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Abstract: The monitoring of rotating machinery is an essential activity for asset management today.
Due to the large amount of monitored equipment, analyzing all the collected signals/features
becomes an arduous task, leading the specialist to rely often on general alarms, which in turn can
compromise the accuracy of the diagnosis. In order to make monitoring more intelligent, several
machine learning techniques have been proposed to reduce the dimension of the input data and also
to analyze it. This paper, therefore, aims to compare the use of vibration features extracted based on
machine learning models, expert domain, and other signal processing approaches for identifying
bearing faults (anomalies) using machine learning (ML)—in addition to verifying the possibility
of reducing the number of monitored features, and consequently the behavior of the model when
working with reduced dimensionality of the input data. As vibration analysis is one of the predictive
techniques that present better results in the monitoring of rotating machinery, vibration signals
from an experimental bearing dataset were used. The proposed features were used as input to an
unsupervised anomaly detection model (Isolation Forest) to identify bearing fault. Through the
study, it is possible to verify how the ML model behaves in view of the different possibilities of input
features used, and their influences on the final result in addition to the possibility of reducing the
number of features that are usually monitored by reducing the dimension. In addition to increasing
the accuracy of the model when extracting correct features for the application under study, the
reduction in dimensionality allows the specialist to monitor in a compact way the various features
collected on the equipment.

Keywords: fault detection; dimensionality reduction; feature extraction; machine learning; predictive
maintenance

1. Introduction

Rotating machinery plays an important role in industrial applications [1]. Among the
various types of essential rotating parts, rolling element bearings are considered one of
the most important. Among the main monitoring techniques currently used, predictive
maintenance (PdM) stands out, which include: vibration, oil, thermography analysis, etc.
Due to advances in monitoring systems and methods for predicting remaining useful life
(RUL), PdM has increasingly become a focus of interest for professionals and researchers [2].
In addition, since vibration analysis is one of the non-invasive techniques, which presents
the greatest amount of information about the monitored component, its use in industry
increases every day. It is important to note that, depending on the type of asset being
monitored, other predictive techniques are also commonly used to monitor: stator current,
stray fluxes, thermal image, oil, noise level, etc.
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With the reduction in the cost of hardware, more and more sensors are being imple-
mented in the industrial field, considerably increasing the amount of collected signals.
Such signals must be analyzed by specialists in order to identify possible faults in the
components, so that the planned corrective maintenance can be carried out. However, due
to the large amount of generated signals, there are not always enough specialists to analyze
all the signals or sufficiently reliable alarm techniques to make the analysis automatic.
Thus, several strategies using artificial intelligence have been studied. Among them, the
unsupervised fault detection, also called anomaly detection, stands out. Although the field
of rotating machinery monitoring is widely developed, a small number of unsupervised
approaches have been presented, in relation to the vast majority focused on supervised
classification and prognostics, as shown in the review works [3,4]. Anomaly detection
consists of identifying unexpected events that vary greatly from normal events, as they
usually present different characteristic patterns.The ability to work unsupervised makes it
possible to overcome the problem of obtaining labels in real applications.

When using ML algorithms, usually relevant features are extracted from the vibration
signal to be used as inputs in the model. Although the extraction is focused on features
that are relevant for monitoring the equipment, due to the large number of faults that
may exist, many features can be generated, increasing the size of the dataset. To deal with
high dimensional datasets, unsupervised dimensionality reduction is often performed
as a pre-processing step to achieve efficient storage of the data and robustness of ML
algorithms [5].

Dimensionality reduction is an important tool in the use of ML algorithms, which
can help to avoid some common problems, such as: (i) Curse of dimensionality: due
to the high number of features in relation to the sample, the algorithm tends to suffer
overfitting, fitting very well to the training data, but showing a high error rate in the test
group. (ii) Occam’s Razor: to be used in real applications, the models are intended to
be simple and explainable. The greater the number of features present, the greater the
difficulty in explaining the model under development. Consequently, real applications
become unfeasible. (iii) Garbage In Garbage Out: when using features that do not present
significant information for the model, the final result obtained will be lower than desired.
In other words, low quality inputs produce bad outputs. To overcome these problems, it is
essential to perform feature selection and dimensionality reduction in the dataset.

