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Abstract: Transforming the state-of-the-art definition and anatomy of enterprise systems (ESs) seems
to some academics and practitioners as an unavoidable destiny. Value depletion lead by early
retirement and/or replacement of ESs solutions has been a constant throughout the past decade.
That did drive an enormous amount of research that works on addressing the problems leading to
the resource drain. The resource waste had persisted throughout the ESs implementation lifecycle
phases and dimensions especially post-live phases; leading to depleting the value of the social and
technical dimensions of the lifecycle. Parallel to this research stream, the momentum gained by deep
learning (DL) algorithms and platforms has been exponentially growing to fuel the advancements
toward artificial intelligence and automated augmentation. Correspondingly, this paper is set out
to present five key research directions through which DL would take part as a contributor towards
the transformation of the ESs state-of-the-art. The paper reviews the ESs implementation lifecycle
challenges and the intersection with DL research conducted on ESs by analyzing and synthesizing
key basket journals (list of the Association of Information Systems). The paper also presents results
from several experiments showcasing the effectiveness of DL in adding a level of augmentation
to ESs by analyzing a large set of data extracted from the Atlassian Jira Software Issue Tracking
System across different ecosystems. The paper then concludes by presenting the research directions
and discussing socio-technical research courses that work on key frontiers identified within this
scholarly work.

Keywords: enterprise systems; deep learning; implementation lifecycle; challenges; support tickets

1. Introduction

Rapid developments within the computing industry have resulted in a noteworthy
dependency on computing technologies, for a variety of services. The existence of ar-
tificially intelligent technologies had significantly catalyzed the technological reach by
applying the underpinning algorithms to serve a plethora of relevant use cases. Since
2006, the foundational concepts of deep structured learning, or more commonly known as
deep learning or hierarchical learning, has emerged as a modern area of machine learning
research [1]. During the past years, the witnessed advancements of deep learning methods
had substantially influenced the aptitude of extracting complex patterns through several
natural language processing (NLP) techniques. Given the propensity toward applying
these techniques on big data, the potential for applying fast information retrieval, entity
extraction, categorization, automatic data tagging, and simplifying selective tasks was
made possible [2].

On the other hand, research conducted on enterprise systems (ESs), also known as
enterprise resource planning systems or enterprise resource planning (ERP) systems, had
seen significant advancements. These systems aim to produce integrated, modular, off-the-
shelf systems aiming to control key functional areas within the enterprise such as sales,
accounting and finance, material management, inventory control, and human resources [3].
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The proposed benefits of using ERP systems are several—seamless information flow, access
to real-time data, process-orientation, and improved communication across the enterprise.

Reaping the value out of an ES entails the pretext of going through a number of
implementations that had been empirically described within two frameworks [4,5]. The one
described by Esteves and Pastor ends constitutes six phases that are made up of adoption,
acquisition, implementation use and maintenance, evolution, and end with retirement.
The close within the retirement phase postures a number of good reasons describing the
lifecycle for which some of them are caused by a set of problems leading to early retirement
and/or replacement of the solution across the different implementation phases. Many of
these are experienced through lack of training and inability to understand the main design
principles of an ES, which typically leads to workarounds and customizations [6,7].

However, ERP implementation challenges have proved to have high organization
and technical complexity, and the human consequences and required changes in business
processes are often underestimated [8]. Correspondingly, scholarly evidence exposes
various pretexts countering the propensity of realizing ERP value and incurring hidden
costs across the ERP implementation lifecycles [9,10]. It is to be noted that this debate
applies to both large enterprises (LEs) and small-and-medium-sized enterprises (SMEs),
leading to what is known as the “productivity decline” or “lack of continuous” [11,12]. This
then poses directions toward a number of dimensions to be discussed revolving around
the dilemma of avoiding ERP misfits [13]. Or entertaining the typical exercise of bending
the firm’s core business procedures and process to fit ERP software [9].

That being said, this paper aims at investigating the top determinants behind the ESs
challenges across the ESs implementation lifecycle phases and the dimensions at which DL
technologies would address, whereby the promised efficiencies that ESs instigate are to
be realized.

This paper is structured as follows: Section 2 introduces the research background from
the perspective of both ESs and DL technologies. This section sheds light on the anatomy of
deep learning technologies in the first subsection and the ESs implementation lifecycle with
scholarly definitions of the phases. Section 3 works on discussing the adopted research
methodology formulating the guideline for the literature review process around ESs imple-
mentation lifecycle. This is also where the research questions guiding the directions of the
literature review process are introduced. Section 4 takes on the exercise of analyzing the
reviewed literature to produce the deducted observations formulating the arguments out
of the literature review exercise. Section 5 showcases a small-scale experimental example
of how deep learning methods would be of benefit for ESs augmentation. Section 6 intro-
duces the five top research directions laying out the foundations for future socio-technical
research advancements set to avoid the phenomenon of ESs productivity decline.

2. Research Background

The following two sections are going to shed light on principle academic foundations
that should work on sewing the hypothetical fabric of this literature review paper. These
sections will therefore set the stage for discussions around the premises to be investigated.
Hence, the discussions are weaved again altogether as part of the analysis and synthesis
sections versus research questions that are to be investigated, tying all of them together into
the final research agenda. For this purpose, we discuss the foundational building blocks of
the deep learning architectures and the enterprise systems implementation lifecycle. These
discussions should pave the way toward applying a systematic literature review process
to uncover the research agenda questions pertaining to how deep learning architecture
would be of use to addressing ERP misfits across the entire ERP implementation lifecycle.

2.1. Deep Learning: A Brief Technology Outlook for Text Classification and Information Retrieval

The definition of deep learning has been a challenge for many, given the slowly
changing development of the technique over the past decade. One useful definition that
explains the technique as one that is “about learning multiple levels of representation and
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abstraction that help to make sense of data such as images, sound, and text” [1]. The main
traits deep learning methods are characterized by are having more neurons than traditional
neural networks, having rather more complex architectures of connecting layers/neurons
in the underlying neural networks, requiring an explosive amount of computing power to
be available to train, and having the ability of automatic feature extraction. The four major
deep learning architectures are unsupervised pre-trained networks (UPNs), convolutional
neural networks (CNNs), recurrent neural networks, and recursive neural networks [14].
The hierarchical nature of deep learning techniques facilitates the process of learning
feature hierarchies from higher levels of the hierarchy formed by the conformation of
lower-level features [15]. The compound and convoluted nature of the technique takes
place at multiple abstraction levels allowing the system to learn difficult and dense patterns.
Automatically learning features at several levels of abstraction takes place without relying
on human-influenced features [16]. This is typically vital given the tedious human task
of explicitly specifying high-level abstractions from incoming raw inputs [17]. This is
especially important for higher-level abstractions in which humans often face significant
issues specifying explicitly in terms of raw sensory input given the complex nature. The
ability to automatically learn powerful features will become increasingly important as the
amount of data and range of applications to machine learning methods continues to grow.

The emergence of deep learning architectures was triggered by the fact that tradi-
tional machine-learning methods were limited within their abilities to process natural raw
data [18]. For long periods of time assembling a pattern-recognition or machine-learning
solution required sophisticated engineering and considerable domain expertise to develop
a feature extractor that transforms raw data into a suitable internal representation (feature
vector) from which the learning architecture would detect or classify patterns from the
input [19].

