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Abstract: Cochrane produces independent research to improve healthcare decisions. It translates its
research summaries into different languages to enable wider access, relying largely on volunteers.
Machine translation (MT) could facilitate efficiency in Cochrane’s low-resource environment. We
compared three off-the-shelf machine translation engines (MTEs)—DeepL, Google Translate and
Microsoft Translator—for Russian translations of Cochrane plain language summaries (PLSs) by
assessing the quantitative human post-editing effort within an established translation workflow
and quality assurance process. 30 PLSs each were pre-translated with one of the three MTEs. Ten
volunteer translators post-edited nine randomly assigned PLSs each—three per MTE—in their usual
translation system, Memsource. Two editors performed a second editing step. Memsource’s Machine
Translation Quality Estimation (MTQE) feature provided an artificial intelligence (AI)-powered
estimate of how much editing would be required for each PLS, and the analysis feature calculated the
amount of human editing after each editing step. Google Translate performed the best with highest
average quality estimates for its initial MT output, and the lowest amount of human post-editing.
DeepL performed slightly worse, and Microsoft Translator worst. Future developments in MT
research and the associated industry may change our results.

Keywords: Cochrane Russia; language translation; Russian language; machine translation; machine
translation quality; post-editing; volunteer translation; health domain; Cochrane plain language
summaries; Google Translate; DeepL; Microsoft Translator

1. Introduction
1.1. Cochrane and Its Multilanguage Activities

Cochrane is a global, independent, not-for-profit network that collects, assesses, and
summarizes health research and publishes the results of its research syntheses, so called
Cochrane systematic reviews. Cochrane has published more than 8000 systematic reviews
to date, and updates them regularly as new research becomes available. Cochrane reviews
aim to help people make informed choices about their health and to improve healthcare
globally. Since its foundation in 1993, Cochrane has made a vital contribution to health and

Informatics 2021, 8, 9. https://doi.org/10.3390/informatics8010009 https://www.mdpi.com/journal/informatics

https://www.mdpi.com/journal/informatics
https://www.mdpi.com
https://orcid.org/0000-0003-1999-0705
https://orcid.org/0000-0002-6455-0701
https://doi.org/10.3390/informatics8010009
https://doi.org/10.3390/informatics8010009
https://doi.org/10.3390/informatics8010009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/informatics8010009
https://www.mdpi.com/journal/informatics
https://www.mdpi.com/2227-9709/8/1/9?type=check_update&version=1


Informatics 2021, 8, 9 2 of 16

healthcare systems worldwide, and to the development of evidence-based medicine and
research synthesis methodology. The work of Cochrane has been unequivocally recognized
internationally for informing healthcare decision-making with its high-quality, independent
and credible systematic reviews [1,2].

Cochrane reviews are produced in English, and until the early 2010s, the only large-
scale, systematic translation activities were into Spanish. This posed a significant barrier to
their uptake and use by audiences speaking other languages. In 2013, Cochrane started
developing a translation strategy to enable wider access to its health evidence in different
languages [3]. Translation and multilanguage activities have become a strategic priority;
Cochrane now translates and publishes the scientific abstracts and plain language sum-
maries (PLSs) of its systematic reviews from English into up to 15 languages on a regular
basis. It has published more than 30,000 translations as of October 2020. Local teams
in different countries manage the translators, workflows and quality assurance for their
respective languages. Cochrane publishes about 100 new or updated systematic reviews
per month, and each team selects topics most relevant to their local context as capacity
allows. Most Cochrane translation teams have very limited or no dedicated funding for
their translation activities and rely substantially on volunteer translators and editors. Most
volunteers have a background in health, but not in translation. The quality assurance and
editing of volunteer translations is a significant burden and often a bottleneck for the teams
managing translations.

Cochrane Russia started translating PLSs of Cochrane reviews into Russian in May
2014 [4]. As of December 2020, over 200 volunteers have contributed to Russian translation
activities, and the team has published 2724 Russian PLS translations. The Russian transla-
tions were viewed more than 1 million times per month from January to September 2020,
which demonstrates the demand for Cochrane evidence in Russian.

Cochrane subscribes to the cloud-based translation management system Memsource
(https://memsource.com (accessed on 30 December 2020)) to facilitate its translation
work. Within Memsource, Cochrane translation teams have access to integrated machine
translation engines (MTEs). High-quality machine translation (MT) can facilitate more
efficient translation. It is important to understand which MTE performs best for specific
languages—and Cochrane content—to make the most of this technology and reduce the
editing burden.

1.2. Machine Translation and Health Information

Over the last two decades, the potential of MT and its available options have been
rapidly growing, with impressive improvements in terms of quality [5,6]. However, the
general understanding is that MT is not perfect, and its quality may decrease in some spe-
cific medical domains, unless it is domain-adapted. With the rapid growth of telemedicine,
the real-life implementation of high-quality MT is anticipated in everyday general medical
practice [7].