Therefore, this paper aims to present a comparison of different features extracted
from the vibration signal and dimensionality reduction techniques, in the unsupervised
detection of faults in rotating machinery (anomaly detection). In addition to the main
objective, different features for monitoring bearing faults are proposed. The proposed
methodology has the great advantages over traditional methods of anomaly detection,
allowing to work with a reduced number of features, which results in: (i) possibility of
follow-up of features by specialists—assists in data visualization (given that some assets
can present more than 100 features acquired in real time, which makes detailed monitoring
of all impracticable); (ii) avoid introducing irrelevant or correlated features in machine
learning models, which would result in a loss of learning quality and, consequently, a
reduction in the success rate; (iii) reduced data storage space; and (iv) less computational
time for training the models.

The remainder of this paper starts with a brief explanation about feature extraction, di-
mensionality reduction, anomaly detection, and the methodology is presented in Section 2.
Results and discussion are shown in Section 3. Finally, Section 4 concludes this paper.

2. Materials and Methods
2.1. Background
2.1.1. Feature Extraction

Monitoring rotating machines has a great advantage over other research fields, which
is prior knowledge of the behavior and characteristics of the vast majority of machine
failures. Such knowledge allows the application of ML models, and, therefore, it was
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decided to work with ’classic’ ML techniques, exploring the wide knowledge of filtering
approaches and features definitions provided by the literature.

Monitoring through the vibration signal is one of the non-invasive techniques that
provide the greatest amount of information about the dynamic behavior of the asset, and,
for this reason, it is of growing interest [6,7]. In addition to vibration, other techniques and
physical variables can be measured for monitoring. Despite this, the vibration analysis
technique stands out, among other reasons, because: (i) it does not need to stop the asset
to perform the measurement; (ii) easy placement of the sensor for data acquisition (in the
most common case of accelerometers); (iii) widespread knowledge about the characteristics
of faults; (iv) fast acquisition time (in most cases), enabling the monitoring of a greater
amount of assets; and (v) it provides information about mechanical, electrical, and even
structural conditions.

As shown in [8], the features to detect faults in rotating machinery using vibration
signals are commonly extracted from:

(i) Time domain: mean, standard deviation, rms (root mean square), peak value, peak-to-
peak value, shape indicator, skewness, kurtosis, crest factor, clearance indicator, etc.

(ii) Frequency domain: mean frequency, central frequency, energy in frequency bands, etc.
(iii) Time-frequency domain: entropy are usually extracted by Wavelet Transform, Wavelet

Packet Transform, and empirical model decomposition.

2.1.2. Dimensionality Reduction

The higher the number of features, the harder it gets to visualize the training set and
then work on it. Sometimes, many of these features are correlated or redundant. Because of
this, a fundamental tool for ML applications is dimensionality reduction. Dimensionality
reduction can be done in two main ways: (i) keeping only the most relevant features from
the original dataset (generally called feature selection); and (ii) reducing the original dataset
into a new one through analysis/combinations of the input variables, where the new dataset
contains basically the same information as the original (generally called dimensionality
reduction). Different techniques can be used to reduce the dimensionality of the data
obtained, such as: Principal Component Analysis (PCA), t-distributed Stochastic Neighbor
Embedding (t-SNE), Isometric Feature Mapping (ISOMAP), Independent Component
Analysis (ICA), and Neural Network Autoencoder (AE). In general, the objective is to
reduce the number of features by creating new representative ones and thus discarding
the originals. The new set, therefore, should be able to summarize most of the information
contained in the original set of features.

The advantages are: (i) reduced data storage space; (ii) less computational time
for training the models; (iii) better performance in some algorithms that do not work
well in high dimensions; (iv) reduction of correlated variables; and (v) assistance with
data visualization. On the other hand, some disadvantages can be mentioned, such as:
(i) loss of explainability of the features (when space transformation occurs) and (ii) lack of
representativeness of the problem under analysis.

