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Abstract: Cybersecurity is a never-ending battle against attackers, who try to identify and exploit
misconfigurations and software vulnerabilities before being patched. In this ongoing conflict, it is
important to analyse the properties of the vulnerability time series to understand when information
systems are more vulnerable. We study computer systems’ software vulnerabilities and probe
the relevant National Vulnerability Database (NVD) time-series properties. More specifically, we
show through an extensive experimental study based on the National Institute of Standards and
Technology (NIST) database that the relevant systems software time series present significant chaotic
properties. Moreover, by defining some systems based on open and closed source software, we
compare their chaotic properties resulting in statistical conclusions. The contribution of this novel
study is focused on the prepossessing stage of vulnerabilities time series forecasting. The strong
evidence of their chaotic properties as derived by this research effort could lead to a deeper analysis
to provide additional tools to their forecasting process.

Keywords: vulnerability analysis; time series properties; chaotic time series analysis; vulnerability
severity model; system security assessment; largest Lyapunov exponent; hurst exponent; Shannon
entropy; NIST NVD datasets

1. Introduction

Cyber attacks against information systems have considerably increased during the
recent years. In most cases, the attackers take advantage of a series of system-wide vul-
nerabilities that are present in operating systems, servers, and other software. A software
vulnerability is defined as “a defect which enables an attacker to bypass security measures” [1].
Software vulnerabilities present serious security risks for computing systems. Conse-
quently, the number of undiscovered vulnerabilities in a computing system may have a
detrimental impact on its functions and overall operation [2]. The situation is even more
crucial for Information Systems (IS) operating in critical infrastructures. In most cases, due
to their nature, these systems are far more complex than typical enterprise IS. This com-
plexity stems from many reasons, such as the number of sub-systems they are composed of,
their location, and the usually very strict requirements regarding their uptime, availability,
and response.

There has always been a trend in various scientific sectors to use statistical forecast-
ing [3,4] (in addition to other mathematical methods) to extract valuable information from
the available underlying data samples [5,6]. The security domain seems to have adopted
this trait of thought to a certain extent regarding vulnerability data analysis since this
method can reveal many hidden patterns in the underlying data [7]. The simplest metric
may be the total number of vulnerabilities reported per product based on historically
reported security vulnerabilities [8]. Nevertheless, for this metric to be accurate, there is a
need for a baseline dataset that lists vulnerabilities and their characteristics. Perhaps one of
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the most comprehensive datasets of known vulnerabilities is the National Vulnerability
Database https://nvd.nist.gov/ (accessed on 6 September 2021) (NVD) hosted and main-
tained by the National Institute of Standards and Technology (NIST). In particular, NVD
keeps track of all the publicly known vulnerabilities since 1998 with their target, scope,
publication data, and Common Vulnerability Scoring System (CVSS) score along with other
details in a standardised manner [9].

1.1. Motivation and Contribution

The research literature used the patterns discovery approach in vulnerability time
series regarding forecasting properties, focusing mainly either on the so-called Vulnerability
Discovery Model (VDM) approaches [5,6,10–18] or on the Time Between Vulnerability
Disclosure (TBVD) [8]. However, limited attention has been paid so far in the literature
to severity forecasting of specific IT components [19–23]. It should also be noted that the
existing severity-related models (including linear, non-linear and stochastic models), apart
from being limited in number, also present limited performance characteristics. It seems
that modeling such datasets and time series is incomplete, and a further analysis is required
regarding their predictive capacity. Apart from the limited number of severity-related
models and their poor performance, another gap in the literature relates to whether the
overall assessment focuses on specific components or on the computer systems software.
In particular, NVD datasets are used by all researchers in the field of security for discovering
patterns in the relevant data. Unfortunately, these datasets consider specific components
over time. Therefore, it would be of great interest to discover patterns when considering
integrated computer systems comprised of such software components.

This paper addresses these gaps in the literature by applying an extended analysis
to discover a variety of properties of the time series mentioned above concerning severity
forecasting based on chaos theory. We also demonstrate the feasibility of unravelling
system-wide vulnerabilities and not only specific software components vulnerabilities.
To this end, we define and study computer systems software vulnerabilities and probe
the relevant NVD time-series properties. Based on an extensive experimental analysis of
the NIST databases, we showcase that the relevant systems software time series present
significant chaotic properties. Moreover, we define systems based on open and closed
source software and compare their chaotic properties resulting in a variety of statistical
conclusions. The contribution of this novel study highlights that (a) the associated time
series are not fully predictable, and (b) the chaotic properties of the available data sets could
lead to a deeper investigation to improve risk management assessment of the associated
systems. This chaotic nature justifies the poor prediction results of previous works and
relevant methods, since they are not the proper ones for this kind of systems. To the best of
our knowledge, this is the first paper to report the chaotic properties of this dataset. As a
result, the probabilistic analysis of these results indicates that the prediction of vulnerability
scores using a time series of vulnerability data is a promising approach with far-reaching
implications for adopting proper security management measures.

1.2. Paper Structure

The rest of the paper is organised as follows. Section 2 reviews the related work
published in the area of vulnerability disclosure and chaos theory applications. In Section 3,
the problem description is defined. In Section 4, we introduce the data collection and
processing methodology to create a framework for the analysis of the chaotic properties of
the time series. Moreover, it is illustrated how the proposed methodology could be used
to measure the properties of a real-world computing system. In Section 5, the empirical
framework for the experimental analysis of the chaotic properties of the vulnerability time
series is outlined. In Section 6, the results derived by the suggested methodology are
evaluated and thoroughly discussed. Finally, the last section summarises the contributions
of the proposed methodology and outlines possible further extensions of this work.

https://nvd.nist.gov/
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2. Literature Review

A significant body of scientific literature, both of qualitative [24] and of quantitative
nature [5,13,25–28], has been produced so far addressing issues of vulnerability forecasting
for major operating systems. The aforementioned literature can be classified into two broad
categories: (a) statistical-based approaches, in which future vulnerabilities may be found
by analysing historically reported vulnerabilities of operating systems and (b) code-specific
approaches, in which the predictive capacity of the proposed vulnerability forecasting
models rely on the characteristics and attributes of the potentially vulnerable software, its
development process, or its source code. Both categories present significant heterogeneity
in terms of objectives, methodologies applied and underlying assumptions.