A systematic review, which aimed at characterizing development of MT in health
settings and determining promising approaches for the use of MT technologies in health,
found—based on 27 identified studies (2006 to 2016)—that the use of MT in health com-
munication was an initial step to be followed by human editing [8]. It should be noted,
however, that the included studies involved either statistical or rule-based MT systems,
not neural machine translation, which is now predominant. The authors of the systematic
review found that the included studies assessed various human and automatic MT evalua-
tion methods. Translation performance was best for simple, less technical sentences and
from English to Western European languages for most studied MTEs. The review pointed
to continued accuracy concerns for the use of MT in health, “where excellent accuracy and
a strong evidence base are critical.” Another identified problem was the lack of shared
evaluation criteria for MT [8].

The same author team developed a then-novel collaborative machine translation (MT)
plus post-editing system, called PHAST (Public Health Automatic System for Translation,

https://memsource.com
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phastsystem.org), for the production of multilingual educational materials in public health.
They showed that it could become instrumental in the production of multilingual public
health content while reducing the barriers of time and cost, and presented PHAST as “a
new approach in public health informatics” that built its capacity on sharing translation
resources via a groupware system to assure accuracy of MT through shared language
expertise [9]. Cloud-based translation management systems, which offer workflow and
translator management, web editors, translation memories, glossaries and machine transla-
tion, among other functionalities, and which allow flexible collaboration between machine
translation and post-editing, have now become more common.

The challenges of translating clinical texts, particularly patient health records, have
been researched, and various approaches have been tested, including neural machine
translation [10]. Wu and colleagues assessed the statistical machine translation output of
their in-house system and Google Translate in the biomedical domain from English into
six other languages and the other way around. They used the common automated BLEU
(Bi-Lingual Evaluation Understudy) metric and human judgment to evaluate MT quality,
and reported high performance of their in-house system and Google Translate for three
language—German, French and Spanish—translated into English and back [11]. Cochrane
also participated in the three-year EU funded project “Health in my Language”, which
developed and evaluated health domain-adapted MT for consumer health information
from English into Czech, German, Polish and Romanian. The project developed and
tested a range of approaches to improve custom domain-adapted MT. The statistical and
neural MT models that the project team developed and compared were not deemed reliable
enough for Cochrane translations without post-editing, although user evaluation suggested
that some people would prefer the domain-adapted MT over no translation at all. While
there was some variation across languages, post-editing MT was typically quicker than
translating without MT as a basis for Cochrane PLSs, and translators preferred post-editing
MT [12].

Zilfiqar et al. tested Google Translate and DeepL for German to English translations,
converting German scientific literature into English. The authors compared human and
machine translations for complex sentences from old literature and a recent publication as
a benchmark. They concluded that human care and intuition should be used before relying
on machine translation of methods sections [6]. A researcher affiliated with the Cochrane
France team (who is leading Cochrane’s French translation activities) pre-translated a
corpus of Cochrane review abstracts with DeepL and had them post-edited by translation
master students to assess lexicogrammatical patterns for potential distortions. She showed
that DeepL created specific sources of distortion of the translated patterns and argued for
the need for special focus on these lexicogrammatical patterns in the post-editing efforts, in
order to improve the quality of machine translation of medical texts [13].

Das and colleagues tested Google Translate to translate the safety guidelines of the
American Academy of Pediatrics (AAP) into the 20 most commonly spoken languages
in the United States, including Russian [14]. The authors evaluated the accuracy of the
Google Translate results by performing human back-translation and assessing its quality
using a five-point rubric adapted from the American Translators Association. They found
that Google Translate did not meet the professional standard (5.00 points) for all but one
language, Spanish, with Portuguese following (4.95 and 4.33, respectively). Russian Google
translations scored 3.71, falling into the “acceptable” category. The authors argued that
their findings demonstrated the inaccuracy of a popular machine translation service in
translating the AAP safety guidelines and pointed out that inaccurate translation of medical
texts may pose significant risks to consumer health.

We did not find any other research assessing machine translation for Russian trans-
lations of medical texts designed in plain language for the general public. To the best of
our knowledge, our research is the first contribution that compares machine translation
engines by measuring quantitative human post-editing efforts in an established translation
workflow and quality assurance process using a randomized study design.
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2. Materials and Methods

We developed our study, applying best practices of our main field, clinical research,
where possible, including: prior literature search to assess the current state of research,
development of a study protocol prior to study initiation, and randomized study de-
sign [15–18].

2.1. Preparation and Protocol Development

Prior to study initiation, we reviewed documentation of Memsource Machine Trans-
lation Quality Estimation (MTQE) and analysis features, developed the study protocol
including the main steps and actions (Supplementary S1), discussed details and technical
specifics within the author team, and prepared step-by-step instructions for volunteer
participants in the Russian language.

2.2. Memsource Features

Memsource is a cloud-based translation management system, which allows users to
set up complex translation workflows with numerous steps and assign translators and
editors to different steps. It includes a segment-level bilingual editor, translation memories
(TM) and glossaries. A segment typically constitutes a sentence or a phrase. Memsource
can be connected to external systems—via an application programming interface (API)
or one of its built-in connectors—in order to facilitate automatic data flow to their clients’
systems or integration of tools, including MTEs.