PCA [9] is a linear transformation that seeks to find the low-dimensional subspace
within the data that maximally preserve the covariance up to rotation. This maximum
covariance subspace encapsulates the directions along which the data vary the most.
Therefore, projecting the data onto this subspace can be thought of as projecting the data
onto the subspace that retains the most information [10].

ISOMAP measures the inter-point manifold distances by approximating geodesics
(rather than Euclidean distance as in Multidimensional scaling—MDS) [11]. Geodesic
distance is the shortest distance between two points on a curve. The use of manifold
distances can often lead to a more accurate and robust measure of distances between
points so that points that are far away according to manifold distances, as measured in the
high-dimensional space, are mapped as far away in the low-dimensional space [10].

t-SNE computes the probability that pairs of data points in the high-dimensional space
are related and then chooses a low-dimensional embedding which produce a similar distri-
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bution [12]. It minimizes the Kullback–Leibler divergence between the two distributions
with respect to the locations of the points in the map.

ICA is based on information-theory which transforms a set of vectors into a maximally
independent set [13]. It assumes that each sample of data are a mixture of independent
components, and it aims to find these independent components. It is based on three main
assumptions: (i) Mixing process is linear; (ii) All source signals are independent of each
other; and (iii) All source signals have non-Gaussian distribution. The major difference
between PCA and ICA is that PCA looks for uncorrelated factors while ICA looks for
independent factors. At each step, ICA changes the basis vector (projection directions)
and measures the non-Gaussianity of the obtained sources and at each step it takes the
basis vectors more towards non-Gaussianity. After some stopping criteria, it reaches an
estimation of the original independent sources. ICA extracts hidden factors within data by
transforming a set of variables to a new set that is maximally independent and, typically, it
is not used for reducing dimensionality but for separating superimposed signals.

Finally, the idea of autoencoders has been part of the historical landscape of neural
networks for decades [14]. Autoencoders are a type of artificial neural network that
aims to copy their inputs to their outputs. They compress the input into a latent-space
representation, and then reconstruct the output from this representation. The output from
the bottleneck is used directly as the reduced dimensionality of the input.

2.1.3. Anomaly Detection (AD) and Isolation Forest (IF)

Anomaly detection (also known as outlier detection (The terms ‘Anomaly’ and ‘Out-
lier’ will be treated in the same way in this work)) refers to the task of identifying rare
observations which differ from the general (’normal’) distribution of a data at hand [15].
In other words, they are samples that have values so different from other observations
that they are capable of raising suspicions about the mechanism from which they were
generated [16]. An important parameter of anomaly detection approaches is the ability to
summarize a multivariate system in just one indicator, called Anomaly Score (AS) (Other
authors refer to the concept of Anomaly Score with various names like for example Health
Factor or Deviance Index). While only one study, to the best of our knowledge, has been
presented in the field of rotating machinery monitoring using vibration data and state-of-
art models [8], AD approaches have been successfully applied in various areas like fraud
detection and oil and gas [17].

Isolation Forest (iForest or IF) is probably the most popular AD approach. It works
well in high-dimensional problems that have a large number of irrelevant attributes, and in
situations where a training set does not contain any anomalies. Given its high performance
and the possibility to parallelize its computation (thanks to its ensemble structure), it was
selected for the study. IF [18] uses the concept of isolation instead of measuring distance
or density to detect anomalies. The IF exploits a space partitioning procedure: the main
idea underlying the approach is that an outlier will require less iterations than an inlier to
be isolated. At the end of the partition procedure, an anomaly score is generated. If it is
very close to 1, then they are tagged as anomalies; on the other hand, values much smaller
than 0.5 are quite safe to classify the normal instances, and if values are close to 0.5, then
the entire sample does not really have any distinct anomaly [18]. The complete flowchart
exemplifying the steps presented above is shown in Figure 1.
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Figure 1. Flowchart of the anomaly detection method.

2.2. Methodology

The proposed methodology is divided into five main parts: (1) Data Acquisition;
(2) Feature Extraction; (3) Dimensionality Reduction; (4) Fault detection: Anomaly Detec-
tion; and (5) Feature Trend Analysis, Figure 2. The data are acquired. The vibration features
are initially extracted based on the type of monitored component. The dimensionality
of each extracted feature and the raw signal is reduced. The features are divided into a
training and testing group, and the hyperparameters of the anomaly detection models
are tuned. The samples are evaluated using the original and reduced features in the fault
detection part. Finally, a feature trend analysis is performed.

