSTM.

Some datasets are too unbalanced, having too much more benign traffic compared
with the traffic related to intrusions. Some examples refer to the XSS, brute force, and SQL
Injection attacks. Expected models faced constraints with detecting attacks that have not
been trained yet. The detection of variations of attacks, such as DoS and DDoS, is also
challenging, frequently generating false positives .

Regarding future work, the following topics are being under development. Firstly,
we are extending the learning architecture to evaluate the influence of an ensemble-based
model, which aggregates the classification of distinct classifiers. We aim to evaluate the
improvement made by an ensemble-based model and how it may benefit the overall
classification results, mainly those misclassified examples by CNN and LSTM classifiers
separately.

Secondly, we aim to evaluate the learning architecture proposed in this paper with
other public IDS datasets, besides CSE-CIC-IDS2018.

Finally, as the dataset has both network flows and the corresponding packets, we
intend to apply the same learning strategy and compare the results obtained with those of
network flows.

Author Contributions: Conceptualization, M.A. and L.O.; data curation, A.S., J.V,, R.S. and TM,;
formal analysis, M.A. and L.O; funding acquisition, L.O.; investigation, M.A., L.O., AS,,J.V,, R.S.
and T.M.; methodology, M.A. and L.O.; software, A.S.,].V,, R.S. and T.M.; supervision, M.A. and L.O.;
validation, M.A. and L.O.; visualization, A.S.,].V,, R.S. and T.M.; writing—original draft preparation,
M.A,, LO,, AS,].V,RS. and TM.; writing—review and editing; M.A. and L.O. All authors have
read and agreed to the published version of the manuscript.

Funding: This work has been funded by national funds through FCT—Fundagédo para a Ciéncia e
Tecnologia, I.P. under the Project UIDB/05567 /2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Informatics 2022, 9, 29 16 of 18

Data Availability Statement: The data presented in this study are available on request, from the
corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

A accuracy

AUC area under the curve

CNN convolutional neural network

CIC Canadian Institute for Cybersecurity
CSE Communications Security Establishment
DDoS distributed denial of service

DoS denial of service

DVWA Damn Vulnerable Web Application

FPR false positive rate

FP false positive

LSTM long short-term memory
LOIC low orbit ion cannon

LVQ learning vector quantization
MLP multi-layer perceptron

NN neural network

TNR true negative rate

P precision

PCA principal component analysis
R recall

RAM random access memory

RF random forest

ROC receiver operating characteristic
SVM support vector machine

B terabyte

References

1. Al Tobi, AM.; Duncan, I. KDD 1999 generation faults: A review and analysis. J. Cyber Secur. Technol. 2018, 2, 164-200. [CrossRef]

2. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8-10 July 2009;
pp- 1-6.

3. Massicotte, F; Gagnon, F; Labiche, Y.; Briand, L.; Couture, M. Automatic evaluation of intrusion detection systems. In
Proceedings of the 2006 22nd Annual Computer Security Applications Conference (ACSAC’06), Miami Beach, FL, USA, 11-15
December 2006; pp. 361-370.

4. McHugh, J. Testing intrusion detection systems: A critique of the 1998 and 1999 darpa intrusion detection system evaluations as
performed by lincoln laboratory. ACM Trans. Inf. Syst. Secur. 2000, 3, 262-294. [CrossRef]

5. ARealistic Cyberdefense Dataset (CSE-CIC-IDS2018). Available online: https:/ /registry.opendata.aws/cse-cic-ids2018/ (accessed
on 19 March 2022).

6. Thapa, N,; Liu, Z.; K¢, D.B.; Gokaraju, B.; Roy, K. Comparison of machine learning and deep learning models for network
intrusion detection systems. Future Internet 2020, 12, 167. [CrossRef]

7. Ferreira, P; Antunes, M. Benchmarking behaviour-Based Intrusion Detection Systems with Bio-inspired Algorithms. In
Proceedings of the Security in Computing and Communications: 8th International Symposium, SSCC 2020, Chennai, India, 14-17
October 2020; Revised Selected Papers; Springer Nature: Singapore, 2021; Volume 1364, p. 152.

8. Leevy,].L.; Khoshgoftaar, .M. A survey and analysis of intrusion detection models based on cse-cic-ids2018 big data. J. Big Data
2020, 7, 1-19. [CrossRef]

9. Ferrag, M.A.; Maglaras, L.; Moschoyiannis, S.; Janicke, H. Deep learning for cyber security intrusion detection: Approaches,
datasets, and comparative study. J. Inf. Secur. Appl. 2020, 50, 102419. [CrossRef]

10. Basnet, R.B.; Shash, R.; Johnson, C.; Walgren, L.; Doleck, T. Towards Detecting and Classifying Network Intrusion Traffic Using
Deep Learning Frameworks. J. Internet Serv. Inf. Secur. 2019, 9, 1-17.