Texts can be imported into Memsource and pre-translated, with a choice or combina-
tion of integrated MTEs and translation memories. For example, a translator could choose
to pre-translate a text with existing translations from a TM as a priority where available,
and with an MTE for any segments that do not have a match in the translation memory.

MTQE is an AI-powered feature that provides segment-level quality estimates for MT
suggestions in the form of percentages similar to translation memory (TM) matches. These
estimates give an initial indication of how much editing might be required for a given
segment [19]. For example, if a text is translated with an MTE and the MTQE estimate
for a given segment is 80%, a translator will likely edit 20% of that segment. If the MTQE
estimate for a segment is 100%, a translator will likely not need to edit that segment at all.

Analyses can be generated on Memsource at different stages of the translation work-
flow to obtain data about the number of words, machine translation and translation
memory matches, or the number of edits in translated texts. These can be broken down by
complete text, segment, word, character or percentage of the text [20]. For example, one
could run an analysis, after pre-translating a text, to obtain data about how many words or
segments of the text were pre-translated with TM matches or MTE, or what percentage of
the text had certain MTQE estimates. One could also run an analysis, after editing a text, to
obtain data on how many characters, words, or segments were edited—or what percentage
of the text was edited.

Screenshots illustrating Memsource pre-translation, analyses and MTQE in the Mem-
source editor are available in Supplementary S2.

2.3. MTE for Comparison

We compared three commercial MTEs: DeepL, Google Translate and Microsoft Trans-
lator, all of which were integrated into Memsource via application programming interface
(API) and were available at relatively low-cost subscription fees (based on the number
of translated characters). All three MTEs are domain-generic and use a neural machine
translation approach. Their algorithms and source codes are closed-source and not publicly
available, and they use a combination of methodologies and sources of data to develop
their systems on an ongoing basis. Therefore, they may deliver different output and quality
at different points in time without users necessarily noticing when changes occur.

DeepL is a relatively young neural machine translation service launched in 2017
and trained on the Linguee bilingual corpora database created by the same company. It
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supports translation between 11 (mainly European) languages as of January 2021. The
type of neural network and architecture DeepL uses has been said to lead to more natural
sounding translations than those of its competitors [21].

Google Translate was launched in 2006 as a statistical machine translation service,
but has since transitioned to neural machine translation. It supports 109 languages as of
January 2021 [22].

Microsoft Translator first launched as a public tool in 2007, and has been available as a
neural machine translation service since 2018. It supports more than 70 languages [23].

Cochrane has very limited resources for translation and their core work is health
research, not translation or translation research. It was therefore not reasonable to test an
open-source MTE within this study.

2.4. Principle Approach of the Study and Evaluation Method

Our study aimed to replicate—as much as possible—our standard translation envi-
ronment, workflow, and content. We compared the three MTEs by pre-translating the
same number of Cochrane plain language summaries (PLSs) with each MTE within Mem-
source, and then having them post-edited twice by select volunteer translators and editors
following standard procedures. This meant that post-editors were familiar with the sys-
tem, processes, and type of content. We used Memsource MTQE and analysis features
as described above to record initial AI-estimates of required post-editing effort following
pre-translation, as well as precise recording and numerical presentation of the amount of
human editing required for each MTE after post-editing.

In principle, our method was similar to the translation edit (or error) rate (TER) metric,
which measures the amount of editing that a human would have to perform to edit MT
output, so that it exactly matches a reference gold-standard human translation [24]. Within
our approach, the final translation constituted the gold standard, and instead of having to
compute the editing distance, we obtained the data directly from Memsource.

We analyzed and interpreted the obtained data to compare the performance of the
three MTEs as outlined below.

2.5. Description of the Dataset, Selection and Randomization of Plain Language Summaries (PLSs)

We obtained a list of 199 Cochrane plain language summaries (PLSs), which had been
published on the Cochrane Library over the previous 12 months (from May 2018 to April
2019), and which had not been published in Russian at that time. We excluded any PLSs that
were already in the regular translation workflow (n = 28), and then randomly selected 90
PLSs using the online randomization tool available from https://www.random.org/lists/
(accessed on 30 December 2020).

We used 90 PLSs, not 100 as planned in the study protocol, so that we could distribute
them evenly across the 3 MTEs. We randomized the 90 PLSs into three sets of 30 PLSs for
each of the three MTEs. We pre-translated the PLSs within Memsource with the assigned
MTE, as per randomization, to obtain 30 PLSs translated by DeepL, 30 by Google Translate
and 30 by Microsoft Translator, respectively.

Each Cochrane review and its associated PLS is produced by a different international
author team. Reviews cover many health topics and vary in the complexity of the interven-
tions and conditions they address. Cochrane has rigorous methodological standards and
processes for its review production, including for its PLSs; however, given their heteroge-
nous subject matter and authorship, the PLSs themselves are also found to be heterogenous
in length, language, and other aspects of quality [25]. This is the reality that Cochrane
translators deal with, and our dataset aimed to reflect that reality. We assessed the hetero-
geneity of our dataset by calculating average word count per PLS assigned to each MTE
as arithmetic means with standard deviations and medians with interquartile range as
a measure of dispersion, to show that the randomized design resulted in a statistically
homogenous set of 30 PLSs per MTE in relation to word count. Average word counts are
presented in Table 1. Overall, the data did not show statistically significant differences in

https://www.random.org/lists/
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word count (asymptotic 2-sided significance = 0.178). It was therefore unlikely that the PLS
length impacted our findings.