Statistics-based approaches are built using historical vulnerability data, particularly
data provided by NVD [8,29]. The benefits of these models rely on the fact that they may
forecast vulnerabilities in software for which no detailed information is available (such
as the source code). At their core, the bulk of these studies use cumulative regression
type approaches, such as VDM approaches, establish statistical forecasting and mathe-
matical models [6,11,16–18,26,30–33]. VDMs are probabilistic models based on parametric
mathematical functions counting the number of cumulative vulnerabilities of a particular
software at an arbitrary time period [34].

Code-specific approaches are based on various methods for predicting possible sys-
tem vulnerabilities, such as using machine learning and neural networks [9,35–40]. Some
authors apply hybrid approaches in which machine learning is combined with regression
analysis for developing robust VDM approaches [41,42]. Other studies on vulnerability pre-
diction are based on text mining (with models using software metrics as predictors) [43,44],
software-network graphs [45] and multi-criteria decision making approaches based on
analytic network processes [46]. A significant body of studies proposes the development of
vulnerability discovery prediction models based on code properties and relevant software
metrics [47–53]. It should be noted that the usefulness of the aforementioned studies (the
ones based on code properties and software metrics) is limited to open-source software.

An important aspect of the vulnerability forecasting models is the notion of sever-
ity. Recent studies have highlighted the importance of taking into account the severity
of potential system-wide exploits for developing sound vulnerability forecasting mod-
els [19–23,54,55]. It should be noted that the aforementioned approaches, although signifi-
cant, have not thoroughly explored severity prediction and the exploitation of NVD data
using regression models, since this aspect has been recently considered.

Chaos theory is a field of science focused on unpredictability. Using this theory, we are
equipped with tools to explore the unexpected, and we can be highly efficient in modeling
the behavior of nearly unpredictable complex nonlinear systems. There are numerous
applications of chaotic theoretic analysis in physics, biology, chemistry, and engineer-
ing [56,57]. Among the always increasing application cases are weather patterns, biological
systems, food chains, financial markets, and brain states [58,59]. The examples where
chaos is present are widespread, which renders the chaos framework applicable to broad
and interdisciplinary areas of study. Moreover, chaos theory has been shown to be an
important tool for forecasting in complex dynamical systems [60,61]. Chaos theory could
possibly help to understand the security properties of the IT networks/systems and attack
properties. Besides understanding security properties, chaotic theory-based analysis could
be important in predicting security risks. The goal of the present study is to understand the
chaotic properties in NVD in order to be able to provide, in the near future, methodologies
for short term risk forecasting in the same line of research as in [60,61]. However, to the
best of our knowledge, there is no similar research effort so far for introducing this type of
analysis in the investigation of patterns in the vulnerability data. The only exception in the
IT domain are works such as [62–64] where chaos theory is applied for forecasting network
traffic anomalies, which are not related to software vulnerabilities.
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An important issue in the research on chaotic systems is the definition of such systems.
Although no universally accepted mathematical definition of chaos exists, the following
properties should be present for classifying a dynamical system as chaotic [65]:

• It must be sensitive to the initial conditions
• It must be topologically transitive
• It must have dense periodic orbits.

For detecting the presence of such properties in dynamic systems, several metrics
have been proposed. The most widely used are Largest Lyapunov exponents (LLEs), Hurst
coefficients, and entropy-based measures.

3. Problem Description

Within the vulnerability analysis and forecasting domain, many research efforts ad-
dress issues in specific software components, including operating systems, browsers,
and application software of different vendors. To the best of our knowledge, there is no
research report on vulnerability analysis of software at the integrated (operating system,
middleware, application software) system level. Therefore, first the current research effort
attempts to fill in this gap. Namely, it attempts, based on a synthesis of specific services
deduced from the NVD database, to generate real-life system models by integrating operat-
ing system, middleware and application software CVSSs. To this end, we used NVD as the
pool from where we extract and process our data.

Secondly, based on the observations of Section 2 it is evident that the modeling or
forecasting of results using traditional linear and nonlinear methodologies show promising
but relatively poor performance. Knowing that deterministic chaos analysis has offered
a successful framework for modeling complex phenomena in many different fields of
real-world data, it is worth using such a modeling approach in our case. Therefore,
the present case study also aims at determining whether the time series datasets (services
in synthesis corresponding to real-life systems) created by the usage of NVD are governed
by deterministic chaos. Such a modeling analysis might potentially improve the forecasting
of vulnerability and IT security-related time series.

4. Methodology

To develop a deterministic chaotic analysis methodology, we need to identify a series
of cyber-security events, their severity in a quantified way, and their inter-dependencies.
However, for this methodology to be accurate, we need plenty of data. In this study,
as previously mentioned, to create our data set we employed the NVD dataset, which is
widely accepted in nearly all research papers on vulnerability analysis [8,29]. We then
investigated several deterministic chaotic analysis methods, experimenting with different
handling approaches of the data set.