Figure 2. General framework of the proposed methodology.

2.2.1. Data Acquisition and Feature Extraction

Accelerometers were used to collect the vibration signal. The 22 features were carefully
extracted from the vibration signal for the bearing analysis, taking into account the authors’
experience and the most relevant features in the literature on the subject [19–24], as they
are typical choices in signal processing. The selected features are shown in Table 1. Three
energy features were calculated in the frequency bands of 10–1000 Hz, 1000–4000 Hz, and
4000–10,000 Hz, and nine wavelet sub bands were extracted for entropy calculation.
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Table 1. Features extracted from the vibration signal.

Features Description Features Description

Absolute Energy
∫
|x(t)|2dt Root Mean Square (rms)

√
1
N ∑N

i=1 x2
i

Kurtosis
1
N ∑N

i=1(xi−x̄)4

( 1
N ∑N

i=1(xi−x̄)2)2
Skewness

1
N ∑N

i=1(xi−x̄)3

( 1
N ∑N

i=1(xi−x̄)2)
3
2

Global value from envelope
analysis peak-to-peak max(xe)−min(xe) Crest Factor max(|x|)/rms

Principal Frequency max(x f i) Wavelet sub band entropy −∑N
i=1 pi ∗ log(pi)

Ball Pass Frequency Outer
(BPFI) r/min Nb

2 (1 + Bd
Pd

cos(β))
Ball Pass Frequency Inner
(BPFO) r/min Nb

2 (1− Bd
Pd

cos(β))

Ball Spin Frequency (BSF) r/min Pd
Bd
[(1− Bd

Pd
cos(β))2]

Where a sampled vibration signal in time domain is defined as x = x1, x2,. . . ,xN, in
frequency domain xf = xf1, xf2,. . . , xfN and after the envelop analysis xe = xe1, xe2,. . . ,xeN. pi
is the probability that each sub band in wavelet transform will be in state i from N possible
states, xfilt is the filtered signal in the specific band, r/min is the rotation speed, D1 bearing
outer diameter and D2 bearing inner diameter, Nb the number of ball, Pd = (D1+D2)/2 and
β the contact angle.

In case of bearing analysis, specific features are those that indicate the type of fault
(BPFI, BPFO, and BSF) and the remaining features are those that indicate the presence of a
defect. The bearing fault frequencies are important to assess the type of defect and confirm
its existence, which is not always noticed by other features. It is also important mentioning
that there are cases where the fault does not present the classic defect behavior with the
deterministic bearing frequencies in evidence [25], which makes it important to use other
features. Knowing that bearing faults are generally associated with impacts, kurtosis is
a relevant feature for the study. Impacts generally excite high frequencies, and with the
evolution of the fault, new frequencies tend to appear in other bands, which can be noticed
in the energy per sub band and in the wavelet frequency sub bands. The principal frequency
can vary with the appearance of the defect, stabilizing and suffering changing with the fault
evolution due to the random behavior caused by the excessive wear. Crest factor tends to
increase as the amplitude of high frequency impacts in the bearing increase compared to
the amplitude of overall broadband vibration. Skewness will provide information on how
the signal is symmetrical with respect to its mean value. Finally, the rms value, global value
from envelope analysis, and absolute energy represent the global behavior of the system,
indicating a general degradation and accentuation of the defect [8].

2.2.2. Dimensionality Reduction, Fault Detection, and Feature Trend Analysis

To perform the dimensionality reduction, different methods were used, namely: PCA,
t-SNE, ISOMAP, ICA, and AE. Dimension reduction can be performed in different ways,
which will consequently impact the final result. Firstly, the dimension of the features
extracted from the raw signal was reduced. Furthermore, the dimension of the raw signal
was also reduced, in order to verify the possibility of using the reduced signal directly in
the ML model. Dimensionality reduction here is taken as a proxy to assess the goodness of
the feature’s importance and also the possibility of reducing the large number of features
that are usually monitored.