Table 1. Average word count per plain language summary (PLS) per machine translation engine
(MTE) as arithmetic means with standard deviations and medians with interquartile range.

Measure (Rounded
Values) DeepL Google Translate Microsoft Translator

Median (Q1/Q3) 433 (365/546) 455 (389/574) 523 (402/594)

Mean (SD) 450 (±134) 484 (±123) 510 (±123)

2.6. Participants

We invited 10 experienced Russian volunteer translators and editors, all of whom had
demonstrated efficiency and high quality in translation and/or editing over the last 5 years,
to post-edit the machine translated PLSs. Two translation project managers reviewed and
edited the post-edited machine translations in a second editing step.

2.7. Analyses and Steps of the Study

To obtain the data estimating or measuring post-editing effort of the MTEs, we created
three analyses in Memsource:

• Default analysis, to obtain MTQE-automated estimates of post-editing effort following
pre-translation;

• Post-editing 1, to obtain calculations of the amount of post-edited text following the
first editing step; and

• Post-editing 2, to obtain calculations of the amount of post-edited text in total following
the second editing step (including any edits made in the first editing step).

We realized that the study could not be completed within 1 month, as specified in the
protocol, due to its complexity. We therefore allowed more time for each planned step and
completed the study over a 2-month-period. We omitted the optional step 7 described in
the protocol.

2.7.1. Default Analysis

We conducted pre-translation (from English to Russian) in Memsource, then pre-
populated all 90 PLSs with TM matches as a priority where available and machine transla-
tion as a secondary priority, mimicking the standard Russian translation workflow.

Furthermore, at this step:

• We generated the Default analysis in Memsource for all 90 PLSs to obtain the MTQE
figures estimating the editing effort of the initial MT output.

• We randomized the PLSs into smaller sets for 10 post-editors: 3 PLSs per MTE for
each post-editor, or 9 PLSs per post-editor in total.

• We assigned PLSs to the 10 post-editors according to randomization, and we aimed
to “blind” the post-editors: we did not inform participants which MTE was used
to pre-translate each PLS to avoid potential bias. However, they could have found
this information in Memsource if they had looked for it; we were not able to reliably
conceal that information from the post-editors.

2.7.2. Post-Editing 1 Analysis

10 volunteers post-edited the pre-translated PLSs that had been assigned to them. We
then generated the Post-editing 1 analysis, which allowed us to perform numerical analysis
of the amount of editing undertaken by post-editors for each PLS and MTE.
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2.7.3. Post-Editing 2 Analysis

At this step:

• We randomized all 90 PLSs anew, into two sets of 45 PLSs, for two final editors.
• 2 translation project managers performed a second and final round of post-editing of

all 90 PLSs.

We then generated the Post-editing 2 analysis, consisting of the total amount of all
editing work undertaken for each PLS and MTE, including the initial and second post-
editing.

Obtained analyses for each PLS at each step are available in Supplementary S3–S5.
The steps of the study are illustrated in a flow diagram (Figure 1).
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We combined the data of each of the analyses from all PLSs by MTE to obtain three
sets of results (made up of 30 analyses per MTE). We combined the percentage of MT and
TM matches in each quality estimate range (for the Default analysis), in each range of edits
(for post-editing analyses) and for each MTE separately. We then calculated the average
percentages as arithmetic means and medians. The medians were compared using the
Kruskal–Wallis H test with SPSS (SPSS Inc., Chicago, IL, USA), including a pairwise post
hoc test for statistical significance. The predefined significance threshold was p < 0.05.

We provide examples of original English and post-edited Russian PLSs in Supplemen-
tary S6.
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3. Results
3.1. Default Analysis

For the Default analysis, we analyzed the estimated quality percentages generated by
MTQE by MTE. The Default analysis distributed percentages into the following ranges:
100%, 95–99%, 85–94%, 75–84%, 50–74% and 0–49%.

A higher percentage range denoted a better estimated MT quality. More specifically,
the different quality estimate ranges of the Default analysis constituted the following:

• The 100% percentage range represents the highest possible quality estimate, and
suggests that text in this range may require no editing. The MTE with the highest
percentage of text in this range is perhaps the best.

• The 95–99% percentage range indicates very high-quality estimates, and suggests that
text in this range may require only minor editing—perhaps only 1–5% of the text. The
MTE with the highest percentage of text in this range is perhaps the best.

• The 85–94% percentage range presents texts with fairly high-quality estimates that
require some editing; 6–15% of the text may need editing.

• The 75–84% percentage range indicates good- or moderate-quality estimates that
require between 16–25% of text to be edited—or up to a quarter of the text.