11. Le, T.T.H.; Kim, Y.; Kim, H. Network intrusion detection based on novel feature selection model and various recurrent neural

networks. Appl. Sci. 2019, 9, 1392. [CrossRef]

http://doi.org/10.1080/23742917.2018.1518061
http://dx.doi.org/10.1145/382912.382923
https://registry.opendata.aws/cse-cic-ids2018/
http://dx.doi.org/10.3390/fi12100167
http://dx.doi.org/10.1186/s40537-020-00382-x
http://dx.doi.org/10.1016/j.jisa.2019.102419
http://dx.doi.org/10.3390/app9071392

Informatics 2022, 9, 29 17 of 18

12.

13.

14.

15.

16.
17.

18.

19.

20.
21.
22.
23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.
38.
39.
40.
41.
42.

Pooja, T.; Shrinivasacharya, P. Evaluating neural networks using Bi-Directional LSTM for network IDS (intrusion detection
systems) in cyber security. Glob. Transitions Proc. 2021, 2, 448-454.

Ding, Y.; Zhai, Y. Intrusion detection system for NSL-KDD dataset using convolutional neural networks. In Proceedings of
the 2018 2nd International Conference on Computer Science and Artificial Intelligence, Shenzhen, China, 8-10 December 2018;
pp- 81-85.

Fuchsberger, A. Intrusion detection systems and intrusion prevention systems. Inf. Secur. Tech. Rep. 2005, 10, 134-139. [CrossRef]
Hindy, H.; Brosset, D.; Bayne, E.; Seeam, A.; Tachtatzis, C.; Atkinson, R.; Bellekens, X. A taxonomy and survey of intrusion
detection system design techniques, network threats and datasets. arXiv 2018, arXiv:1806.03517v1.

Snort—Network Intrusion Detection & Prevention System. Available online: https://www.snort.org/ (accessed on 19 March 2022).
Mishra, P,; Varadharajan, V.; Tupakula, U.; Pilli, E.S. A detailed investigation and analysis of using machine learning techniques
for intrusion detection. IEEE Commun. Surv. Tutor. 2018, 21, 686—728. [CrossRef]

Alsoufi, M.A.; Razak, S.; Siraj, M.M.; Nafea, I.; Ghaleb, F.A.; Saeed, F.; Nasser, M. Anomaly-based intrusion detection systems in
iot using deep learning: A systematic literature review. Appl. Sci. 2021, 11, 8383. [CrossRef]

Mirza, A.H.; Cosan, S. Computer network intrusion detection using sequential LSTM neural networks autoencoders. In
Proceedings of the 2018 26th signal processing and communications applications conference (SIU), Izmir, Turkey, 2-5 May 2018;
pp- 1-4.

Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

Susilo, B.; Sari, R.F. Intrusion detection in IoT networks using deep learning algorithm. Information 2020, 11, 279. [CrossRef]
Patterson, J.; Gibson, A. Deep Learning: A practitioner’s Approach; O'Reilly Media, Inc.: Sebastopol, CA, USA, 2017.

Kim, J.; Kim, J.; Kim, H.; Shim, M.; Choi, E. CNN-based network intrusion detection against denial-of-service attacks. Electronics
2020, 9, 916. [CrossRef]

Chastikova, V.; Sotnikov, V. Method of analyzing computer traffic based on recurrent neural networks. J. Phys. Conf. Ser. 2019,
1353, 12133. [CrossRef]

Lin, P; Ye, K;; Xu, C.Z. Dynamic network anomaly detection system by using deep learning techniques. In Cloud Computing—
CLOUD 2019, Proceedings of the International Conference on Cloud Computing, San Diego, CA, USA, 25-30 June 2019; Springer: Cham,
Switzerland, 2019; pp. 161-176.

Kwon, D.; Kim, H.; Kim, J.; Suh, S.C.; Kim, I.; Kim, K.J. A survey of deep-learning-based network anomaly detection. Clust.
Comput. 2019, 22, 949-961. [CrossRef]

Pinaya, WH.L.; Vieira, S.; Garcia-Dias, R.; Mechelli, A. Autoencoders. In Machine Learning; Elsevier: Amsterdam, The Netherlands,
2020; pp- 193-208.

Varma, PR.K.; Kumari, V.V,; Kumar, S.S. A survey of feature selection techniques in intrusion detection system: A soft computing
perspective. In Progress in Computing, Analytics and Networking; Springer: Singapore, 2018; pp. 785-793.

Uddin, M.P;; Mamun, M. A ; Hossain, M.A. PCA-based feature reduction for hyperspectral remote sensing image classification.
IETE Tech. Rev. 2021, 38, 377-396. [CrossRef]

Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108-116.