Fault detection (AD) was performed using the ML model Isolation Forest. The fol-
lowing were used as inputs in the model: all original features extracted from the vibration
signal, original features extracted from the vibration signal and manually selected, features
extracted from the vibration signal with reduced dimension, and raw vibration signal with
reduced dimension. The features used were plotted in the form of a trend in order to
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visually verify their respective values and possible deviations from the curve’s behavior,
helping the specialist to visualize the anomaly. Furthermore, through this analysis, it is
possible to verify features that are more relevant to the problem under study.

2.3. Experimental Procedure

Since bearing is one of the most important components in rotating machinery, a
bearing dataset (a benchmark for failure prediction in industry 4.0 [26]) was chosen for
the study. The dataset considered publicly is provided by the University of Cincinnati
Center for Intelligent Maintenance Systems (available in [27] and described in [28]), namely
Bearing Dataset, is composed by three run-to-failure tests with four bearings in each test
and no labels are available. All four bearings were force lubricated. A PCB 353B33 High
Sensitivity Quartz ICPs Accelerometer was installed on each bearing housing. To assess
the efficiency of the AD model, the data were manually labeled. For the study, bearing 01
of test 02 was used. The bearing used was a Rexnord ZA-2115, and the speed was kept
constant at 2000 r/min. The shaft was driven by an AC motor and coupled by rub belts
and a radial load was added to the shaft through a spring mechanism. All failures occurred
after exceeding the projected bearing life, which is more than 100 million revolutions. The
vibration signals consist of 20,480 points with the sampling rate set at 20 kHz. Vibration
data were collected every 20 minutes by a National Instruments DAQCard-6062E data
acquisition card. Four thermocouple sensors were placed on the outer race of the bearings
to monitoring temperature due to lubrication purposes [28]. The experimental apparatus
(bearing test rig) is shown in Figure 3.

Figure 3. Experimental Apparatus (Bearing Test Ring) adapted from [28].

2.3.1. Tests and Analysis Approaches

Four tests were performed to evaluate the extracted features and the dimensionality
reduction, as follows: (i) Anomaly detection using all features extracted from the raw
signal; (ii) Anomaly detection using features selected manually from those extracted in test
(i); (iii) Anomaly detection using the sets obtained by reducing the dimensionality of the
features extracted in test (i); and (iv) Anomaly detection using the raw signal with reduced
dimension through the PCA method.

For the fault detection using the Isolation Forest model, a dynamic condition was
considered with the data collected in sequence, where a temporal relationship and fault
evolution are presented. For the study, a sliding window was used, where the training
group was updated with each new sample, in case it was considered normal. Twenty-five
samples were initially used for the training group and, after each iteration, if the sample
was considered normal, it was added to the training group, in order to ensure stability in
the model. This approach was used in order to minimize as much as possible the amount of
initial samples needed for the method to work, also ensuring its stability. For this situation,
as the model was started together with the machine under normal conditions (e.g., after
maintenance or a new machine), there are no anomalies in the training group. It is worth
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noting that this approach can also be used if there are anomalies in the training group (e.g.,
cases of continuous monitoring where the machine was repaired after a fault, and it is
desired to use all the signals to increase the amount of data in the model).

2.3.2. Hyperparameter Tuning and Evaluation Metrics

The hyperparameters for the Isolation Forest model were adjusted based on the train-
ing group to obtain the best performance (100 estimator and 128 the maximum number of
samples). A cross-validation procedure was applied, using a Leave P Out (LPO) approach
for the dynamic condition, where 5% of the training samples were removed in each new
update of the training group. The hyperparameters are presented in relation to the library
used [15].

As for the dimensionality reduction methods, two main components were used. The
choice was to guarantee the possibility of data visualization, based on the PCA technique
(state-of-the-art), where 100% of the variance explained was obtained. In PCA, the full
SVD (Singular Value Decomposition) was used. t-SNE was set using perplexity = 30 and
early exaggeration = 10. ISOMAP was calculated using 5 near neighbors. For ICA, the
functional form of the G function used in the approximation, the neg-entropy it used
was ’logcosh’ and 0.0001 of tolerance. For the AE, layers with dimensions 128 and 64,
sigmoid optimization function, optimized ’adam’, and error metric ’mse’ were used. The
hyperparameters are presented in relation to the scikit-learn library used.