Correspondingly, deep learning architectures had introduced significant advance-
ments to text mining and natural language processing [20]. The build of deep networks
extends basic feed-forward multilayer neural networks in many ways. Typically, deep
networks join smaller networks as building blocks into larger networks; in other cases, they
use a specialized set of layers [14]. The usual building blocks are feedforward multilayer
neural networks, autoencoders, and restricted Boltzmann machines (RBMs). Feedforward
neural networks are the most prominent and simplest-to-understand neural networks.
They have an input layer, one or many hidden layers, and a single output layer. Every
layer can have multiple numbers of neurons, and each layer is fully connected to the
adjacent layer [21]. On the other hand, autoencoders are simple learning circuits for which
their objective would be to transform inputs into outputs with the least possible amount
of distortion [22]. While conceptually simple, they play an important role in machine
learning. “Autoencoders” have taken center stage again in the deep architecture approach
where autoencoders become particularly useful to form “restricted Boltzmann machines”
(RBMs) [22–25]. Correspondingly, RBMs are a category of neural networks that are being
used to learn features from datasets in an unsupervised manner. This takes place by map-
ping input data to a hidden state and then aim to reconstruct the input from the hidden
state [26,27]. On the other hand, deep belief networks (DBNs) are made up of layers of
RBMs for the pre-training stage and then a feedforward network for the fine-tuning stage
(Figure 1).
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Figure 1. Deep belief networks (DBNs) architecture [14].

Applications of deep belief nets (DBN) addressing several problems and use cases
triggered many research discussions from image classification and speech recognition to
audio classification. With an example of applying DBNs to address a natural language
processing (NLP) use case, DBNs did show a rather favorable classification performance
when compared to other widely used learning techniques, like maximum entropy and
boosting-based classifiers [28]. The architectural formations of DBN networks played a
noteworthy role in the rise of many offspring deep learning architectures. These archi-
tectures led to significant breakthroughs addressing a plethora of use cases across the
technology board. Likely, the efficiencies introduced by hybrid BDN models had also
supported the accuracy enhancements for text classification applications [29].

When it comes to the higher-order understanding of discrete text features, CNNs did
show how these models could learn from a dictionary of word inputs (words, phrases,
sentences, or any other syntactic or semantic structures) related to a particular language
without artificially embedding knowledge about these corresponding inputs [30]. The
success of this approach for this particular use case (text understanding from scratch) was
inspired by the earlier success of CNNs with various image recognition applications that
learned from hierarchical raw pixel representations [31]. However, in this case, the words,
phrases, and sentences replaced pixels in order to deliver a model that understands the text.
It is, however, worth mentioning that in the case of CNNs, shallow-and-wide networks at
the word level is still considered most effective for text classification and sentiment analysis.
Deep CNN architectures, on the other hand, seldomly top shallow networks when text is
encoded as a sequence of characters for obvious reasons [32].

Lastly, recurrent neural networks (RNNs) and long short-term memory networks
(LSTMs) did also see many applications empowering text mining and NLP-based use
cases. RNNs are types of feedforward neural networks. They are stand out from other
feedforward networks in their ability to send information over time-steps. The following is
a brief explanation of RNNs from Juergen Schmidhuber [33]:

RNNs allow for both parallel and sequential computation, and in principle can compute
anything a traditional computer can compute. Unlike traditional computers, however,
Recurrent Neural Networks are similar to the human brain, which is a large feedback
network of connected neurons that somehow can learn to translate a lifelong sensory
input stream into a sequence of useful motor outputs.

In the world of information retrieval (IR) and text classification, several fundamental
problems are being addressed, i.e., matching, translation, classification, and structured
prediction [34]. It is quite evident that deep learning models can learn better representations
for matching and other problems when compared to traditional text mining methods, which
makes deep learning methods particularly effective for hard IR problems [35]. Among the
main deep learning tools of IR and text classification are word embeddings, RNNs, and
CNNs [36].
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A core component of the neural network models handling NLP-based problems is
the use of embeddings where features are represented as a vector in a low dimensional
space. A word embedding is a learned representation for text in which words that have the
same meaning have a similar representation [37]. One of the most prominent and widely
adopted algorithms that transform words/letters into numbers is “wrod2vec” [38]. The
algorithm is a two-layer neural net that processes text by vectorizing words. Its input is
a text corpus and its output is a set of vectors that represent words in that corpus. The
distinguishing aspect of the algorithm is that it groups the vectors of similar words together
in vector space by detecting mathematical similarities, hence enabling the algorithm to
detect relevant word contexts [39].

Siamese Manhattan LSTMs (MaLSTMs), on the other hand, are a rather special breed
of the LSTM architecture that had witnessed fairly stable results in arriving at the semantic
similarity between sentences [40]. In this deep neural network architecture, there are
two networks—LSTM(a) and LSTM(b). Both LSTM(a) and LSTM(b) process one of the
sentences in a given pair. Each sentence is passed to the LSTM and updates its hidden
state at each sequence index. The final representation of the sentence is encoded by the last
hidden state of the model. For a given pair of sentences, the model applies a pre-defined
similarity function to their LSTM representations. Similarities in the representation space
are subsequently used to infer the sentences’ underlying semantic similarity (Figure 2).

Figure 2. Deep belief networks architecture [14].

This model uses pre-trained input word-vectors on an external corpus in the form
of word embeddings generated by the “word2vec” method that captures rather complex
inter-word relatedness across the word vector space [38]. This architecture demonstrates
the capabilities of modeling complex semantic relatedness.

2.2. Deep Learning Platforms

A survey of deep learning platforms, applications, and research trends published in
the year 2018 had elucidated a number of significant facts around the currently existing
deep learning technologies [41]. That had been followed by a few survey articles to probe
DL architectures for big data [42] and DL architecture in the light of emerging cloud
architecture [43] and the difficulties of deployment caused by compilers [44].

In brief, the discussion throughout these surveys stated some facts about the DL
state-of-the-art being pursuing the trajectory toward plateaued maturity with fluctuating
leadership that gets to be shared among many of the surveyed platform [41]. On the
other hand, it was very clear the DL for big data is still in its infancy even though the
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architecture provided by the DL architecture is possibly the best there is to support accurate
representations compared to traditional advanced analytics algorithms [42]. Again, the
infancy of the DL state-of-the-art had been constrained to the big data domain and extended
toward cloud architectures [43], all of which either directly or indirectly point to the
open challenges to accurately rationalize the effectiveness of optimizations adopted by
different DL compilers [44]. All in all, this applies to platforms such as TensorFlow, Keras,
DeepLaerning4J, Apache MXnet, Microsoft Cognitive Services, Theano, Torch, and Caffe.

The fact that all of these platforms have been maintained by tech giants while primarily
relying on the open-source communities meant that surveys conducted by these community
sources could not have been ignored. Sources such as KDnuggets and Wikipedia need
to be monitored to delve into the facts about these solutions [42,43]. By looking at both
sources, it could be found that there are other significant platforms that do exist with highly
varying adoption thresholds that consistently changes over time, which is quite evident in
the case of PyTorch specifically with a delta adoption change with almost 76% increase, as
seen in Table 1 and Figures 3 and 4. The most recent KDnuggets report published at the
time our scholarly work had been developed studies all the above platforms in addition to
others in correspondence to the adoption trends between 2018 and 2019, which illustrates
the delta adoption change

Table 1. Deep learning platforms adoption survey, as conducted by KDnuggets [45,46], with plat-
forms addressed by [41] highlighted in orange.