The proposed methodology consists of five steps, as shown in Figure 1. These steps
include (1) system components data collection, (2) integrated system time-series formation,
(3) handling of missing values, (4) deterministic chaotic analysis model development and
(5) evaluation of the results.
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Figure 1. Methodology.

4.1. Data Collection
4.1.1. Software System Definition

Initially, we collected all the data from the NIST vulnerability database to mine the
available information about the recorded published vulnerabilities of all recorded software.
After accumulating the data (as shown in the example in Section 5.1 in more detail), we
tried to create logical constructs by integrating the software services comprising synthetic
systems to represent the real-life base models as defined in Table 1.

We assume that all the components of each computing system (services) are almost
equally critical for its functionality. In this regard, any service failure results in a system
failure of the same type, e.g., denial of service, privilege escalation etc. Thus, each system
vulnerability score can be defined as the maximum vulnerability CVSS score of each tabled
vulnerability component. Based on the NVD accumulated data, we formed representa-
tive functioning software systems considering two distinct categories: open source and
proprietary source code systems.

Due to the sparseness of the corresponding data sets, we opted to cluster the events in
predefined epochs. This approach allows our sample to become dense enough to enable
deterministic chaotic analysis methods to function properly. Using configurations of real-
world systems, we clustered our data per week or month (depending on the data status on
each data set).

In the following, we present an example of the process of data collection from the NVD
database to formulate the initial (with missing values) time series dataset. For this purpose,
we will use the Openstack controller to illustrate the process. Initially, we create the initial
Openstack controller table to house the time series data (the table may contain multiple
values in one specific date). The second step is to fill the above table with relevant data, form
the main CVSS table (that contains all NVD services data). This is where the synthesis of the
services happens and the synthetic base model (abstractions of a real-life system) is created.
Then, we create a “final” table that will house the maximum CVSS score related date
entries of the above-created table without any redundant values (as explained previously
in this section). Finally, we perform the aforementioned “dimensionality reduction” in
the values of the initially created table to remove redundant values and keep the ones
with the maximum CVSS scores on any given date (as explained previously in this section,
the above services might have more than one value in any given date and we must keep
the maximum CVSS score value).

As a result, our database consists of the following fields:

• CVE ID
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• Published datetime
• Vulnerability Score
• Vulnerability software list.

Table 1. Model systems definition used for vulnerability analysis.

General Server Type Used Services

Open Source Code

Linux Openstack Control
Server

Ubuntu, Linux kernel, IPtables,
Fail2ban, RabbitMQ, MySQL, NTP,
MongoDB, memcached, apache2,
Openstack keystone, Openstack

glance, Openstack neutron,
Openstack horizon, Openstack nova,

Openstack ceilometer

Linux Openstack Compute
Server

Ubuntu, Linux kernel, IPtables,
Fail2ban, NTP, Openstack neutron,

Openstack nova, Openstack
ceilometer

Linux Mail Server
Ubuntu, Linux kernel, IPtables,

Fail2ban, Zimbra, clamAV,
SpamAssassin, ufw, Ltab

Linux Java Application
Server

Ubuntu, Linux kernel, IPtables,
Fail2ban, clamAV, ufw, Ltab, JBoss (or

TomCat), Java

Linux Database Server
Ubuntu, Linux kernel, IPtables,

Fail2ban, clamAV, ufw, Ltab, MySQL
(or PostgreSQL)

Proprietary Source Code

Microsoft Mail Server
Microsoft Windows Server, Microsoft
Exchange, Spam Assassin, McAfee,

Active Directory

Microsoft Dot Net
Application Server

Microsoft Windows Server, Dot Net
Framework, McAfee, Active

Directory, IIS

Microsoft Database Server Microsoft Windows Server, Microsoft
SQL Server, McAfee, Active Directory

4.1.2. NVD Processing

Our focus is to determine whether the time series datasets (extracted as services which
are integrated to logically represent base models of real-life systems) created using the
NVD database are governed by deterministic chaos. We could use this knowledge to
create a more robust forecasting model for our systems while, at the same time, improving
relevant forecasting calculations. Several authors approach this by mainly performing the
calculations for the largest Lyapunov exponent (LLE), Shannon entropy/Sample entropy
(SE) and Hurst exponent (HE) to prove the existence of deterministic chaos in a time series
model [58,66–68]. As such, we also use the same idea to prove the existence of deterministic
chaos in our data set.

To better understand the methodology herein presented, it should be noted that the
NVD database contains vulnerability data for specific services. The rows of this database
show the vulnerability of a service. To logically construct a computer system representing
a real-life system, the relevant services should be synthesized. More specifically, a real-life,
for instance Openstack controller server, should run as a minimum the services outlined in
Table 1. Therefore, by integrating the relevant rows from the NVD database the system
Openstack controller server can be logically created. One understands that such an inte-
gration of services constitutes a synthesis representing the base model of the Openstack
controller server. The basic assumption of this study is that the risk of the synthesis of
services could not be larger than the maximum risk of all independent services. Based
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on this assumption, we considered the maximum CVSS score in the integration of ser-
vices. To investigate the chaotic properties of the systems outlined in the above discussion,
the present study is split into two distinct efforts:

• Create 8 synthetic base models (open/closed source) of real-life systems from the
services extracted from NVD database and perform the above calculations.

• Create 1000 synthetic systems as models of open/closed source systems, from ran-
domly selected services extracted from the NVD database and perform the above
calculations.

Each system contains several services (as seen in Table 1). For the system to operate,
an OS is also needed (that is why we have the distinction between closed source, e.g., Win-
dows server and opensource, e.g., Linux). Based on this, we randomly created 500 closed
source and 500 open-source OS-based systems with relevant random services added to
them to capture the differences regarding security risks of open and closed source systems.
The only difference is that all relevant services are randomly attached to the base OS (closed
or open-source OS type) to have an overall random system creation.