An unsupervised methodology is proposed for the fault detection. The anomaly
score is calculated, where samples with high anomaly score values are usually anomalies.
Threshold values were defined based on the training group. The results are presented
using the F1-Score and the average confusion matrix of the iterations with respective
standard deviations. The tests were performed using 2.2 GHz Intel Core i7 Dual-Core, 8 GB
1600 MHz DDR3, Intel HD Graphics 6000 1536 MB.

3. Results and Discussion
3.1. Data Exploration

The data used in this work show evidence of incipient defect from sample 531, identi-
fied from the analysis of the signals, as shown in Figure 4. The signal is present according
to the sample (x-axis). Despite indicating in Figure 4 that the incipient fault cannot be iden-
tified only through temporal signal analysis, it is necessary to use other signal processing
techniques such as envelope analysis, Figure 5. The use of the technique makes it possible
to filter out other excitations that can hide the evidence of fault frequencies in bearings due
to their low amplitude. This is also another factor that makes necessary to use relevant
features in ML models. Figure 5 shows the moment of the beginning of the incipient fault
indicated by the presence of fault frequencies (BPFO). Therefore, based on the analysis of
the 984 observations, 531 were labeled as normal and 453 as anomalies (fault).

Figure 4. Complete waveform for the bearing under test, from start of monitoring to complete failure.
The arrows indicate the instant where, through the analysis of the signals, the beginning of the fault
(Incipient Fault) was noticed and the moment where the incipient fault progressed to a fault (Fault).
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Figure 5. Waterfall envelope spectrum of the signals in normal operating condition (528,529,530) and
after the beginning of the incipient fault (531) with the arrows at the characteristic frequencies of
fault of the outer race in the bearing under analysis.

3.2. Fault Detection: Anomaly Detection

Using the proposed methodology, the F1-Score results with the respective standard
deviation (in percentage) obtained for the fault detection are presented in Figure 6.

Among all the sets of proposed features, the set with features manually selected based
on the type of fault under study was the one with the best result (test ii). This is due
to the fact that the selected features were carefully chosen to present a high correlation
with the fault, being extremely relevant for the detection of anomaly (e.g., BPFO which
is exclusive for the type of fault present). The fact that the set has a small dimension
also contributes to the result. As it is the test that showed the best result, its confusion
matrix in percentage and the respective standard deviations are presented as: TN (True
Negative) = 52.78 (0.06), TP (True Positive) = 45.43 (0.56), FN (False Negative) = 1.74 (0.56),
and FP (False Positive) = 0.08 (0.06)%. Analyzing the confusion matrix, it is possible to
observe that there is a small amount of false negatives, which means that the method is able
to identify all faults/anomalies, thus avoiding future breakdown. Another important point
to be highlighted is that the errors happened at the beginning of the fault, and, with its
progression, they no longer exist. Such phenomenon can occur even with human specialists
due to the difficulty in detection of incipient faults. However, with the progression of the
fault, it is possible to correctly identify and avoid a breakdown of the equipment.

It is possible to notice that, when using all the extracted features (test i), the fault
detection method presents a result inferior to the best obtained, and a larger standard
deviation. Using all extracted features, features that were not relevant to the fault under
study were intruded, resulting in information that tends to ’confuse’ the model, and
therefore reducing its assertiveness. Furthermore, a greater number of features tends to
introduce bias and variance in the system, increasing the standard deviation of the results,
and consequently reducing their robustness. The dimensionality reduction methods (test
iii) showed good results, close to the set of manually selected features, mainly: PCA, t-SNE,
and ICA. The result shows that the methods were able to reduce the size of the data in a
representative way. In addition, it is also possible to use the methods for similar situations
where there are several features to be monitored, and the analysis of it all is impracticable.
Thus, it is possible to proceed with the dimensionality reduction and follow only the
obtained main components. If there is any detected variation, all available features should
be analyzed. It is noteworthy that, despite being extremely useful tools for monitoring
rotating machinery and artificial intelligence applications, when performing the domain
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transformation, the explainability of these features is lost, which can be harmful for real
applications.