Platform 2019 % Adoption 2018 % Adoption % Adoption Change
1 Tensorflow 31.70% 29.90% 5.80%
2 Keras 26.60% 22.20% 19.70%
3 PyTorch 11.30% 6.40% 75.50%
4 DeepLearning4J 2.50% 3.40% −25.60%
5 Apache MXnet 1.70% 1.50% 13.10%

6 Microsoft
Cognitive Toolkit 1.60% 3.00% −45.50%

7 Theano 1.60% 4.90% −67.40%
8 Torch 0.90% 1.00% −6.10%
9 TFLearn 0.70% 1.10% −34.70%
10 Caffe 0.60% 1.50% −58.30%

Figure 3. Graphical representation of the highest adoption change (sorted by adoption change %) of deep learning platform
as conducted by KDnuggets poll 2018–2019 [39].
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Figure 4. Graphical representation of the lowest adoption change (sorted by adoption change %) of deep learning platform
as conducted by KDnuggets poll 2018–2019 [39].

Even though all of the above platforms provide comprehensive capabilities to run
deep learning architectures, reusability and adaptability to the code pose significant level
complexities. Finding the right model architecture and hyperparameters to train a DL
model is a difficult aspect of any deep learning pipeline. Both data science practitioners
and researchers spend hours experimenting with different settings and architectures to
find the perfect fit DL model for their corresponding problem. Henceforth, this brings us to
a new breed of DL platforms that we call DL representational frameworks (DL-ReFrams).

DL-ReFrams are a breed of DL platforms that adopt zero code methods to minimize
the time consumed to develop and reuse state-of-the-art DL architectures through represen-
tational coding and Graphical User Inteface (GUI) based techniques into prototyping and
model deployment. These are new breeds of DL frameworks that address the shortage of
data science and specifically deep learning code skills. At this moment, these frameworks
are ones that are still on the rise of research and development. There are a number of
pursued efforts that are working toward the realization of a comprehensive DL-ReFram.
Looking at the research arena, MatchZoo serves as a DL-ReFram example that “facilitates
designing, comparing and sharing of deep text matching models” [47]. On the other hand,
if we look at the data science industry, we can also find the working example of Uber
Ludwig [48]. Uber Ludwig is an open-source deep learning framework supported by Uber
AI labs. It is built on top of TensorFlow that allows users to create and train models without
writing code. DL-ReFrams typically share some of the following traits:

• No coding required: no coding skills are required to train a model and use it for
obtaining predictions;

• Generality: a new data type-based approach to deep learning model design that makes
the tool usable across many different use cases;

• Flexibility: experienced users have extensive control over model building and training,
while newcomers will find it easy to use;

• Extensibility: easy to add new model architecture and new feature data types;
• Understandability: deep learning model internals are often considered black boxes,

but we provide standard visualizations to understand their performance and compare
their predictions.

Despite the useful traits of these platforms, it could still be observed that develop-
ment is still in its early stages. Correspondingly, this does not position these platforms
for mainstream adoption in either practice or research given the limited set of supported
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DL architectures, hence making these platforms useful only if the supported DL mod-
els/architectures are provided by the corresponding platform.

2.3. Enterprise Systems Implementation Lifecycle

ESs lifecycle phases differ in names, number, and level of elaboration from model to
model. However, most of these models usually include a number of phases the describe the
pre-implementation, implementation, and post-implementation stages [49]. Many scholarly
works within the field have exhausted the analysis of the ERP system development lifecycle
whereby several prominent models appear. Research conducted by Esteves and Pastor [5]
and Markus and Tanis [4] mark some of the important lifecycle frameworks. The following
snapshot illustrates the proposed framework introduced by Esteves and Pastor [5], where
the phases and dimensions are shown (Figure 5).

Within this framework, the phases describe the different stages a given ERP system
lifecycle undergoes in typical organizations (adoption decision, acquisition, implementa-
tion, use and maintenance, evolution and retirement) [50]. On the other hand, dimensions
describe the different viewpoints by which a given phase could be analyzed (product,
process, people, and change management).

Scholar publications explain ERPs as a part of enterprise systems (ESs) [4]. ESs are
commercial software packages that enable the integration of transitions-oriented data
and business processes throughout an organization. ESs include ERP software and such
related packages as advanced planning and scheduling, sales force automation, customer
relationship management, and product configuration. The authors claim that the key
questions about ESs from the perspective of an adopting organization’s executive leadership
are questions about success. Additionally, it has been claimed that no one measure of ESs
success is sufficient for all the concerns an organization’s executives might have about
the ESs experience. Consequently, a “balanced scorecard” of success metrics addressing
different dimensions at different points in time needs to be adopted governed by the ESs
experience cycle phases. Organizations’ experience with an ES can be described as moving
through several phases, characterized by key players, typical activities, characteristic
problems, appropriate performance metrics, and a range of possible outcomes. The phases
within this cycle are explained as follows: the “chartering phase” comprises decision
leading up to funding of an enterprise system; the “project phase” comprises activities
intended to get the system up and running in one or more business units; the “shakedown
phase” is the organization’s coming to the adoption state of the implemented ES. Activities
include bug fixing and rework, system performance tuning, retraining, and staffing up
to handle temporary inefficiencies; and the “onward and upward phase” continues from
normal operation until the system is replaced with an upgrade or a different system. During
this phase, the organization is finally able to realize the benefits of its investment. Activities
of this phase include continuous business improvement, additional user skill-building,
and post-implementation benefit assessment; however, these typical activities are often
not performed. With a focus on Esteves and Pastor [5] model as depicted in Figure 5, the
implementation lifecycle stages are explained as follows:

1. Adoption decision: During this phase, companies begin to investigate for an ERP
system that suits their corresponding business challenges to uplift the organizational
performance. This phase then defines the shortlisting of ESs that fit the system
requirements, goals, and benefits and a study of the impact of adoption at a business
and organizational level [51];

2. Acquisition: Selection of the ESs product that is most appropriate for the organization
takes place during this phase. With an aim toward diminishing the need for cus-
tomization, a vendor and/or a consulting firm is selected in order to assist in achieving
the goals of the following phases so as to increase organizational productivity and
avoid a lack of continuous points [52];

3. Implementation: This phase addresses the exercise of installing and configuring the
ESs solution to act upon the predefined vertical business needs of the organization.
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Typically, this stage is owned by vendors and/or consulting firms that help in pro-
viding implementation best practices, methodologies, know-how, and staff training
toward reaching the go-live milestone [53–55];

4. Use and Maintenance: Following the go-live milestone and with a pretext of un-
derstanding the aspects of ESs functionality, usability, and adequacy, trained staff
begin using the system. Parallelly, maintenance and system optimization through
malfunction rectification is encountered [56,57];

5. Evolution: This phase corresponds to extending the capabilities of the implemented
ES to deliver new use advantages. This is performed by broadening the vertical
business functionalities to cover lateral functions across the organization;

6. Retirement: This phase discusses the stage of reaching either the functionality plateau
through the organic growth of business needs and higher affinity toward technology
adoption by the organization. In several cases, this stage is reached due to the counter-
argument of an ES not reaching its utmost potential with the identification of other
solutions that better address the business requirement of an organization [49].

Figure 5. The ESs implementation lifecycle [5].

Despite that praised high values of ERPs and various ESs difficulties did not cease
to exist. This has resulted in diminishing the sought-after return on investments (ROIs).
ERP systems have been criticized for not maintaining the return on investments (ROIs)
promised. Sykes et al. (2014) claim that 80% of ERP implementations fail. Moreover,
90% of large companies implementing ERP systems failed in their first trial [58]. It has
also been reported that between 50–75% of US firms experience some degree of failure.
Additionally, 65% of executives believe ERP implementation has at least a moderate chance
of hurting business [59]. Three-quarters of ERP projects are considered failures and many
ERP projects ended catastrophically [60]. Failure rates are estimated to be as high as 50%
of all ERP implementations [61]. In addition, as much as 70% of ERP implementations
fail to deliver anticipated benefits [62]. Still many ERP systems still face resistance and
ultimately failure [63]. That been said, there are two main critical phases that might lead
to the failure of an ERP project; the implementation and the post-implementation phases
mark the two main phases in a given ERP lifecycle where many of the organizations
might experience failure. The two phases include similar activities and involve similar
stakeholders. Correspondingly, former research has identified certain critical success factors
that are important for gaining benefits in organizations implementing ERP systems [64].
However, the cost of an unsuccessful ERP implementation can be high given the number
of risks ERP projects experience [65,66].