4.2. Deterministic Chaos Analysis Methods

As seen in many papers that deal with detecting deterministic chaos in a given
dataset [58,66–68], one can observe an emerging pattern on how to perform chaotic analysis
in datasets in different application domains. The main methods used so far are (but not
limited to):

• The calculation of the Largest Lyapunov exponent (LLE).
• The calculation of the Hurst exponent (HE) and of the Fractal dimension (FD).
• The calculation of the Shannon entropy (SE).

4.2.1. Largest Lyapunov Exponent (LLE)

It is known that if the LLE test statistic in a dataset has positive values, this indicates the
existence of chaos. A robust and accurate algorithm to calculate LLE is the one developed
by Rosenstein [69], which has been proven to be independent, in each calculation result,
from the main parameters used: the embedded dimension (emb_dim), the size of the
dataset, the noise level and the reconstruction delay (rec_delay). The chaotic dynamics of
the data are reconstructed using a reconstruction delay embedding method, in which each
data value Xi, for the data frame X, is associated with the vector:

Xi = [Xi, Xi+rec_delay, xi+2∗rec_delay, . . . , xi+(emb_dim−1)∗delay]

where rec_delay is the reconstruction delay embedding and emb_dim is the relevant embed-
ding dimension.

For each such vector Xi, we seek its closest neighbor Xj according to the euclidean
distance measure. It is known that in chaotic systems the trajectories of the closest neighbors
Xi and Xj diverge through time in an exponential way. This can be modeled through their
euclidean distance di,j in time noted as di,j(t). The power law di,j(t) = Celle∗t is used in this
modeling, where lle is the target approximation of the highest Lyapunov exponent in the
Rosenstein method.

To calculate lle, we take the logarithm of the previous power law equation and derive
log(di,j(t)) = log(C) + (lle ∗ t). This gives a set of lines, for each index pair i, j with a slope
equal to the approximation of lle. If we take the min value of all the log(di,j(t)) for all
vectors Xi, then the average line slope over time is the target approximation of lle.

4.2.2. Fractal Analysis: Hurst Exponent (HE) and Fractal Dimension (FD)

HE is a measure for the "long-term memory" of a time series. HE defines the long
statistical dependencies in the data which are not related to cycles. HE originates from the
Hursts observations of the problem of long-term storage in water reservoirs [70]. If Xi is the
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discharge of a river in year i and we observe this discharge for N years, we can calculate
the storage capacity that would be required to keep the discharge steady at its mean value.

To apply this methodology, we first subtract the mean over all Xi from the individual
data points Xi in the given time series in order to obtain the residual X′i from the mean for
each point i. As the excess (or deficit) in this residual is carried from data point i to the next
data point i + 1, the associated cumulative sum of X′i , is denoted by Yi. If this cumulative
sum is above 0 we have what we call residual excess, otherwise, there is a residual deficit.
By considering the range (maximum–minimum) R of Yi, we have an indication of the total
variation of the time series with respect to the mean value.

Hurst showed that this value follows a steady trend for varying N, if it is normalized
by the standard deviation σ over Xi. Namely Hurst obtained the following formula:

R
σ

= (
N
2
)K

In this equation, K is called the Hurst exponent. Its value is 0.5 for white noise,
but becomes larger for time series that exhibit some positive dependency on previous
values, outlining a long term correlation (or long term memory range). For negative
dependencies it becomes less than 0.5, outlining an antiperspirant range as it is usually
called in the research literature.

4.2.3. Shannon Entropy (SE)

In his seminal work, Shannon introduced the concept of entropy for information
theory [71]. The concept is similar to the entropy that is used in thermodynamics, however,
the focus on information theory is to gauge the degree of randomness in the values that
an information source generates. In this regard, the Shannon entropy (SE) of a time series
{Xt}n

t=1 is given by:

SE(x) = −
n

∑
y=1

pilog(pi)

where pi is a discrete probability such that ∑i pi = 1. SE reaches its maximum if all values
of the underlying time series {Xt}n

t=1 are equally probable. Therefore, the maximum value
is log n and when SE approaches this value, the time series is nearly random. On the
contrary, if there is a single Xi for which P(Xi) = 1, then, SE reaches its minimum value,
which is 0. Practically, the latter denotes that the source generates a single value, hence
there is no randomness in the produced sequence.

5. Empirical Analysis and Discussion

To showcase the robustness of our methodology and its efficacy in producing valid
modeling results, we perform a step-by-step “construction” of the data as well as perform
the necessary non-linear analysis calculations on the first real-world system model “Linux
Openstack Control system” presented in Table 1. The results for the rest of the models
of the aforementioned table are also reported in the manuscript and discussed in the
following sections.

5.1. Systems Time Series Construction and Pre-Processing

The first step in our model development is the construction of the Openstack control
system base model. Thus, we extract all the records that contain vulnerabilities that affect
the installed software from the NVD data set and record the CVSS score and the corre-
sponding date. More precisely, for the Openstack controller, we consider the following
software components: Ubuntu, Linux kernel, IPtables, Fail2ban, RabbitMQ, MySQL, NTP,
MongoDB, memcached, apache2, Openstack keystone, Openstack glance, Openstack neu-
tron, Openstack horizon, Openstack nova and Openstack ceilometer. If the dataset contains
more than one vulnerability in one day, we keep the maximum score. Obviously, in this
case, we could have variations comprised of the minimum, the average, or a weighted
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sum of the corresponding vulnerability scores. We argue, though, that a security officer
would most likely consider the worst-case scenario. Thus, we seek to establish a likelihood
pattern for a vulnerability appearance in any given dataset on any given day. The final
data set will contain two columns with the dates and the maximum CVSS date scores.