Muraleedharan, N.; Janet, B. A deep learning based HTTP slow DoS classification approach using flow data. ICT Express 2021,
7,210-214.

Patator—Penetration Testing Tools. Available online: https://en.kali.tools/?p=147 (accessed on 19 March 2022).
DVWA—Damn Vulnerable Web Application. Available online: https://dvwa.co.uk/ (accessed on 19 March 2022).

Shah, M.; Ahmed, S.; Saeed, K.; Junaid, M.; Khan, H.; Rehman, A.U. Penetration testing active reconnaissance phase-optimized
port scanning with nmap tool. In Proceedings of the 2019 2nd International Conference on Computing, Mathematics and
Engineering Technologies (iCoMET), Sukkur, Pakistan, 30-31 January 2019; pp. 1-6.

Kompougias, O.; Papadopoulos, D.; Mantas, E.; Litke, A.; Papadakis, N.; Paraschos, D.; Kourtis, A.; Xylouris, G. IoT Botnet
Detection on Flow Data using Autoencoders. In Proceedings of the 2021 IEEE International Mediterranean Conference on
Communications and Networking (MeditCom), Athens, Greece, 7-10 September 2021; pp. 506-511.

Nagpal, B.; Sharma, P.; Chauhan, N.; Panesar, A. DDoS tools: Classification, analysis and comparison. In Proceedings of the 2015
2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 11-13 March
2015; pp. 342-346.

Orange Data Mining—Data Mining. Available online: https://orangedatamining.com/ (accessed on 19 March 2022).

Keras: The Python Deep Learning API. Available online: https://keras.io/ (accessed on 19 March 2022).

Tensorflow. Available online: https:/ /tensorflow.org/ (accessed on 19 March 2022).

Scikit-Learn: Machine Learning in Python: Scikit-Lear 1.0.1. Available online: https://scikit-learn.org/ (accessed on 19 March 2022).
Matplotlib—Visualization with Python. Available online: https://matplotlib.org/ (accessed on 19 March 2022).

D’hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F. Inter-dataset generalization strength of supervised machine learning methods
for intrusion detection. J. Inf. Secur. Appl. 2020, 54, 102564. [CrossRef]

http://dx.doi.org/10.1016/j.istr.2005.08.001
https://www.snort.org/
http://dx.doi.org/10.1109/COMST.2018.2847722
http://dx.doi.org/10.3390/app11188383
http://dx.doi.org/10.1016/j.physd.2019.132306
http://dx.doi.org/10.3390/info11050279
http://dx.doi.org/10.3390/electronics9060916
http://dx.doi.org/10.1088/1742-6596/1353/1/012133
http://dx.doi.org/10.1007/s10586-017-1117-8
http://dx.doi.org/10.1080/02564602.2020.1740615
https://en.kali.tools/?p=147
https://dvwa.co.uk/
https://orangedatamining.com/
https://keras.io/
https://tensorflow.org/
https://scikit-learn.org/
https://matplotlib.org/
http://dx.doi.org/10.1016/j.jisa.2020.102564

Informatics 2022, 9, 29 18 of 18

43. Catillo, M.; Rak, M.; Villano, U. 2]-zed-ids: A two-level anomaly detector for multiple attack classes. In Artificial Intelligence and
Network Applications—WAINA 2020, Proceedings of the Workshops of the International Conference on Advanced Information Networking
and Applications, Caserta, Italy, 15-17 April 2020; Springer: Cham, Switzerland, 2020; pp. 687-696.

44. Huancayo Ramos, K.S.; Sotelo Monge, M. A.; Maestre Vidal, J. Benchmark-based reference model for evaluating botnet detection
tools driven by traffic-flow analytics. Sensors 2020, 20, 4501. [CrossRef] [PubMed]

45. Fitni, Q.R.S.; Ramli, K. Implementation of ensemble learning and feature selection for performance improvements in anomaly-
based intrusion detection systems. In Proceedings of the 2020 IEEE International Conference on Industry 4.0, Artificial Intelligence,
and Communications Technology (IAICT), Bali, Indonesia, 7-8 July 2020; pp. 118-124.

http://dx.doi.org/10.3390/s20164501
http://www.ncbi.nlm.nih.gov/pubmed/32806550

	Introduction
	Fundamentals
	Behaviour-Based IDS
	Long Short-Term Memory
	Convolutional Neural Network
	Features Reduction Techniques

	Overall Architecture
	Dataset
	ML Tools
	Evaluation Metrics

	Results
	Evaluation of the Models with 80–20 Rule
	Evaluation of the Models with 10-Fold Cross-Validation
	Feature Reduction Methods Evaluation
	Intrusion Detection Evaluation
	Related Work Comparison

	Conclusions
	References