3. Research Methodology

In order to fabricate the research skeleton, we have adopted the proposed literature
review methodological framework by von Brocke [67], which is explained by the following
steps: (1) definition of review scope, (2) conceptualization of the topic, (3) literature search,
(4) literature analysis and synthesis, and (5) research agenda. The following subsections
explain the steps taken in the literature review process following these steps.
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On the other hand, to justify the outcomes from our investigative exercise further, the
literature review taxonomy illustrated in Figure 6 is adopted; key taxonomy categories
that are relevant to our exercise are highlighted in grey. This taxonomy had been initially
devised by Cooper [68] and later featured by Randolph [69] as part of discussions guidelines
discussions toward producing literature reviews.

Figure 6. Our literature review taxonomy, as proposed by Randolph [69].

3.1. Research Questions

By tying the earlier discussed challenges of deep learning and ESs that organizations
face during implementations, the outlook for our current literature review is to inquire
the following offspring research questions. These main research questions then set the
compass toward investigating inquiring the scholar literature toward identifying the main
ESs challenges landscape across the ESs implementation lifecycle for which deep learning
technologies would be relevant. The definition of these research questions also defines
the scholar repositories and focus academic outlets to be inquired as part of this review
exercise. Correspondingly, these questions are:

• What are the ESs implementation lifecycle challenges being faced by organizations?
• What challenges could deep learning address these challenges? How?

3.2. Defining the Scope

By following the earlier explained framework and taxonomy we begin by defining
the research scope. First, we begin by stipulating the focus to discuss the theoretical
foundations of how the intervention of deep learning would be beneficial to address
ESs challenges across the implementation lifecycle. This then sets the compass to set the
literature search query criteria to a basket of top eight information systems journals [70].
Second, the formulation of the goal discusses the capabilities of deep learning versus the to
be identified lifecycle challenges as being the central issues appearing through the analysis
and synthesis review literature. Third, our article looks at the literature organization from
a conceptual perspective to understand and organize the study to examine the theories
in the literature discussing ESs challenges. Fourth, we adopt a neutral representation
stance of the research mix by observing the cause and effect of the ESs challenges across
the ESs implementation lifecycle as illustrated in Figure 5. The intended target audience
of this article is both specialized scholars and practitioners within both fields of ESs and
deep learning. Correspondingly, we conduct an exhaustive and selective citation coverage
strategy across the specified journal basket.

3.3. Topic Conceptualization and Literature Search: Implementation Lifecycle Challenges

To instigate the conceptualization of our research and to establish an understanding
of the different ESs challenges observed from the literature, we investigate the challenge of
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diversity across the implementation lifecycle, which in turn constitutes the primary focus
of the review. In parallel, we probe the literature posturing DL technologies within the
context of ESs use.

The primary part formulates the research keywords used in the search process focusing
on analyzing the scholarly topic of ESs challenges and its corresponding content to the
point of convergence that is to be later overlaid on top of the ESs implementation lifecycle.
The key terms used in the search were {“enterprise systems” + challenges} on Google
Scholar, Web of Science, and Scopus across the eight basket journals. The range of search,
on the other hand, encompassed an exhaustive article search with selective relevance
toward the {“enterprise systems” + challenges} topic for a year range of six years (a period
spanning the year 2015 to 2020).

The secondary part of the review analyzes how DL technologies had contributed
toward an amalgamation with ESs literature devising solutions to some of the challenges
experienced within the domain. The key terms used in the search were {“enterprise
systems” + “deep learning”} on Google Scholar, Web of Science, and Scopus across the
eight basket journals. The range of search, on the other hand, encompassed an exhaustive
article search with selective relevance toward the {“enterprise systems” + “deep learning”}
topic for the same year range of six years (a period spanning the year 2015 to 2020).

Table 2 showcases the number of record hits as extracted from Google Scholar, Web of
Science, and Scopus versus the search criteria of {“enterprise systems” + challenges} for the
period between 2015–2020 across the eight basket journals of AIS:

Table 2. Returned search hit counts with keyword {“enterprise systems” + challenges} between 2015
and 2020 for the eight basket journal outlets queried on Google Scholar, Web of Science, and Scopus.

Keywords:
{“enterprise systems” + challenges}

Range:
2015–2020

Scholar Repository Total Hits

Google Scholar 263

Web of Science 61

Scopus 32

Total 356

On the other hand, Table 3 showcases the number of record hits as extracted from
Google Scholar, Web of Science, and Scopus versus the search criteria of {“enterprise
systems” + “deep learning”} for the period between 2015 and 2020 across the eight basket
journals of AIS:

Table 3. Returned search hit counts with keyword {“enterprise systems” + “deep learning”} between
2015 and 2020 for the eight basket journal outlets queried on Google Scholar, Web of Science, Scopus.

Keywords:
{“enterprise systems” + “deep learning”}

Range:
2015–2020

Scholar Repository Total Hits

Google Scholar 7

Web of Science 0

Scopus 0

Total 7

The articles exploited in the analysis and synthesis process were elected by the ex-
clusion process based on an assessment of the abstracts and then the content. We had
correspondingly triggered eight different search queries on Google Scholar to return corre-
sponding hits while filtering by the journal names. Table 4 illustrates the search hits and
relevance projection from the queried journal repositories, which formulates the scope of
our reviewed articles as a combination of both search criteria illustrated above.
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Table 4. Combined returned search hit counts with keyword {“enterprise systems” + challenges} and
{“enterprise systems” + “deep learning”} between 2015 and 2020 for the eight basket journal outlets
queried on Google Scholar, Web of Science, and Scopus.

Journal Names Total Hits Included by
Abstract

Included by
Content

Scholar Reposito-ries:

• Google Scholar
• Web of Science
• Scopus

Keywords:
{“enterprise systems” +

challenges}
+

{“enterprise systems” +
“deep learning”}

Range:
2013–2019

Journal of AIS 52 + 1 11 + 1 9 + 1

Information
Systems Journal 37 7 6

Information
Systems
Research

36 + 1 7 + 1 4 + 1

Journal of
Information
Technology

81 + 2 12 7

Journal of MIS 19 4 3

Journal of SIS 27 6 4

MIS Quarterly 55 + 1 12 8

European
Journal of IS 49 + 2 9 6

Total 363 70 49

Total Included 49

All included the included/cited journal articles had been included for reference visual
representational reference purposes in Appendix A. The corresponding topic focus across
the ESs implementation lifecycle and the overlaying dimensions show precisely the pursued
literature in relevance to the ESs implementation lifecycle. We had used this table to derive
conclusions. The total count and percentages of total included articles are calculated for
every phase and dimension within the implementation lifecycle. For clarity purposes,
please see full details on the included/cited journal articles and the corresponding topic
focus across the ESs implementation lifecycle in that table illustrated within the Table 1 of
Appendix A. This was then summarized in the form of Table 5, which correspondingly
helped with the analysis and synthesis arguments and set a compass toward the research
agenda in the form of the directions to be discussed in the latter sections.

Table 5. The total count and percentages of total included articles for every phase and dimension within the ESs implemen-
tation lifecycle.