Once we created our the model shown in Table 1, the ratio of the missing values in
conjunction with the whole sample set needs to be considered. The values mentioned
above, evidently, do not appear daily because the covered timeline is vast, and one does
not expect a production system to have vulnerabilities daily. For instance, in this dataset,
the first value that was found for the controller node was on “1996/7” and the last on
“2020/12”. That is roughly a twenty-four-year time-frame, which makes it possible that
many values are missing. Figure 2 illustrates the sparsity of the dataset for the OpenStack
controller node and depicts the CVSS score of each vulnerability.

2000 2005 2010 2015

1

2

3

4

5

6

7

8

9

10

Score (original)

Dates

S
c
o
r
e

Figure 2. Openstack controller vulnerability scores over time.

The sample is sparse in the beginning, and it started to become denser in recent years.
This means that to use some of the standard forecasting methods, we need to address the
missing values. We used the K-Nearest Neighbors (KNN) algorithm to handle our missing
data. KNN, which belongs to the imputation family of methods, was introduced in [72] and
later refined in [73] as a classification method. This method was later refined further and
added to the scikit-learn python library to deal with missing values. The KNN algorithm is
applied to the dataset, and the obtained values are used to substitute the missing ones.

KNN has proved to be a robust method even when a high proportion of data is
missing [74]. Once the KNN imputation model is generated, the next step is to shift through
the time series values involving a Fast Fourier Transform (FFT)-based signal reconstruction
procedure to validate that the sampling frequency does not violate the Nyquist criterion.
This shifting procedure decreases the time windows, starting from the initial NVD dates
and ending at the first date X that the time series window [Xdate, currentdate] can be
reconstructed in terms of frequencies.

Based on the above-described procedure, we found empirically that in our data,
the “30% missing values” barrier should not be exceeded for a reliable time series recon-
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struction. In general, when missing values are above a specific threshold in a sample that
is not big, the ability of a missing-value-handling algorithm to perform satisfactorily its
intended function is hindered. Therefore, “30%” is a relatively acceptable value used to
indicate an upper threshold. We have detected that the various missing values algorithms
do not guarantee consistent data recovery from that point on. From our experience, 25%
to 30% can be a fairly good threshold, and, as such, all temporal data consolidations that
exhibit higher missing values are dropped from being analysed. Practically, this means
that the missing values must not exceed the 30% missing value barrier if we want our
imputation method (KNN in this case) to be accurate. These considerations and remarks
comply fully with the outcomes of a recent analysis of the KNN robustness in several data
sets with regards to missing value imputation performance [74]. To overcome this issue,
we opted to use a week-long interval for the internal data grouping window. We take the
week as our minimal temporal unit, which is used in the missing value algorithm. If a
sufficient window for non-linear analysis cannot be created (using the week-long data),
then a month-long data interval could be formed for further processing.

Therefore, to handle the missing data, we first grouped the data in week intervals.
While there are weeks with no vulnerabilities, some of them have more than one. Therefore,
we have three approaches:

• In the Extreme approach, we use the maximum value of each day/week/month
interval to fill the weekly score column.

• In the Average approach, we use the average of each day/week/month values to fill
the weekly score column.

• Finally, in the Relaxed approach, we use the minimum value in each day/week/month
interval to fill the weekly score column.

For each approach, we used the KNN algorithm to fill the missing values.

5.2. Application of Non Linear Deterministic Chaotic Analysis Methods to the Defined Systems
Time Series

After the formation of the systems time series, the application of the above defined
methodologies for deterministic chaotic analysis follows (LLE, HE and SE).

5.2.1. LLE Estimation

A system containing a positive LLE is defined to be chaotic. The magnitude of the
exponent reflects the time scale on which the system’s dynamics become unpredictable.
In this study, the estimation of the largest Lyapunov exponent is conducted through the
Rosenstein algorithm using the python Nolds library [75]. Even though the library provides
default values for the dimensions required by the algorithm to work, it is highly encouraged
to experiment with these dimensions to find the tested system’s boundaries. The Python
function representing the algorithm with the respected default values is:

nolds.lyap_r(data, emb_dim = 10, lag = None, min_tsep = None, tau = 1,

min_neighbors = 20, trajectory_len = 20, f it = u′RANSAC′, debug_plot = False,

debug_data = False, plot_ f ile = None, f it_o f f set = 0)

From the above parameters we experimented with trajectory_len, emb_dim, min_neighbors,
and lag, and for the rest we used the default values.

5.2.2. HE Estimation

With regards to the Hurst exponent, we also use the Nolds Python library to calculate
it. The Hurst exponent varies between 0 and 1, and the interpretation of the coefficient
is as follows: for 0.5 < H < 1, the process has a long stationary memory; for H = 0.5,
the time series obeys random walk; in the case where 0 < H < 0.5, the series is said
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to be antipersistent. The Python function representing the algorithm with the respected
dimensions is:

nolds.hurst_rs(data, nvals = None, f it = u′RANSAC′,

debug_plot = False, debug_data = False, plot_ f ile = None,

corrected = True, unbiased = True)

We use the default values for the required dimensions as presented from above.

5.2.3. SE Estimation

The Shannon entropy Equation (see Section 4.2.3) has been implemented using NumPy
and SciPy Python libraries and it has been applied to all defined time series. There are no
user parameters required for calculating SE.

5.3. Computational Overhead

It should be noted that, the setup of the computing system used to perform the
experiments was a i7-6700 CPU (3.4 GHz) with 8 cores, 32 GB DDR4 RAM and 1TB SSD
hard disk drive.