• The 50–74% percentage range includes text with poor-quality estimates, indicating
that 26–50% of the text may need editing—or up to half of the text. The MTE with the
highest percentage of text in this range is perhaps the worst.

• The 0–49% percentage range represents low-quality estimates that require substantial
editing; 51–100% of the text may require editing—up to the entire text. The MTE with
the highest percentage of text in this range is perhaps the worst.

The Default analysis for each PLS showed what percentage of text had MT quality
scores ranging from 0% to 100%. The analysis showed the percentage of machine-translated
text, as well as TM matches for each of the predefined quality estimate ranges (100%, 95–
99%, 85–94%, 75–84%, 50–74%, 0–49%).

We combined the data of the Default analysis from all PLSs by MTE to obtain three
sets of Default analyses (made up of 30 analyses per MTE). We combined the percentage of
MT and TM matches in each quality estimate range and for each MTE separately, and then
calculated the average percentages as arithmetic means and medians (Table 2).

Google Translate had the highest average percentages of text in the quality-estimate
ranges of 100% and 75–84%. There were no differences between the three MTEs for average
percentages of text in the quality estimate ranges of 95–99% and 85–94%, due to low or
near-zero values. In the quality estimate range of 50–74%, DeepL performed worse than
both Google Translate and Microsoft Translator, whereas in the quality estimate range of
0–49%, Microsoft Translator performed worse than both DeepL and Google Translate.

The results of the Default analyses suggested that Google Translate showed the best
results. DeepL performed a little worse than Google Translate, and Microsoft Translator
showed the worst results overall.

3.2. Post-Editing 1 Analysis

The Post-editing 1 analysis was generated after the first series of human editing of
pre-translated content by volunteer translators and editors.

The post-editing analysis represented the human editing effort; in other words, how
much of the machine-translated text was edited. The analysis classified edited text into
percentage ranges equivalent to the Default analysis: 100%, 95–99%, 85–94%, 75–84%,
50–74% and 0–49%.
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Table 2. Results of Default analysis per MTE—the average percentages of machine translation (MT) and translation
memories (TM) per estimated quality range. TM matches are included in the table for completeness, but they were not
relevant for our assessment.

MTQE Range DeepL Google Translate Microsoft Translator

% of MT or TM text in
each range 1

% of MT or TM text in
each range 1

% of MT or TM text in
each range 1

All 100 (100 [100–100]) 100 (100 [100–100]) 100 (100 [100–100])

Repetitions 1.18 (0 [0–2.3]) 0.75 (0 [0–1.15]) 0.33 (0 [0–0])

101% TM 0.67 (0 [0–0]) 0 (0 [0–0]) 0 (0 [0–0])

TM 4.66
(3.10 [2.2–6.1])

4.17
(2.65 [1.9–3.3])

3.47
(3.25 [2.1–4.1])

NT 0 (0 [0–0]) 0 (0 [0–0]) 0 (0 [0–0])
100%

(no edits expected)

MT 0.03 (0 [0–0]) 0.09 (0 [0–0]) 0.01 (0 [0–0])
TM 1.19 (0 [0–0.5]) 0.73 (0 [0–1.3]) 1.10 (0 [0–1.1])

NT 0.03 (0 [0–0]) 0.03 (0 [0–0]) 0 (0 [0–0])
95–99%

(1–5% of text to be edited)
MT 0 (0 [0–0]) 0 (0 [0–0]) 0 (0 [0–0])
TM 0 (0 [0–2]) 0 (0 [0–1.5]) 0 (0 [0–0])85–94%

(6–15% of text to be edited) MT 0 (0 [0–0]) 0 (0 [0–0]) 0 (0 [0–0])
TM 1.94 (0 [0–3]) 2.18 (0.35 [0.0–3.9]) 1.31 (0 [0–1.7])

75–84%
(16–25% of text to be edited) MT 35.70

(35.95 [26.1–44.1])
37.92

(39.5 [24.2–54.2])
33.37

(31.65 [21.7–43.5])
50–74%

(26–50% of text to be edited) MT 6.04 (3.55 [1.1–7.3]) 4.00 (3.4 [0.8–6.8]) 4.78 (2.7 [0.8–7.9])

0–49%
(51–100% of text to be edited) MT 47.00

(48.15 [37.3–59.3])
48.87

(48.15 [36.2–59.5])
54.82

(55.15 [44.8–64.2])

Notes: 1 in brackets: median [1st Quartile (Q1)–3rd Quartile (Q3)]; TM—translation memory; NT—non-translatables; MT—machine
translation; Colors: green—best performing MT in this range; yellow—second best performing MT; red—worst performing MT.

The more text the post-editors modified, the lower the indicated percentage range—
and supposedly the poorer the MT output. More specifically, the different percentage
ranges of edits in the Post-editing 1 analysis were organized as follows:

• The 100% percentage range indicates that no edits were made to the text. The MTE
with the highest percentage of text in this range is presumably the best.

• The 95–99% percentage range means that hardly any edits were made by human
post-editors; only 1–5% of the text was edited. The MTE with the highest percentage
of text in this range is perhaps the best.