Adoption Acquisition Implementation Use and
Maintenance Evolution Retirement Change

Management People Process Product

Total Count 1 2 19 32 7 2 6 40 17 7

% of Total
(out of 49 articles) 16% 4% 39% 65% 14% 4% 12% 82% 35% 7%

4. Analysis and Synthesis of Literature Search

The literature shows the tendencies across the ESs implementation lifecycle toward
discussing ESs challenges experienced during the following phases: use and maintenance
(65%), implementation (39%), adoption (16%), evolution (14%), retirement (4%), and ac-
quisition (2%). On the other hand, the people dimension comes on top of the list (82%),
followed by the process (35%), change management (12%), and product (7%).

The literature review illustrates the theoretical need to address the central issues
identified across the implementation lifecycle for which deep learning architectures would
be of benefit. This then paves the way for the research agenda setting the compass toward
addressing how deep learning breakthroughs would tackle the uncovered implementation
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phases and dimensions challenges. One of the main reasons why it was obvious that deep
learning technologies would be of benefit for many of the identified challenges is because
almost none of the reviewed literature did adopt any advanced analytics techniques
to counter these effects. Correspondingly, the following sections highlight the topmost
identified challenges within the reviewed literature set.

4.1. Implementation and Use and Maintenance Challenges

The tendency of reviewed literature to recite implementation and use and maintenance
challenges had been evident. A summary of these top challenges is explained as follows:

• Problems with the customizations carried out during implementation:

This type of problem is one that is typically rooted during the implementation phase.
No ESs solution is purposefully built to fit the business processes adopted by all organiza-
tions, bearing in mind the business practices variations from one business to the other. The
solutions are usually packaged with best practice processes that are generic to work for a
wide spectrum of organizations (even if the solution is an industry-focused solution). Given
the granular details that distinguish one business practice from the other, unavoidable
customization situations are experienced. This then puts the ESs on the track toward heavy
customizations that derail the ESs solution completely from the intended design and value
behind it.

• Problems with workarounds:

The recipe that is made of lack of training, the inability of users to comprehend the
main purpose of a given ES, and the serious requirement posed by users to overcome
business bottlenecks caused by the likes of this misunderstanding pushes employees to
be creative about the use of the ESs solution. This also derails the system from the track
of abiding by the best practices given solutions are packaged with. This type of problem
could lead directly to the next problem given the inability to ensure validity, consistency,
and integrity of the data being entered.

• Problems with data:

◦ This type comprises the inability of maintaining and enforcing validity, con-
sistency, and integrity of the data being entered by the business users; ESs
face tragic consequences given the inability of users to make efficient use of
the systems. This then puts ESs on the course of requiring complementary
solutions (like data quality and master data management solutions) to work
on reactively and proactively remediating the data irregularities and imposing
enterprise-wide data governance. However, many organizations do not easily
come to the conclusion of requiring these solutions given these solutions and
technologies are from an industrial standpoint still gaining eminence and typi-
cally are loosely defined, which creates confusion with information technology
(IT) governance.

• Problems with support activities:

All the above problems then follow the natural streams of technical resources delving
into the needs for support. This encompasses many different types of support streams
and personas, from hiring external consultants to reverting back to vendor support teams
assisting on solution bugs, glitches, and irregular behavior typically witnessed by the
decision makers during the adoption and acquisition phases. The unfortunate truth is
that this problem is generally witnessed through the dragging “ping-pong” effect across
different parties, especially if one party has a pretext of hidden agendas. This opens many
other doors knitted with controversy.

Upon adopting a new ES solution, many organizations tend to re-engineer the default
processes and policies a given ES is delivered with. This work undertakes the process
of altering the pre-packaged ES software to satisfy the functionality gap postured by the
organizational business processes and policies [71]. This unfortunate practice poses an
overwhelming impact on the latter rework related activities that are to be implemented
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by the development team [72]. The literature explains that the amount of upgrade rework
activities was directly proportional to the amount of customization a given ES undergoes.
Many variants of these discussions had been handled across the literature set posturing a
clear pattern and emphasis on the problems that customizations of ESs typically pose. ESs
misfits then come to life despite the fact that many organizations are aware that customiza-
tion practices typically cause implementation inefficiencies and usually ESs failure [13].
Adapting the processes to the ESs package to achieve the customizations typically promises
a higher return on investment (ROI) that is not empirically solid. Customizations are
usually affiliated with feature extensions for enhanced ESs use [67–73]. This practice of
customizations poses a significant level of misunderstanding between the management
and staff due to the lack of consensus on the goals and objectives that a given ES serves
(perceived technology customization), with corresponding impacts on the organization’s
agility toward the business complexities [74,75]. All of this then leads to high risk and a
major impact on post-implementation (use and maintenance, evolution and retirement)
roles and functions [76].

On the other hand, workarounds did shape a significant part of the reviewed literature
with noteworthy implications during the use and maintenance phase. This had also
contributed to substantial process impediments caused by and to various roles (people)
within the organization. The materialization of workarounds typically indicates that
organizations still experience a lack of user satisfaction, one of the most intense researched
fields in the area of IS research [77]. In situations where users experience IS activity slowness
or obstruction, they tend to devise workarounds that help them reestablish control, seeking
their business autonomy rather than exploring the system features [78,79]. The very aspect
of adopting workaround practices commonly leads to data problems and inconsistencies
within an ES solution [80,81]. It could be observed as a consequence that organizations
naturally encounter IT compliance obstacles as a result of these practices. User resistance is
also a very important topic handled because of business obstruction [82,83]. It is however
important to mention that in a number of cases workarounds had been observed to be a
method of lowering resistance to problematic implementations [13,77,83]. That being said,
it could be observed that clubbing customizations and workaround practices inflame ES
problems, leading to the eventual fate of ES system discontinuance and/or retirement [84].

4.2. The Socio-Technical and Compliance Challenges

The earlier section showcases how people and process dimensions of the lifecycle
stand hand in hand in the line of ESs challenge fire along with the implementation phases.
It had been evident how user resistance caused by workaround practices had contributed to
the eventual discontinuance of given ESs. Psychological contract breaches (PCBs) had been
used to further understand employees’ attitudes and behavior. PCBs are typically driven
by three dimensions of individuals’ perceptions—reneging, congruence, and vigilance. The
perception of a PCB regularly reduces employees’ trust, job satisfaction, intention to remain
with the organization, sense of obligation, and in-role and extra-role performance [85]. This
then makes IS alignment within an organization a far-fetched goal [86]. Naturally, it could
also be seen that one of the factors impacting IS alignment is the fact that routine use (RU)
of a given ES is impacted highly by the perceived usefulness (PU) of the ES. It is also argued
that PU is the most representative intrinsic motivator for IS use. Now, this very fact impacts
significantly how innovative use (INV) is to be reached to build a consensus on acceptance
of an IS. Similarly, there is a thin line between acceptance and resistance toward a given
ES solution, which is typically defined on how what is known as a swift response phase
is utilized [87]. Making the best use of swift response phases typically holds a significant
weight toward setting the compass of PU from a user’s point of view, which then defines
the aptitude for an ES to either succeed or fail. Correspondingly, strategic IS alignment
deems to pose an essential reliance on system use as a measure toward avoiding strategy
blindness. This is where organizations are incapable of realizing the strategic intent of the
implemented available system capabilities.
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Certainly, the help of a strategic activity framework would come in handy to model
how an ES is being used to support an emerging organizational strategy. This is where
the ability to change system use as needs change (fluidity). In order to facilitate expedite
the aspect of system fluidity a key people dimension needed to be visited; this is where
champions are being elected within the organizational community to orient the rest of
the organizational population toward system goals and processes and stipulate guided
support to the people and process dimensions [76,78,87,88]. This is how various support
structures could be complemented within an organization to enhance the impact of em-
ployee outcomes and hence effective IS investments [89]. Leadership empowerment plays
an equally important role to ensure the effectiveness of IS investments and fluidity by
adopting the planting the champion-based tactic. This plays a complementary essential
role toward reducing developer stress safeguarding the entire ecosystem from the over-
whelming collapse of support impacting the user PU [72]. This correspondingly defines
how social capital could be reinforced to ensure the success of complex, cross-functional
implementations [90].