The processing time needed for computing LLE (for each possible combination of
trajectory_len, emb_dim, min_neighbors and lag), HE, and SE was 26 s, 0.336 s, and 0.018
s, respectively for the eight base systems presented in Table 1 and was 1378.75 s, 7.36 s,
and 0.073 s, respectively for the random generated systems.

Please note that in the first case, we did not use any parallelisation for our compu-
tations. Therefore, further performance improvements can be achieved in a production
environment. In the second case, we used parallelisation for our computations via the
Python Joblib library only for the LLE and HE calculations.

6. Discussion of the Results

In what follows, we interpret the measurements of our dataset from the previous
section. The goal is to determine whether the measurements exhibit the properties that one
would find in a chaotic system.

Regarding the LLE analysis, by reviewing the results presented in Tables 2–9 we can
see that for the randomly generated systems in both cases (500 closed source/500 open
source), we have a positive value for more than 60% of the total values calculated. Further-
more, we analyze the results based on different combinations of the parameters used by
the Nolds Python library to calculate LLE. We can see that for specific value combinations
(total 24/26 rows for closed/open source, Tables 6–9), all random systems have positive
LLEs. Therefore, these combinations lead to strong evidence of the existence of a chaotic
behavior in our systems. The above-mentioned Nold’s Python library parameter sequences
used in the implementation of Rosenstein method are:

• trajectory_len: 6, 7 and 8.
• emb_dim: 5 and 7.
• min_neighbors: 3, 4 and 5.
• lag: 1 and 2.

Please note that the necessary and sufficient condition to prove the existence of
deterministic chaos in a time series is to find proper values of the parameters of the
Rosenstein method to satisfy LLE > 0. The fact that we have several parameter values
leading to positive LLEs shows several ways to define the time series chaotic space. Finding
the exact embedding dimension and lag is subject to future research.
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Table 2. Largest Lyapunov Exponents for trajectory_len = 6 regarding base model systems.

emb_dim 3

min_neighbors 2 3 4 5

lag 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

>0 7 7 4 4 7 7 4 4 7 7 4 4 8 7 4 4

<0 1 1 4 4 1 1 4 4 1 1 4 4 0 1 4 4

emb_dim 5

min_neighbors 2 3 4 5

lag 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

>0 8 8 7 3 8 8 6 3 8 8 7 3 8 8 6 3

<0 0 0 1 5 0 0 2 5 0 0 1 5 0 0 2 5

emb_dim 7

min_neighbors 2 3 4 5

lag 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

>0 8 8 4 5 8 8 4 5 8 8 4 4 8 8 4 5

<0 0 0 4 3 0 0 4 3 0 0 4 4 0 0 4 3

Table 3. Largest Lyapunov Exponents for trajectory_len = 7 regarding base model systems.

emb_dim 3

min_neighbors 2 3 4 5

lag 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

>0 2 5 3 6 2 5 3 5 2 5 3 6 2 5 3 5

<0 6 3 5 2 6 3 5 3 6 3 5 2 6 3 5 3

emb_dim 5

min_neighbors 2 3 4 5

lag 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

>0 8 6 6 3 8 8 6 4 8 7 6 3 8 7 6 4

<0 0 2 2 5 0 0 2 4 0 1 2 5 0 1 2 4

emb_dim 7

min_neighbors 2 3 4 5

lag 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

>0 8 7 5 4 8 6 5 5 8 7 5 4 8 8 5 4

<0 0 1 3 4 0 2 3 3 0 1 3 4 0 0 3 4
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Table 4. Largest Lyapunov Exponents for trajectory_len = 8 regarding base model systems.

emb_dim 3

min_neighbors 2 3 4 5

lag 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

>0 3 4 6 5 3 4 6 6 3 4 6 3 3 4 6 4

<0 5 4 2 3 5 4 2 2 5 4 2 5 5 4 2 4

emb_dim 5

min_neighbors 2 3 4 5

lag 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

>0 8 7 1 5 8 8 1 5 8 7 1 5 8 8 2 4

<0 0 1 7 3 0 0 7 3 0 1 7 3 0 0 6 4

emb_dim 7

min_neighbors 2 3 4 5

lag 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

>0 8 8 1 6 8 8 1 7 8 8 1 6 8 8 1 7

<0 0 0 7 2 0 0 7 1 0 0 7 2 0 0 7 1

Table 5. Largest Lyapunov Exponents general statistics regarding the random generated systems.

Closed source (500)

Total number of tests all variations of
Rosenstein method parameters 72,000

Number of tests with positive LLEs 44,733

Percentage (%) 62

Open source (500)

Total number of tests all variations of
Rosenstein method parameters 72,000

Number of tests with positive LLEs 51,913

Percentage (%) 72

Table 6. Total system count for non-negative Largest Lyapunov Exponents with lag = 1 regarding
closed source random generated systems.

trajectory_len emb_dim min_neighbors lag Total Systems with
Non-Zero LLE

7 5 4 1 500

7 7 2 1 500

6 5 5 1 500

6 7 3 1 500

6 5 4 1 500

6 7 4 1 500

6 5 3 1 500

6 7 5 1 500

7 5 2 1 500
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Table 6. Cont.

trajectory_len emb_dim min_neighbors lag Total Systems with
Non-Zero LLE

6 5 2 1 500

6 7 2 1 500

7 5 5 1 500

7 5 3 1 500

7 7 3 1 500

7 7 5 1 500

8 5 2 1 500

8 7 5 1 500

8 5 3 1 500

8 5 4 1 500

8 5 5 1 500

7 7 4 1 500

8 7 4 1 500

8 7 2 1 500

8 7 3 1 500

6 3 2 1 495

6 3 5 1 494

6 3 3 1 493

6 3 4 1 492

7 3 5 1 206

7 3 3 1 204

7 3 2 1 203

7 3 4 1 203

8 3 4 1 191

8 3 3 1 190

8 3 2 1 190

8 3 5 1 189
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Table 7. Total system count for non-negative Largest Lyapunov Exponents with lag = 2 regarding
closed source random generated systems.

