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Abstract: This paper proposes a new method to generate edited topics or clusters to analyze images
for prioritizing quality issues. The approach is associated with a new way for subject matter experts
to edit the cluster definitions by “zapping” or “boosting” pixels. We refer to the information entered
by users or experts as “high-level” data and we are apparently the first to allow in our model for the
possibility of errors coming from the experts. The collapsed Gibbs sampler is proposed that permits
efficient processing for datasets involving tens of thousands of records. Numerical examples illustrate
the benefits of the high-level data related to improving accuracy measured by Kullback–Leibler
(KL) distance. The numerical examples include a Tungsten inert gas example from the literature.
In addition, a novel laser aluminum alloy image application illustrates the assignment of welds to
groups that correspond to part conformance standards.
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1. Introduction

Clustering is an informatics technique that allows practitioners to focus attention on a few
important factors in a process. In clustering, the analyst takes unsupervised or untagged data and
divides it into what are intended to be intuitive groupings. Then, knowledge is gained about the whole
dataset or “corpus” and any new items can be automatically assigned to groups. As a result, clustering
can provide a data-driven prioritization for quality issues relevant to allocating limited attention
and resources. Informatics professionals are asked now more than ever to be versant in using the
information technology revolution [1–3]. This revolution exposed practitioners to large databases of
images (and texts) that provided insights into quality issues. Practitioner might easily create clustering
or logistic regression models using the rating field. Yet, the practitioner generally has no systematic
technique for analyzing the freestyle text or image. This is true even while the text or image clearly
contains much relevant information for causal analysis [4,5].

This article proposes methods with sufficient generality to provide the ability to apply the analysis
either for images or texts. Each image (or record) could correspond to more than a single quality
issue. For example, one part of a weld image might include nonconformity at the same time reveals
another type of nonconformity. In addition, it might be too expensive to go through all the images
(or documents), to identify the quality issues manually. The purpose of this article is to propose a
new way to identify quality issues combined with different images (or texts) by generating clustering
charts to prioritize quality issues. For example, if the engineers knew that type 1 defects were much
more common than the other types, they could focus on the techniques relevant to type 1 for quality
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improvement and address the most important issues of that type. This new method will require
relatively little effort from practitioners compared with manually tagging all or a large fraction of
the data.

Even while the information technology revolution is exposing practitioners to new types of
challenges it is also making some relevant estimation methods like Bayesian analysis easier [6–9].
One aspect that many Bayesian applications have in common is that they do not apply informative
prior distributions. This is presumably because, in all these cases, the relevant practitioners did not
have sufficient knowledge before analysis that they could confidently apply to make the derived
models more accurate. The phrase “supervised” data analysis refers to the case in which all the data
used for analysis has been analyzed by subject matter experts (SMEs) and categorized into classes by
cause or type. Past analyses of text or image data in quality contexts have focused on supervised data
analyses [10,11]. Yet, more generally perhaps, datasets are sufficiently large that having personnel read
or observe all or even a significant fraction of the articles or images and categorize them into types
is prohibitively expensive. Apley and Lee [12] developed a framework for integrating on-line and
off-line data which is also presented in this article. This framework did not include new types and
convenient types of data. Here, we are seeking to have the data presented in different forms.

The approach proposed in this paper is apparently the first to model replication and other errors
in both high-level expert and “low-level” data for unstructured multi-field text or image modeling
for image analysis. Allen, Xiong and Afful-Dadzie [4] did this for text data. The practical benefit
that we seek is to permit the user to edit the cluster or topic definitions easily. In general, Bayesian
mixture models provide clusters with interpretable meaning and are generalizations of latent semantic
indexing approaches [13]. The Latent Dirichlet Allocation (LDA) method [13] has received a lot of
attention because the cluster definitions derived often seem interpretable. Yet, these definitions may
seem inaccurate and disagree with expert judgement. Most recently, many researchers have further
refined Bayesian mixture models to make the results even more interpretable and predictive [14–18].
This research has generally caused the complexity of the models to grow together with the number of
estimated parameters. The approach taken here is to use a relatively simple formulation and attempt
to mitigate the misspecification issues by permitting user interaction through the high-level data.

To generate clustering models to analyze image data, we must identify clusters definitions which
is the most challenging step, tally the total proportions of all the images associated with each cluster,
sort the tallies and bar chart the results. Another objective we have for this article is to compare the
proposed clustering methods with alternatives methods that have been used before. This follows
because those methods require that the cluster definitions are pre-defined, all pixels in each image
relate to a single cluster, and a “training set” of images have been pre-tagged or supervised [19–21].
For two simulated numerical examples, we compare the proposed clustering methods with three
relevant alternatives: Latent Dirichlet Allocation [13,22,23], “fuzzy c means” clustering methods [24,25]
and pre-processing using principle components analysis followed by fuzzy c means clustering [26].
Apparently, comparisons of a similar scope do not appear in the image analysis literature which
generally focuses on the goal of retrieving relevant documents. Our research here applies the existing
results for text analysis [4]. To generate helpful prioritizations, we need the estimated topic definitions
and proportions to be accurate. Therefore, we also propose new measures of model accuracy relevant
to our goals for image analysis.

Next section, we describe the laser welding image problem that motivates the Expert Refined
Topic (ERT) modeling methods for image analysis. The motivation relates to the issue that none of
the topics or clusters identified directly corresponds to the issues defined in the American National
Standard Institute (ANSI) conformance standards.