Despite the fact that a number of frameworks and models had been devised in order to
maneuver around the socio-technical aspects impacting the people and process dimensions
of an ES implementation cycle, the counter fact of ensuring and reinforcing the adoption
and application of these frameworks remains a challenge to date. These collective facts
then onset the following research agendas.

4.3. Deep Learning for Enterprise Systems

Evidently from the reviewed intersecting literature, the infiltration of the likes of
deep learning technologies in support for ESs shows a significant lack of pursuance. As
illustrated from the search hits from three different repositories (Google Scholar, Web
of Science, and Scopus) across the basket of eight AIS journals, the penetration of deep
learning technologies to complement ESs is not getting much attention. Despite being
hinted by Gregor [91] that automation introduced by non-human “automata” would
contribute toward the overall algorithmic and deterministic nature of the system, an
inclination toward human actors still stands. This is explained by the fact that human
actors lean toward being more flexible in nature in achieving a certain goal. These very
remarks to a great extent support our findings around workarounds where human actors
deplete the algorithmic nature of ESs in many shapes and forms.

It was still argued in other instances that the intelligence factor introduced by machine
learning, deep learning, and artificial intelligence alike can be of significant support for
employee productivity. This was where the indicated benefits of the complimentary
role of analytics technologies establish a foundation for enhanced productivity of all
resources within an organization at large [92]. Again, that serves as clear support in favor
of our hypothesis.

That all being said, we take on these findings into action to showcase the high accuracy
levels deep learning technologies would be able to achieve as a step toward pursuing an
evasion point from what is known as the point of “lack of continuous,” also known
as “productivity decline,” within an ES lifecycle. This then contributes to the research
directions to be discussed at a later stage of this scholarly work.

5. Experiment: Deep Learning for Augmented Technical Support

To assess the aptitude for deep learning solutions, a proof-of-concept experiment is
to be conducted to showcase accuracy levels that could be achieved by the technology at
hand. The accuracy levels achieved from the deep learning technology, which are to be
illustrated, will consequently contribute toward the resolution of the above challenges. The
foundational hypothesis, in this case, revolves around how deep learning technologies that
are to be addressed would be able to process vast amounts of text representations within
the feature space to derive text similarities between free text corpora in support tickets
without compromising on the accuracy levels processed across the text feature space at
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hand. This would then deliver evidence as to how deep learning could be of significant
benefit in tackling the above challenges while maintaining the sought-after accuracy levels
that qualify whether the solution would be of use or not.

Correspondingly, the purpose of this experiment is to illustrate the aptitude for deep
learning algorithms to reach out to a level of ESs augmentation. In this example, we
focus on one of the earlier explained ESs challenges, that is, the problems with support
activities. This formulates an example as to how deep learning algorithms would be able
to support a complete ES augmentation artifact. In this example, we have reused the code
developed by Mueller [40]. The purpose of this exercise is to show how support ticket
sentences and product documentation pairs would be able to be used as training data set
for a Siamese-LSTM algorithm. It is to be noted that the reason why the Siamese LSTM
architecture qualified to address the ESs augmentation at hand is given the architecture’s
ability to act on deriving complex text relationships throughout the feature space among
the text embeddings guided by the training data sets. This distinguishes the architecture
for traditional algorithms such as bag-of-words and Term Frequency-Inverse Document
Frequency (TF-IDF) models [40]. That being said, the scored model of this algorithm would
then able to recommend useful resolutions as derived from the training data set.

5.1. Setup and Infrastructure

For the purpose of conducting this end-to-end experiment, the following Google
cloud-based architecture was adopted to furnish the necessary foundation to conduct this
experiment, serving the purpose of proofing the concept. This was comprised four servers
as depicted in the below diagram (Figure 7).

Figure 7. Infrastructure setup.

5.2. Data Acquisition and Preparation

It is widely known that issue tracking systems store valuable data examination assets
that could be used for the purpose of testing hypotheses such as the one at hand. These
data assets furnish reliable testing foundations that relate to the use and maintenance of ESs
among which also many other dimensions could be analyzed to examine the socio-technical
fronts. For the purpose of this experiment, we focused on aptitude for DL algorithms
contributing to ESs augmentation.

It is important to note that acquiring similar data assets from real-life organizations
had posed significant research challenges as it is with many of the scholars addressing
the domain. To overcome this major hurdle, the Jira repository dataset as extracted by
Ortu et.al. [93]. This dataset delivers a rather comprehensive collection of IT tickets from



Informatics 2021, 8, 11 17 of 29

the Jira issue tracking system (ITS) that spans many popular open-source ecosystems
(Apache Software Foundation, Spring, JBoss, Hibernate Org., and CodeHaus). This dataset
provides an abundance of data, serving as a comprehensive test bed across more than 1000
projects and containing more than 700,000 issue reports and more than 2 million issue
comments across the four open-source ecosystems. Appendix D show the link for the
GitHub repository shared by Ortu et.al. [93].

Despite the fact that the JIRA ITS repository serves as a gold mine of information
that could be used for an experiment such as ours, the database relied on PostgreSQL as a
container for the data to be shared across with the research community. This in turn meant
that a level of inflexibility is attached given the reliance on this technology. To elevate
the level of manageability and robustness, we had migrated the repository to an Oracle
database to support the lifecycle of the experiment (please see Appendix B for the links to
the Github repositories of both the JIRA Social Oracle and the PostgreSQL databases).

Throughout the process of data preparation, we have used an enterprise-grade data
management tool that helped significantly with the complex steps of preparing the data for
the Siamese LSTM experiment. As usual, the process of data preparation had consumed a
significant amount of time to have the data ready for the model training, yet the use of a
data management/integration tool helped expedite significantly. The fact that this data
management tool did not support PostgreSQL was an additional reason why migration to
a database like Oracle was necessary (please also see Appendix D containing the link to
our GitHub repository for the migrated Oracle database). This is postured by the open-
source nature of PostgreSQL databases and the rather typical low adoption levels on an
enterprise level.

5.3. Training the Siamese LSTM Architecture

The process of running the Siamese LSTM network had been conducted over the
full scope of the JIRA ITS repository while segregating the data into several datasets
representing support tickets from different ecosystem communities. The python libraries
used to setup the foundation for the Siamese LSTM model on Keras is depicted in Appendix
C (Figure A2). This then translated into our ability to evaluate the outcome of the models
and consistency across these different datasets representing the different communities.
Conceptually, it was also quite important to ensure that contextual and latent features
within the data are not distorted, which might have impacted representational forms of
the similarities to be identified by the Siamese LSTM architecture. This step of segregation
ensured the integrity of the constructed vector space drawing relations amongst the vast
number of word embeddings. Table 6 showcases the comment count being used for training
the model at hand.

Table 6. A record count of the free-text comments being used to train the Siamese LSTM architecture.