Figure 6. F1-Score and standard deviation (in percentage) obtained for the fault detection.

3.3. Trend Analysis: Extracted Features

Analyzing Figure 7, it can be noticed that the features present different behaviors in
relation to the analyzed signals. Ideally, a variation of the features is expected in sample
number 531, when it is possible to notice the appearance of fault frequencies through the
envelope analysis, which in turn is a good tool to detect incipient defects in bearings.

As expected, Figure 7, frequency range, and wavelet features are good indicators to
monitor bearing RUL (except for low frequency bands/wavelet, due to the fault type),
following the concept of the four stages of life. In general, for bearing faults, initially,
excitation at very high frequency (>approx. 20 kHz) is possible to be detected by specific
techniques such as: acoustic emission—followed by the second stage with high frequency
(>approx. 1–2 kHz), capable of being detected by envelope analysis, for example. In the
third stage, there is an increase in the amplitudes related to the fault frequencies, which can
be seen in the acceleration and velocity spectrum. Finally, where the failure is imminent,
the spectrum floor is raised, and the spectrum does not have the harmonics, but the noise
floor is considerably higher, and very high frequency vibration may trend downwards
(smoothing of metal reduces sharp impacts).

As features conventionally used to detect failures in rotating machines were extracted
in general, not all parameters show indication of the defect since its incipient phase, as can
be seen in Figure 8 for the BPFO, which is the type of fault present in the bearing. Thus, as
expected, this parameter is able to characterize the failure from its incipient stage.

The features were extracted to cover different types of failures in rotating machinery;
therefore, not all of them present an indication of the defect since its incipient stage. On the
other hand, specific features for fault identification, as can be seen in Figure 8 for BPFO,
were able to characterize the fault since its incipient stage.

Features such as absolute energy, kurtosis, skewness, rms, and global value from
envelope analysis pk-pk can be characterized as relevant for identifying the fault under
study, given the variation in the trend with respect to fault progression. The crest factor and
other characteristic frequencies of bearing failures (BPFI and BSF) presented variations but
less significant in relation to the others. Crest factor showed a noisy variation. BPFI and BSF,
for not showing correlation with bearing fault, showed significant variation only towards
the end of life. The principal frequency feature presented variations, mainly after the fault
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aggravation, which can be explained by the increase in the noise floor, and consequently
variations in the main frequencies for each sample due to its random behavior.

Figure 7. Trend analysis and behavior of extracted features during testing.

Figure 8. Zoom of BPFO features.
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3.4. Trend Analysis: Extracted Features with Reduced Dimension

The results obtained for each method (PCA—97.45%, t-SNE—96.67%, ISOMAP—
87.14%, ICA—97.39 % and AE—81.32%) can be compared with the behavior of its principal
components, Figure 9. With the best result among the dimensionality reduction techniques
studied, PCA presents significant variations in the first principal component in the anomaly
region, and a slight inclination from sample 531 that can be observed by zooming in on the
second principal component. This inclination is responsible for helping the Isolation Forest
to identify the incipient fault, considering that it is not present in the first main component.
The same behavior for the principal components can be noticed in the ICA method.

Figure 9. Reduced dimensionality of extracted features using different methods.

t-SNE showed a slope in the trend for the two principal components since the incipient
fault, resulting in a high hit rate, despite the noisy behavior in the first component. Similar
to t-SNE, AE showed great variation where the samples were in a normal state, and it
was not able to identify incipient faults which justify the lower result. The same problem
occurred using ISOMAP, which was not able to identify the incipient faults, considering
that the principal components showed variations, approximately, only after the 600 sample.

3.5. Dimensionality Reduction in the Raw Signal

The purpose of the analysis (test iv) is to verify the possibility of reducing the di-
mension of the raw signal, and using the principal components in an anomaly detection
algorithm, in order to avoid the need to extract features beforehand.