• The 85–94% percentage range indicates that between 6–15% of the text was edited.
• The 75%–84% percentage range means that between 16–25% of the text was edited—or

up to a quarter of the text.
• The 50–74% percentage range indicates that between 26–50% of the text was edited—

or up to a quarter of the text. The MTE with the highest percentage of text in this
range is perhaps the worst.

• The 0–49% percentage range means that between 51–100% of the text was edited—or
up to the entire text. The MTE with the highest percentage of text in this range is
probably the worst.

We combined the data of the Post-editing 1 analysis from all PLSs by MTE to obtain
three sets of Post-editing 1 analyses (made up of 30 analyses per MTE). We combined the
percentage of MT and TM matches in each range of edits (and for each MTE separately)
and calculated the average percentages as arithmetic means and medians (Table 3).
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Table 3. Results of Post-editing 1 analysis per MTE—the average percentage (median) of post-edited MT and TM matches per range of edits.

Percentage
Range of Edits DeepL Google Translate Microsoft Translator

% of MT or TM text in each range of edits 1 % of MT or TM text in each range of edits 1 % of MT or TM text in each range of edits 1

TM MT All TM MT All TM MT All

All 9.22 (6.35
[4.4–11.1])

90.78 (93.65
[88.9–95.6])

100 (100
[100–100])

6.46 (4.9
[3.9–7.6])

93.54 (95.1
[92.4–96.1])

100 (100
[100–100])

6.16 (5.6
[3.9–7.6])

93.84 (94.35
[92.4–96.1])

100 (100
[100–100])

Repetitions 1.18 (0 [0.0–2.3]) - 1.18 (0 [0.0–2.3]) 0.75 (0 [0.0–1.5]) - 0.75 (0 [0.0–1.5]) 0.31 (0 [0–0]) - 0.31 (0 [0–0])
100%

(no edits)
4.49 (2.9
[2.3–5.6])

12.95 (11.65
[5.1–18.1]) #

17.44 (14.35
[10.5–26.5]) #

3.25 (2.3
[1.7–3.0])

17.82 (15.2
[4.1–28.7]) #

21.08 (18.35
[6.0–31.2]) #

3.2 (3.25
[2.1–4.2])

4.73 (3.4
[0.6–6.6]) #

7.93 (6.9
[4.7–10.4] #

95–99%
(1–5% of text

edited)
0.27 (0 [0–0]) 2.64 (0 [0–0]) 2.91 (0 [0.0–3.4]) 0.12 (0 [0–0]) 2.96 (0 [0.0-6.6]) 3.08 (0 [0.0–6.6]) 0 (0 [0–0]) 1.12 (0 [0.0–2.2]) 1.12 (0 [0.0–2.2])

85–94% (6–15%
of text edited) 0.52 (0 [0–0]) 16.82 (14.5

[8.9–25.9]) #
17.33 (15.05
[8.9–25.9]) # 0.44 (0 [0–0]) 20.98 (20.05

[7.2–30.2]) #
21.43 (20.45

[10.5–30.2]) # 0.02 (0 [0–0]) 6.19 (6.5
[0.0–10.5]) #

6.20 (6.5
[0.0–10.5]) #

75–84%
(16–25% of text

edited)
0.76 (0 [0.0–0.7]) 16.08 (16.3

[7.0–20.3])
16.83 (16.55
[7.0–23.5]) 0.43(0 [0.0–0.4]) 15.99 (16.9

[9.6–23.1])
16.43 (16.9
[9.7–24.2])

0.34 (0.00
[0.0–0.6])

13.49 (12.25
[6.2–20.4])

13.83 (13.2
[7.2–20.4])

50–74%
(26–50% of text

edited)
1.7 (0.7 [0.0–1.8]) 33.37 (31.95

[17.5–49.6])
35.06 (37.15
[17.5–50.4])

1.01 (0.55
[0.0–0.8])

27.79 (27.2
[10.0–44.2]) #

28.79 (28.65
[10.7–44.2]) #

1.21 (0.50
[0.0–2.2])

41.35 (38.65
[32.9–52.6]) #

42.56 (39.3
[34.5–55.0]) #

0–49%
(51–100% of text

edited)
0.31 (0 [0.0–0.6]) 8.92 (7.2

[1.3–12.7]) #
9.23 (7.55

[2.0–12.7]) # 0.44 (0 [0.0–0.7]) 8.01 (4.7
[0.0–10.9]) #

8.44 (5.25
[0.0–10.9]) #

1.06 (0.25
[0.0–1.8])

26.97 (25.55
[9.8–41.6]) #

28 (25.85
[9.8–43.4]) #

Notes: 1 in brackets: median [1st Quartile (Q1)–3rd Quartile (Q3)]; TM—translation memory; MT—machine translation; NT—non-translatables: both mean and median equal zero across all comparisons and
ranges of edits, not shown in the table to allow space; #—p < 0.05 between any of the three MTE in each range of edits (across one horizontal line of the table), # is placed in those cells of the table for which
significant differences were detected in pairwise comparisons. Colours: green—best performing MT in this range; yellow—second best performing MT; red—worst performing MT.