Repository Free Text Comment Count

JBoss 387,285

CodeHaus 293,795

Spring 81,376

Hibernate 37,545

Total 800,001

5.4. Model Results

The in-use Siamese LSTM algorithm takes “word2vec” word embeddings to illustrate
the latent semantic relatedness between given sentence pairs using Manhattan distances.
This serves as the foundation to derive the semantic relatedness universe (represented by
the vector space) used as the baseline of qualifying relations between technical problems
and corresponding documented technical resolutions. In this case, the prepared training
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data for the different ecosystem repositories had been split into 70/30 split between training
and validation data. The training of the Siamese LSTM network had been done over
50 epochs. It must be noted that the usual time taken to train the network on CPUs has
been significantly time-consuming for which Graphical Processing Units (GPUs) are always
advisable given the multi-dimensional parallel computing. The following graphs depict
the results of the accuracy and loss graphs conducted over a run of 50 epochs across the
multiple runs of the algorithm across the four different ecosystem tickets.

As depicted in Figure 8, the example of the deep learning algorithm adopted in this
experiment delivers reliable evidence through which the earlier discussed foundational
hypothesis is being addressed. It is now quite visible how Siamese LSTM was able to
process vast amounts of text representations within the feature space across a significant
number of work embeddings. This then shows the high aptitude for such technology
to derive text similarities between text corpora within feature space constituted out of
support ticket repositories without compromising on the accuracy levels. Correspondingly,
it could be concluded that deep learning technologies pose a good fit for augmenting ESs
to cater to the challenges discussed observed as a result of the literature review discussed
within this paper. This also converges with earlier scholarly work that highlights the vital
role analytics-powered enterprise systems play within organizations suffering from ESs
productivity decline [50].

Figure 8. Model results from the deep learning model (Siamese LSTM) used as part of the conducted
experiment across the four JIRA issue tracking repositories. Please see Appendix B for the detailed
graphs produced by the model upon training for 50 epochs. Full model accuracy and loss versus the
four handled issue tracking system (ITS) repositories are also illustrated on Figure A1 of Appendix B.

6. Research Agenda

The product of the earlier explained challenges drives several research agenda in-
vestigations that need to be interrogated. The most obvious of all are three main broad
investigative directions. The first direction asks how DL technologies could be of applied
benefit for ESs implementation phases, the second direction interrogates how DL technolo-
gies would empower the socio-technical landscape within an implementation lifecycle to
reinforce organizational governance and compliance of processes and increase perceived
usefulness, and the third direction probes how DL algorithms would change the de facto
anatomy of an ES and whether it would necessitate an update to the definition of ESs or
pose the rise of new breed of augmented/intelligent ESs.

The above broad queries are initially posed by the fact that more than 80% of informa-
tion within an organization lies within unstructured formats. Many organizations abandon
their information assets to be laid in the form of storage liabilities that only cost resources
to store with no obvious use [77].
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6.1. Direction 1: DL Augmentation of ESs Implementation Phases

Among the top agenda questions that need to be interrogated is what are the key
aspects that DL augmentation on top of an ES? Hence, the following question is addressed:

• How can DL algorithms achieve a level of guided implementations through a level of
augmentation?

As explained earlier, the ESs implementation lifecycle stipulates undergoing several
implementation phases, as illustrated in Figure 1. It all begins with the adoption and
acquisition phases where the organization decides on the ESs to be implemented. It had
been evident from the literature that there had been little focus on the challenges encoun-
tered within these phases. This poses a stance toward investigating the corresponding
challenges in these phases and maps an augmentation solution to guide the organization
within these phases.

On the other hand, the concentrated focus on implementation and use and mainte-
nance had uncovered many challenges ESs encounter, leading to either retirement of an ES
or its replacement. The aptitude of DL technologies to address many of the highlighted
challenges had been rarely highlighted in either direct or indirect ways, where some lit-
erature explained how advanced analytics algorithms including DL could serve the goal
of safeguarding post-implementation phases [50]. This then addresses the problems of
customizations, workarounds, and the augmentation of support functions. Despite this
fact, more elaborate research is required to coagulate the hypothesis. On the other hand, the
competitive capacity for DL algorithms to harness the 5Vs of big data poses an intriguing
stance to cater to the data issues [42].

6.2. Direction 2: DL for Socio-Technical and Compliance Empowerment

The interaction between people and technology and their ability to comply with
processes carries an important weight toward managing complex organizational work
design set by ESs solutions. The earlier recited people and process challenges dictates a
need for intelligent systems to support an organization to increase the perceived usefulness
of an ES and promote rather innovative use approaches. This is when routine use could be
accepted by users to avoid all that decapacitate ESs productivity, fluidity, and IS alignment
that typically delivers a psychological contract breach effect [85].

The potential to counter these effects using DL algorithms then sets the stage for
these intelligent algorithms to address the following by removing collaboration bottlenecks
within various enterprise collaboration systems (ECSs) caused by inefficient unstructured
data use [94]:

• How DL algorithms could improve user compliance and increase the perceived use-
fulness of an ES?

The ability for DL algorithms to harness unstructured stored data within the orga-
nization and ESs solutions raise the queries on how these datasets could be intelligently
re-channeled into the organization to empower the user compliance front. The propensity
of DL techniques to empower an IT project compliance seems to outsize the socio-technical
challenges. However, an adaptation of currently present frameworks, methodologies,
and methods need to be put to the test to prove the hypothesis. The potential for DL to
reinforce this front lies within enabling project custodians and champions to prove to top
management that efficiencies are realized evidently with an impact on the practice and
compliance of the system use. DL algorithms have the potential to be utilized for the
purpose of intelligently advise users on best use and maintenance methods. This then
paves the way into the following pointer:

• How DL algorithms could work on empowering the social capital within an organization?

Given technological aptitude for DL techniques to re-align compliant use within an
organization, it would have the adeptness to enable the social capital within an organization.
Likewise, this hypothesis calls for the scientific rigor to qualitatively assess the ability of the
research body, especially around the area of how DL could augment the ESs users, support
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functions, and executives to gain social capital. The aim here would to catalyze the process
of soliciting support from top management toward expanding on INV with a goal toward
enhancing process compliance posed by the people. Through the ability for DL algorithms
to analyze unstructured and semi-structured documents explained in Liu’s research [90], a
level of augmentation could be added to dissect structural, cognitive, and relational ties
building the social capital. The tipping point of this research would be through a measure
of how inclined would DL technologies management opinion could be influenced and, in
many cases, turned.

6.3. Direction 3: The Importance of DL-ReFrams to Achieve ESs Augmentation

Despite the value that DL platforms deliver in the form of an augmented ESs, the
complexities that emerge with these frameworks posture notable bottlenecks. That being
said, the following inquiries need to be pursued:

• How can practice and research-based DL-ReFrams could be incubated in order to
introduce de facto platforms that minimize the development efforts?

The need to continue the momentum toward establishing findable, accessible, interop-
erable, and reusable (FAIR) abiding frameworks that are easy to use postures significant
importance for deep learning research. Given the exponential research inquiry rates of
intelligent machine learning-based algorithms, the need toward sustaining the DL-ReFrams
momentum becomes very important given the complexities postured by reusing intelligent
machine learning algorithms for which, in our case, deep learning architectures come to be
the main focus. It could be seen from our DL platforms section that various technology
podiums (TensorFlow, Keras, etc.) document and pave the way toward significant advance-
ments in the arena. However, only a handful of other podiums in the form of what we
call DL-ReFrams are set toward increasing adoption and reusability. These are ones that,
despite having a monumental impact, still suffer from the limited reach for spanning and
addressing all types of use cases to come to an encyclopedic foundation to build on. This
would correspondingly pose significant bottlenecks for interdisciplinary research streams
that could benefit from the immense powers of the DL concept in its essence.