As the PCA was the technique with the best result among the studied methods, it
was used. The initial signal with 20,480 points was reduced to 2, 300 and 800 principal
components were chosen based on the number of samples available, 2 for comparison with
the analyses performed previously, 300, the quantity with the best result and 800, a value
close to the maximum acceptable by the method. The F1-Score results with the respective
standard deviation (in percentage) obtained for PCA using the reduced features of the raw
signal are presented in Figure 10.
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Figure 10. F1-Score and standard deviation (in percentage) obtained for PCA using the reduced
features of the raw signal.

The results obtained show that it is possible to reduce the dimension of a raw signal
through the PCA method and obtain similar results using previously extracted features
(going from 20,480 points to 300 components). On the other hand, the number of features
needed to represent the problem well is high when compared with the extracted features
(test ii), which leads to an increase in the computational cost, and makes it impossible
to use certain machine learning algorithms that do not present good results with high
dimensional space.

When using only two principal components, a variance explained of 6.86% was
obtained while for two components using the extracted features (test i and ii), 100% was
obtained. For 300 and 800 principal components, a variance explained of 76.92 and 96.36%
was obtained. The tests using the proposed anomaly detection methodology showed results
similar to the features extracted with only 300 principal components, and a significant
reduction in the metrics for the other quantities studied. This fact was expected, since,
as it is a raw signal, using only a few principal components is not able to represent the
signal under analysis well. On the other hand, a high amount of components introduces
irrelevant correlations and features to ML models, reducing their efficiency and robustness
(increase in the standard deviation).

It can be concluded that, for the studied data, it is possible to reduce the raw signal
size and obtain good results in the anomaly detection using Isolation Forest. However, on
the other hand, the final dimension obtained is still extremely high when compared with
the dimension obtained based on the features previously extracted, making the model less
efficient and less robust. The trend analysis of the features, Figure 11 (It is noteworthy that
all components are represented overlaid due to the quantity in each analysis), confirms that
only two principal components are not able to represent the variations shown above. On
the other hand, with the increase of the main components, a greater amount of variations
can be noticed, contributing to the increase in the efficiency of the model, which results in a
trade-off.
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Figure 11. Reduced dimensionality of raw signal using PCA with a different quantity of principal components.

4. Conclusions

This paper presents a comparison of different features extracted from the vibration
signal and dimensionality reduction techniques, in the unsupervised detection of fault in ro-
tating machinery, especially bearings (anomaly detection). A framework composed of five
main steps is proposed, namely: (1) Data Acquisition; (2) Feature Extraction; (3) Dimension-
ality Reduction; (4) Fault detection: Anomaly Detection; and (5) Feature Trend Analysis.

The results show that it is possible to use vibration signals for unsupervised fault
detection in rotating machinery, especially bearings. Furthermore, the feature extraction
process is fundamental for the success of ML models. Techniques to reduce the size of input
features have been proposed, showing their feasibility. Among the studied techniques,
PCA had the best performance, being second only to the manual selection of features based
on the expert’s knowledge.

The raw signal can also be reduced in size, and later used in ML models for fault
detection. It is noteworthy, however, that the amount of principal components needed to
represent the problem tends to be greater, which can lead to a reduction in the robustness
and assertiveness of the system. Feature trend analysis is an interesting tool to visually
verify variations in the system, and can be used by the specialist in conjunction with the
anomaly score obtained by the model for monitoring.

The work contributes to the development of monitoring of rotating machinery through
machine learning, avoiding the introduction of irrelevant or correlated features in ML
models, reducing data storage space and computational time to train the models. This, in
addition to allowing the monitoring of anomalies using artificial intelligence, allows the
specialist to monitor the features in a summarized manner, which is not always possible
when there are many monitoring variables. Thus, decision-making is supported by solid
indicators, essential for application in an industrial scenario, a concept that is further
explored in the new area of study in artificial intelligence, called Explainable Artificial
Intelligence (XAI). New studies will focus on understanding how the model relates input
features with significance to perform anomaly detection, and thus be able to work on
dimensionality reduction in a more optimized way.
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