Informatics 2021, 8, 9 11 of 16

Google Translate showed the best results in most ranges of edits in comparison with
DeepL and Microsoft Translator, so Google Translate arguably performed best overall.
DeepL performed a little worse than Google Translate. Microsoft Translator had the
worst results. The results of the Post-editing 1 analysis corresponded to the results of the
Default analysis.

3.3. Post-Editing 2 Analysis

The Post-editing 2 analysis was generated after the second series of human editing.
It followed the same patterns as the Post-editing 1 analysis, and the interpretation of
different percentage ranges of edits in the Post-editing 2 analysis is equivalent to that of
the Post-editing 1 analysis: the higher the percentage range, the more edits were made to
the text. The averaged results in Table 4 show how much the machine-translated text by
each MTE was edited in the two subsequent editing steps.

Google Translate had the highest average percentage of text in the 100% and 85–94%
ranges; it also had the lowest average percentage of text the 50–74% and 0–49% ranges.
According to our interpretation of the ranges of edits, this means that Google Translate is
perhaps the best among the three compared MTEs.

DeepL showed reasonable results in the percentage ranges of 100%, 85–94%, and
0–49%, and had the highest average percentage of text in the 95–99% range, though its
advantage was not statistically significant.

Microsoft Translator had the lowest average percentage of text in the 100%, 95–99%
and 85–94% ranges, and the highest average percentage of text in the 50–74% and 0–49%
ranges, which means that Microsoft Translator is probably the worst, in comparison with
the other two MTEs.
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Table 4. Results of Post-editing 2 analysis per MTE—the average percentage (median) of post-edited MT and TM matches per range of edits after two editing steps.

Percentage
Range of Edits DeepL Google Translate Microsoft Translator

% of MT or TM text in each range of edits 1 % of MT or TM text in each range of edits 1 % of MT or TM text in each range of edits 1

TM MT All TM MT All TM MT All

All 10.23 (8.8
[5.0–12.2])

89.77 (91.2
[87.8–95.0])

100 (100
[100–100])

6.99 (5.25
[4.1–9.0])

93.01 (94.75
[91.0–95.9])

100 (100
[100–100])

6.43 (5.80
[3.9–7.9])

93.57 (94.20
[92.1–96.1])

100 (100
[100–100])

Repetitions 1.18 (0 [0.0–2.3]) 0 1.18 (0 [0.0–2.3]) 0.75 (0 [0.0–1.5]) 0 0.75 (0 [0.0–1.5]) 0.33 (0 [0–0]) 0 0.33 (0 [0–0])
100%

(no edits)
3.90 (2.85
[2.1–5.1])

6.82 (6.2
[1.9–9.3]) #

10.72 (9.65
[5.1–12.2]) #

3.28 (2.20
[1.4–3.1])

11.2 (6.25
[2.5–22.7]) #

14.51 (12.25
[4.2–24.3]) #

3.02 (2.80
[2.1–3.8])

2.05 (1.5
[0.0–2.9]) #

5.07 (4.5
[3.3–6.4]) #

95–99%
(1–5% of text

edited)
0 (0 [0–0]) 1.31 (0 [0–0]) 1.31 (0 [0–0]) 0.12 (0 [0–0]) 1.29

(0.00 [0.0–2.2])
1.41 (0.00
[0.0–2.8]) 0 (0 [0–0]) 0.70 (0 [0–0]) 0.70 (0 [0–0])

85–94%
(6–15% of text

edited)
0.42 (0 [0–0]) 11.83 (10.9

[6.9–18.2]) #
12.25 (10.9

[6.9–18.7]) #
0.39 (0.00
[0.0–0.0])

13.63 (12
[7.1–19.4]) #

14.02 (12.75
[7.1–19.4]) # 0 (0 [0–0]) 4.23 (3.65

[0.0–5.9]) #
4.23 (3.65

[0.0–5.9]) #

75–84%
(16–25% of text

edited)

0.95 (0.00
[0.0–1.3])

16.84 (17.3
[9.2–24.3]) #

17.79 (17.8
[9.2–24.3]) # 0.53 (0 [0.0–0.7]) 19.65 (19.05

[9.8–29.8]) #
20.18 (19.05
[9.8–29.8]) # 0.53 (0 [0.0–1.0]) 10.41 (9.55

[4.5–14.6]) #
10.94 (9.6

[5.0–15.5]) #

50–74%
(26–50% of text

edited)

3.16 (1.3
[0.7–2.1])

41.23 (43.55
[30.7–54.9])

44.39 (45.85
[33.2–57.9]

1.42 (0.8
[0.0–1.5])

35.7 (35.45
[25.1–46.9])

37.12 (40.15
[25.6-48.7])

1.52 (0.80
[0.0–2.8])

42.17 (43.6
[35.0–50.4])

43.69 (44.30
[35.9–52.8])