trajectory_len emb_dim min_neighbors lag Total Systems with
Non-Zero LLE

6 5 4 2 499

6 5 5 2 499

6 5 2 2 498

6 5 3 2 496

6 7 4 2 495

6 7 2 2 495

6 7 5 2 494

6 7 3 2 493

8 7 4 2 490

8 7 3 2 486

8 7 5 2 485

8 7 2 2 483

7 5 3 2 460

7 5 5 2 459

7 5 4 2 456

8 5 3 2 456

8 5 4 2 452

8 5 2 2 451

7 5 2 2 450

8 5 5 2 449

7 7 5 2 435

7 7 3 2 433

7 7 2 2 430

7 7 4 2 420

6 3 4 2 391

6 3 3 2 380

6 3 5 2 380

6 3 2 2 378

7 3 5 2 226

7 3 3 2 226

7 3 2 2 226

7 3 4 2 225
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Table 7. Cont.

trajectory_len emb_dim min_neighbors lag Total Systems with
Non-Zero LLE

8 3 5 2 192

8 3 4 2 191

8 3 3 2 190

8 3 2 2 188

Table 8. Total system count for non-negative Largest Lyapunov Exponents with lag = 1 regarding
open source random generated systems.

trajectory_len emb_dim min_neighbors lag Total Systems with
Non-Zero LLE

7 5 4 1 500

6 5 5 1 500

6 7 5 1 500

6 5 4 1 500

6 7 4 1 500

7 5 2 1 500

6 5 3 1 500

7 5 3 1 500

7 5 5 1 500

6 7 3 1 500

6 5 2 1 500

7 7 2 1 500

7 7 3 1 500

7 7 4 1 500

7 7 5 1 500

8 5 2 1 500

8 5 3 1 500

6 7 2 1 500

8 5 4 1 500

8 5 5 1 500

8 7 2 1 500

8 7 3 1 500

8 7 4 1 500

8 7 5 1 500

6 3 5 1 498

6 3 4 1 498
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Table 8. Cont.

trajectory_len emb_dim min_neighbors lag Total Systems with
Non-Zero LLE

6 3 2 1 495

6 3 3 1 495

7 3 4 1 266

7 3 5 1 266

7 3 3 1 266

7 3 2 1 265

8 3 3 1 226

8 3 2 1 225

8 3 4 1 223

8 3 5 1 222

Table 9. Total system count for non-negative Largest Lyapunov Exponents with lag = 2 regarding
open source random generated systems.

trajectory_len emb_dim min_neighbors lag Total Systems with Non-Zero LLE

6 5 3 2 500

6 7 4 2 500

6 7 3 2 499

6 5 4 2 499

6 5 2 2 498

6 7 2 2 498

6 5 5 2 497

6 7 5 2 496

8 7 4 2 490

8 7 3 2 489

8 5 5 2 489

8 7 5 2 486

8 5 3 2 485

8 7 2 2 485

8 5 4 2 483

8 5 2 2 481

7 5 4 2 475

7 5 2 2 474

7 5 5 2 468

6 3 3 2 465

6 3 4 2 464
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Table 9. Cont.

trajectory_len emb_dim min_neighbors lag Total Systems with Non-Zero LLE

6 3 2 2 464

7 5 3 2 463

6 3 5 2 463

7 7 5 2 447

7 7 3 2 439

7 7 2 2 430

7 7 4 2 427

7 3 3 2 382

7 3 4 2 382

8 3 5 2 382

7 3 5 2 382

8 3 2 2 378

7 3 2 2 378

8 3 4 2 374

8 3 3 2 372

Similar results hold for the eight synthetic base models of real-life systems. In these
systems 69% of the cases in total for all parameters variations tested (with the testing plan
mentioned above) have positive Lyapunov exponents. Moreover, it is worth noting that
a larger percentage of open source systems (72%) are chaotic compared to closed source
systems (62%) (see Table 5). Such a result might mean that closed-form systems are more
systematically subject to attacks than open source systems.

Regarding HE, by reviewing the results presented in Tables 10 and 11 and by grouping
the values into bins based on the interpretation mentioned above, we can see that in the
majority of the 1000 randomly generated systems these values are in the [0.40–0.49] and
[0.51–0.60] zones, which are characterized as peak chaotic zones. This is of particular
interest, because, based on the analysis in [76], these ranges are also found to apply for the
chaotic zone during the investigation of whether a correlation between HEs and LLEs exists.
Using the methodology presented in [76] the following is observed: A map function (well
known for displaying deterministic chaos) is used as the basis to perform this investigation
and the results show that while regular noise corresponds to H ≈ 0, the peak of this map
function is related to the chaotic zone at H = 0.40− 0.60 and with a steady gradient in
between. Performing a similar experiment using the vulnerability data herein presented, it
is obtained that (based also on the LLEs parameters found) a correlation exists between the
peak chaotic zone and the bulk of the Hurst exponents values and, also this correlation is
found on the same corresponding zones as in [76].
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Table 10. Hurst exponent values regarding random generated systems.

System Type HE Ranges Counts

Closed source

0.0–0.4 154

0.4–0.49 304

0.49–0.509 23

0.51–0.6 17

0.6–1.0 2

Open source

0.0–0.4 0

0.4–0.49 78

0.49–0.509 35

0.51–0.6 349

0.6–1.0 38

Table 11. Shannon entropy and Hurst exponents of base model systems. N denotes the number
of samples.