6.4. Direction 4: The Anatomy of ESs Technologies in Light of DL

Given the prominence of DL technologies to address all of the above, the status of
weaving these approaches into the fabric of the so-called intelligent ESs requires inspection.
This would query the ability to re-establish the de facto definition of what an intelligent
ESs would be and the corresponding anatomical technology dissection. The reason behind
this fact is that even though DL techniques possess immense power, they also come with
challenges. Among some of the challenges is the aspect of incremental learning for non-
stationary data. This is where streaming, fast-moving, and continuous data would require
supplementary techniques to cater to those needs. Given the fact that streaming data
typically come with noise, the ability to apply examples of denoising autoencoders (a
variant of autoencoders) becomes crucial. Similarly, high dimensional data and large-scale
models devised to address the explained augmentation onto ESs would pose enhancement
requisites. Additionally, technological architecture build on deep learning techniques
typically requires resource-intensive components to enable different phases of the learning
process, especially during the training phase. Hence, the following queries are posed:

• What are the technical boundaries the might be encountered in this type of transformation?
• In what ways can the recited technical boundaries be avoided to facilitate the adoption

using DL?
• Given the service-based offerings that ESs vendors provide, can the parsing issue

be avoided by probably exposing Application Programing Interfaces (APIs) that
add a level of augmented intelligence to the ESs to overcome the failure and ping-
pong phenomenon?
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6.5. Direction 5: Assessing the Aptitude of Transformers as Substitute to LSTM Architectures

Pushing the boundaries beyond the current capabilities of LSTM architectures, recent
research had compared these architectures versus what is known as transformers [95].
Transformers are neural network architectures that focus on attention mechanisms to
draw global dependencies without regard to the distance between the input or output
sequences [96].

As shown in our experiment of LSTMs (a Siamese LSTM in our case), it could be
quite difficult to train given the very long gradient paths that work their way throughout
the vast number of word embeddings (i.e., an LSTM on a 100-word document typically
would have gradients of close to a 100-layer network). The reason why a transformer
network is faster because there is no need for the word embeddings to be ingested into the
neural network architecture in sequence. The words can be passed into the transformer
simultaneously given that there is no concept of the time step of the words being passed
into the network architecture, hence, achieving a faster method sponsoring parallelism,
which in turn postures a rather more efficient use of hardware. In turn, this lays a solid
foundation that would be quite beneficial toward re-enforcing the very premise of ESs
augmentation and the eventuality of transforming ESs architecture and state of the art.

7. Conclusions

The rise of intelligent applications had been evident through the emergence of deep
learning architectures. Coming a long way from simple perceptrons, complex neural
network architectures ascended to renovate the very essence of machine intelligence.
In parallel, the ESs domain did see noteworthy research rigor studying many of the
implementation lifecycle phases and dimensions. However, many of the ESs promises had
experienced significant value depletion across the different phases of the implementation
lifecycle given the misalignment of the people, process, product, and change management
dimensions. The analysis of the reviewed literature indicates that the key phases seeing
this depletion are primarily the implementation and use and maintenance phases. This
conclusion had been reached by reviewing a basket of the top eight journals in the field
of ESs.

This paper analyzed the most evident cases causing the effects of ESs value deple-
tion, whereby both socio-technical and implementation lifecycle fronts were investigated
throughout the review process and across the implementation lifecycle phases and dimen-
sions. This lead to unearthing several research directions where the high aptitude of DL
technologies could be postured for further investigation addressing the experienced deple-
tion on both fronts. These questions are set the compass toward five directions—(1) how DL
technologies could/would increase productivity throughout the implementation lifecycle,
(2) how DL technologies could/would have an impact on socio-technical and compliance
empowerment aspects within the influence context posed by ESs, (3) the importance of
abiding by the FAIR principles to ensure streamlined and invigorated adoption of DL
technologies through what we briefly introduced as DL-ReFrams, (4) how the key impact
of this type of empowerment and augmentation would eventually redefine the ESs land-
scape, and (5) the aptitude for increasing the level of efficiencies using transformer-based
architectures. These queries are postured versus the most evident review findings. Hence-
forth, the marriage of the most evident problems and DL capabilities lays the foundations
for future research that would enable more efficient technology use, increased perceived
usefulness of ESs, and the abolishment of the core challenges that ESs implementation
lifecycles suffer from.

Correspondingly, the high impact of these findings tends to exhibit the industrial and
academic potential toward redefining the de-facto ESs state-of-the-art. Academically, the
progress toward the described directions sets the scholarly momentum toward laying the
foundations for an “intelligent ES” as a new breed of applications and packaged business
solutions. This should then lead and guide the industry into organically revamping the
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ESs setup around the implementation lifecycle at large, may it be internal or external to
both organizations and vendors.
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Appendix A

Included Literature Review Articles

Table 1. The included/cited journal articles and the corresponding topic focus across the ESs implementation lifecycle
phases (highlighted in blue) XX and dimensions (highlighted in orange) marked in XX. It is to be noted that rows showing
search hits coinciding between {“enterprise systems” + challenges} and {“enterprise systems” + “deep learning”} are
highlighted in grey.

# Outlet Reference Adoption Acquisition Implementation Use &
Maintenance Evolution Retirement Change

Management People Process Product

1 JAIS [78] XX XX XX XX
2 JAIS [97] XX XX XX
3 JAIS [90] XX XX XX XX
4 JAIS [85] XX XX XX XX
5 JAIS [98] XX XX XX
6 JAIS [88] XX XX XX
7 JAIS [91] XX XX XX
8 JAIS [99] XX XX
9 JAIS [100] XX XX

10 JAIS [101] XX XX XX
11 ISJ [79] XX XX XX
12 ISJ [102] XX
13 ISJ [13] XX XX XX
14 ISJ [103] XX XX XX
15 ISJ [81] XX XX XX
16 ISJ [83] XX XX XX XX XX
17 ISR [87] XX XX XX
18 ISR [72] XX XX XX
19 ISR [104] XX XX
20 ISR [73] XX XX XX
21 ISR [92] XX XX
22 JIT [105] XX XX
23 JIT [71] XX XX XX XX
24 JIT [106] XX XX XX
25 JIT [84] XX XX
26 JIT [74] XX XX
27 JIT [80] XX XX XX XX
28 JIT [107] XX XX XX XX XX XX XX XX
29 JMIS [108] XX XX XX
30 JMIS [109] XX XX XX
31 JMIS [110] XX XX XX
32 JSIS [75] XX XX
33 JSIS [111] XX XX
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Table 1. Cont.

# Outlet Reference Adoption Acquisition Implementation Use &
Maintenance Evolution Retirement Change

Management People Process Product

34 JSIS [112] XX XX XX
35 JSIS [113] XX XX
36 MISQ [76] XX XX XX
37 MISQ [89] XX XX
38 MISQ [114] XX XX XX
39 MISQ [115] XX XX XX
40 MISQ [116] XX XX XX
41 MISQ [117] XX XX
42 MISQ [118] XX XX XX
43 MISQ [119] XX XX XX
44 EJIS [120] XX XX XX XX XX XX
45 EJIS [82] XX XX XX
46 EJIS [77] XX XX
47 EJIS [121] XX
48 EJIS [122] XX XX XX XX
49 EJIS [86] XX
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Appendix C

Figure A2. Python-based Keras libraries and prerequisites used for the experiment.

The following is a depiction of the full packages and libraries being used for the
purpose of setting up the python infrastructure to conduct the Siamese LSTM experiment.

Appendix D

JIRA Social Repositories

D1. JIRA Social Repository as delivered by Ortu et.al. [93] (PostgreSQL version)
Available online: https://github.com/marcoortu/jira-social-repository (Accessed on

17 February 2021)
D2. Migrated version of the JIRA Social Repository to an Oracle Database
Available online: https://github.com/hhassanien/ITSM-Oracle-DB-JIRA-Social-Repository

(Accessed on 17 February 2021)
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