0–49%
(51–100% of text

edited)
0.62 (0 [0.0–0.8]) 11.74 (10.25

[4.4–16.2]) #
12.37 (10.25
[5.3–17.0]) # 0.48 (0 [0.0–0.4]) 11.52 (7.85

[4.7–14.2]) #
12.00 (8.85

[5.0–15.0]) # 1.03 (0 [0.0–1.5]) 34.00 (34.25
[21.9–44.2] #

35.03 (34.25
[22.2–45.3]) #

Notes: 1 in brackets: median [1st Quartile (Q1)–3rd Quartile (Q3)]; TM—Translation memory; MT—machine translation; NT—non-translatables: both mean and median equal zero across all comparisons and
ranges of edits, not shown in the table to allow space; #—p < 0.05 between any of the three MTE in each range of edits (across one horizontal line of the table), # is placed in those cells of the table for which
significant differences were detected in pairwise comparisons. Colours: green—best performing MT in this range; yellow—second best performing MT; red—worst performing MT.
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4. Discussion

We developed a systematic and randomized approach to comparing the performance
of different MTEs with a focus on assessing human post-editing effort. Figure 2 illustrates
the total amount of edits per MTE following the two consecutive editing steps (post-editing
analysis 2) and the advantage of Google Translate and DeepL over Microsoft Translator.
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Our approach did not assess the types of mistakes the MTEs generated or the types
of edits that were made by the human editors; for example, to what extent they were
correcting grammatical errors, terminology, or style. Instead, it measured the overall
editing effort required using different MTEs to achieve an established quality standard in a
set quality assurance process and environment—the gold standard established by Cochrane
Russia for Russian translations of Cochrane PLSs. While the approach was fairly intensive
in terms of human resources, as compared to automated MT evaluation methods such as
BLEU, it allowed us to specifically assess which MTE would best contribute to efficient
translation in our established setup. The same approach would not work to assess distinct
quality aspects of MTEs such as grammar, terminology or style—and would have limited
application in a context without established quality assurance processes. However, our
approach could be applied by other translation teams with established quality assurance
processes in any domain to select the most appropriate MTE for their context.

It should be noted that our approach relied on us having access to certain features
in Memsource, and Memsource requires a paid subscription. People wanting to replicate
our approach would need to have access to tools that allow them to calculate post-editing
effort in a similar way.

Given that the results from the analysis of AI-powered MTQE were in line with the
results of our human post-editing analyses, it may be sufficient, or at least a good start, to
use such automated tools to determine the most appropriate MTE for specific content.

Our approach and findings contribute to further development of the understanding
of the role of machine translation of medical content as the initial step preceding human
editing, with full responsibility resting on the human post-editing step for the overall
accuracy and quality of the resultant final translation—as evidenced by the systematic
review of Dew and co-authors [8].
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Our findings are also echoed by the results of Zilfiqar et al., who tested Google
Translate and DeepL for German to English translations of scientific texts and found them
to be reliable, yet in need of human care and intuition to guarantee accurate translation [6].

Overall, our findings on MTE performance seem largely in line with other research
on the current role of machine translation for medical content as an initial step preceding
human editing in most languages, including Russian, but not as a standalone, reliable
translation approach that can achieve the required accuracy and quality [8,14].

Future advances in MT technologies, language development, language synergy pro-
cesses and the MT industry may change the scope of research in this field. We plan to
repeat our analyses in a couple of years, as different MT systems and evaluation methods
become available and affordable for low-resource settings.

5. Conclusions

Among the three MTEs that we tested, Google Translate required the least editing
and appeared to perform best for Russian translations of Cochrane PLSs, while DeepL
also showed good results. Microsoft Translator performed worse than DeepL and Google
Translate. At this point in time, we would recommend Google Translate, with DeepL as the
second-best option, for machine translation of Cochrane PLSs into Russian.

While Google Translate performed slightly better than DeepL, we have opted to use
DeepL as default MT engine in our translation workflow, as DeepL offers preferable IP
and copyright terms. DeepL is based in Germany and complies with European GDPR
regulations. Subscribed customers of its service retain the rights to their own content
and grant a nonexclusive license to DeepL, as required for it to provide its services to the
customer [26], while Google’s terms of service apply to users of Google Translate, and vary
by country.

Supplementary Materials: The protocol of the study and Individual analyses data are available
online at https://www.mdpi.com/2227-9709/8/1/9/s1, S1: Protocol of a study: Assessing human
post-editing effort to compare performance of three machine translation engines for English to
Russian translation of Cochrane plain language health information. S2: Screenshots of Memsource
pre-translation feature, editor with Machine Translation Quality Estimates and Translation Memory
matches, and post-editing analysis feature. Included with permission from Memsource. S3: Individ-
ual analysis data for each of the 30 Cochrane plain language summaries, pre-translated with DeepL,
downloaded from Memsource and archived as World tables. S4: Individual analysis data for each
of the 30 Cochrane plain language summaries, pre-translated with Google Translate, downloaded
from Memsource and archived as World tables. S5: Individual analysis data for each of the 30
Cochrane plain language summaries, pre-translated with Microsoft Translator, downloaded from
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plain language summaries.
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