System Type Entropy log2 N HE Values

Microsoft Dot Net Application Server 2.187 8.707 0.380

Microsoft Database Server 2.222 8.707 0.363

Microsoft Mail Server 2.045 7.714 0.487

Linux Openstack Controler Server 2.272 8.508 0.587

Linux Openstack Compute Server 2.093 7.700 0.556

Linux Mail Server 2.35 9.878 0.560

Linux Java Application Server 2.311 9.878 0.566

Linux Database Server 2.209 9.709 0.465

By further analysing the results of Table 10, we notice that the closed systems related to
HE are in the range [0.40–0.49], which corresponds to the antipersistent range, whereas the
open source systems related HE is in the range [0.51–0.60], which corresponds to the long
term memory range. Both closed and open source systems present around only 10% of the
cases in the random walk range [0.50–0.51]. Based also on the results presented in Table 11,
we notice that regarding the closed source servers, the Microsoft Dot Net Application and
the Microsoft Database Server, fall into the antipersistent range in the boundaries of the
ranges defined in [76]. On the other hand, the Microsoft Mail Server corresponds to the
antipersistent range in accordance with the range defined in [76].

Considering the open-source systems, all relevant HE fall into the stationary long term
memory in agreement with the range defined in [76] except for the Linux Database Server
HE, which corresponds to the antipersistent range defined in [76]. Moreover, based on
Table 10, it seems that more open source systems (77%) are in the chaotic region associated
with HE compared to closed source systems (65%).

Regarding SE, the results of Tables 11–13 clearly show that the number of bits (entropy)
and also the average number of bits (mean entropy) calculated by SE are much larger than
zero and much smaller than the number of bits of the end systems samples (logs2N). If the
number of bits calculated by SE is larger than zero, then the corresponding system is
characterized by uncertainty. On the other hand, if the number of bits is near the maximum
number of bits, which is the number of bits of the system samples (logs2N), then the
corresponding system is characterised by complete randomness. Therefore, it is obvious
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that based on Table 11, regarding the base model systems (Table 1), the associated time
series are characterised by chaotic dynamics and uncertainty. The same conclusion is
derived for both closed and open source random generated systems. However, it should be
noticed that open source systems present a larger uncertainty than closed source systems.

Table 12. Shannon entropy of closed source random generated systems. N denotes the number
of samples.

Closed Source Systems

Range Mean Entropy Mean Entropy Variance Mean log2 N Systems TestedVariance

1–2 1.967 0.0007 8.2937 53

>2 2.0851 0.0020 8.8460 447

Table 13. Shannon entropy of open source random generated systems. N denotes the number
of samples.

Open Source Systems

Range Mean Entropy Mean Entropy Variance Mean log2 N Systems TestedVariance

1–2 1.9901 0.0001 8.8805 10

>2 2.2711 0.0111 9.4739 490

Based on the above analysis and the individual measurements of LLE, HE, and SE,
the generated systems do not have random vulnerabilities. Quite the contrary, they follow
the properties of a chaotic system. Moreover, since this observation is derived from three
independent measures, it is more than evident that any underlying system is a chaotic
system. The results are important since they reveal a hidden pattern in system-wide
vulnerabilities of IS. More importantly, the above findings justify the failure of the existing
methods’ in accurately predicting vulnerabilities in the long term. Further to merely
providing this justification, the chaotic nature implies that chaos-based methodologies can
provide more accurate predictions and pave the way for new security-oriented applications.

Limitations

Undoubtedly, the literature presents (apart from the LLE, HE, and SE measures inves-
tigated above) many other relevant chaotic analysis measures that could be used; however,
they are not so widely applied. Therefore, although this study could be significantly
extended with the application of other non-linear analysis metrics, the conclusions de-
rived in the present experimental study are statistically significant due to the large scale
experimental data involved. In future work, we plan to include such measures as well.

Another limitation of this work is the usage of a synthesised dataset and not of real-
world data collected from the computed systems of an actual enterprise. To the best of our
knowledge, there is no such public dataset available. Nevertheless, even in this case, we
notice the persistence of patterns that clearly indicate the dataset’s chaotic nature and their
deviation from the randomness.

7. Conclusions and Future Prospects

This paper presented a statistically significant non-linear deterministic chaotic analysis
framework for computer systems vulnerability time-series. More specifically, the defini-
tion of computer systems vulnerabilities was introduced in NIST vulnerability database.
The provided definition of open source and close source systems was employed to investi-
gate specific properties in terms of vulnerability characteristics for such systems. Three
specific measures of chaotic properties were used. In particular, LLE, HE and SE were
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selected due to their widespread use in the literature. Based on the experimental study pre-
sented, both closed and open source systems vulnerability time series clearly demonstrate
chaotic properties. More specifically, the vast majority of such systems’ times series result
in positive LLEs, HEs in the chaotic regions and SEs in the region of uncertainty.

The results of this research effort are not only significant in characterising the available
vulnerability time series. They are also important for future studies, especially for providing
the means for improving vulnerability time series forecasting. Moreover, the contribution
of this study implies that the associated time series are not fully predictable. However,
the strong evidence of their illustrated chaotic properties could lead to a deeper analysis of
the associated systems to improve risk management assessment. The probabilistic analysis
of these results indicates that the prediction of vulnerability scores using time series of
vulnerability data is a promising approach with far-reaching implications for adopting
proper security management measures. Therefore, an important future research goal is to
design a risk management framework based on the analysis presented in this paper. Such
a framework is still missing from the academic literature and could be applied in the IS
security domain of medium and large scale enterprises.
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