Motivating Problem: Laser Welding

Many manufacturing processes involve images used to evaluate the conformance of parts to
standards [6,27,28]. Figure 1 shows digital images from 20 laser aluminum alloy parts, which were
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sectioned and photographed. The first image (Source 1) can be represented as a vector of pixel
numbers with added counts for the darker pictures. This is given in Table 1(a). This “bag of words”
representation is common to topic models but has drawbacks including the document lengths being
related to the number of distinct levels of grayscale [13]. Table 1(b) includes the inputs from our
methods which are described in Section 4. In this example, the number of images is small enough
such that supervision of all images manually is not expensive. In addition, generating the image data
of cut sections of the welds is expensive because the process is destructive, i.e., the sectioned parts
cannot be sold. Generally, manufacturing situations that involve nondestructive evaluation can easily
generate thousands of images or more. In these situations, human supervision of even a substantial
fraction of these images is prohibitively expensive. Our problem statement is to create topic definitions
and an automatic system that can cluster items (weld images) into groups that conform to pre-known
categories while spanning the set of actual items. We seek to do this with a reasonable request of
information from the welding engineers involved.
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Table 1. (a) Data for the first low-level image; (b) 25 high-level data points with zaps with one million
(M) effective trials and boosts.

(a)

Source 1

1 1 1 1 1 1 1 1 3 3
3 3 3 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 8 8 8 8 8
8 8 10 11 13 13 13 13 13 13

13 13 13 13 13 13 13 14 15 16
16 16 16 16 16 16 16 17 17 17
17 17 17 17 17 17 17 17 18 18
18 18 18 18 18 20 21 21 21 21
21 21 21 21 23 23 23 23 23 23

(b)

Topic Word (c) Trials (N) x

1 13 1M 0
1 3 1M 0
1 8 1M 0
1 18 1M 0
1 23 1M 0
2 1 1M 0
2 6 1M 0
2 16 1M 0
2 21 1M 0
2 7 1M 0
2 17 1M 0
3 10 2 2
3 15 2 2
3 20 2 2
3 1 1M 0
3 6 1M 0
3 7 1M 0
3 16 1M 0
3 17 1M 0
3 21 1M 0
3 13 1M 0
3 3 1M 0
3 8 1M 0
3 18 1M 0
3 23 1M 0

In addition, in Figure 1, the images may seem blurry. This follows because they are 20 × 10 = 200
pixels because it was judged that such simple images are sufficient for establishing conformance and
are easier to store and process than higher resolution images. We will discuss the related issues of
resolution and gray scale bit selection after the methods have been introduced. In the next section, we
review the methods associated with Latent Dirichlet Allocation (LDA) [13].

LDA is perhaps the most widely cited method relevant to unsupervised image processing.
The cluster or “topic” definitions identified by LDA can themselves be represented as images. They
are defined formally by the posterior means for the pixel or “word” probabilities associated with each
topic. Figure 2 shows the posterior mean topic definitions from applying 3000 iterations of collapsed
Gibbs sampling using our own C++ implementation. The topic definitions are probabilities that each
pixel would be selected in a random draw or word. The fact that they can be interpreted themselves as
images is a positive properties of topic models such as LDA.
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Figure 2. Latent Dirichlet Allocation (LDA) results for a 5-topic model. These are images which define
the clusters or topics. Each topic definition is a list of probabilities or densities for each pixel.

At present, there are many methods to determine the number of topics in the fitted model [29–33].
Appendix B describes the selection of five topics for this problem. Figure 3 illustrates the most
relevant international American National Standard Institute/American Welding Society (ANSI/AWS)
conformance issues for the relevant type of aluminum alloy pipe welds [30]. These were hand drawn
but they are quite standard and illustrate the issues an arc welding quality inspector might look for in
examining images from a sectioned part.
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Figure 3. Laser pipe welding conformance issues relevant to American National Standard
Institute/American Welding Society (ANSI/AWS) standards. These are cluster definitions one might
want so that topics align with human used words and concepts. These images could appear in a
welding training manual describing defect types.

If it were possible to have the topic definitions correspond closely with these known conformance
issues, then the resulting model could not only assign the probability that welds are conforming but
also provide the probabilities of specific issues applying. In addition, the working vocabulary of
welding engineers including “undercut”, “penetration” and “stickout” could be engaged to enhance
interpretability [34]. The primary purpose of this article is to propose methods that provide recourse
for users to shape the topics directly without tagging individual images.

Section 2 describes the related works. In Section 3, we describe the notation and review the Latent
Dirichlet Allocation methods whose generalization forms the basis of ERT models, which are then
proposed for image analysis. The ERT model application involves a step in which “handles” are
applied using thought experiments to generate high-level data in Section 4.

Then we describe the “collapsed” Gibbs sampling formulation, which permits the exploration of
databases involving thousands of images or documents. The proposed formulation is exact in certain
cases that we describe and approximate in others, with details provided in Appendix A. In Section 5,
two numerical examples illustrate the benefits for cases in which the ground truth is known. In
Section 6, we illustrate the potential value of the method in the context of a real-world, laser welding
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image application and conclude with a brief discussion of the balance between high-level and ordinary
data in modeling in Section 7.

2. Related Works

Latent Dirichlet Allocation (LDA) was proposed by [13]. It is the most cited method for clustering
unsupervised images or text documents perhaps because of its relative simplicity and because the
resulting cluster or topic definitions are often interpretable [29]. The LDA method is simply to fit a
complicated seeming distribution to data using a distribution fitting method. This clustering method
has a wide variety of applications including grouping the activities of daily life [31].

In the original LDA article, Blei et al. focused on an approximate maximum likelihood estimation
method. They also introduced a method to determine the number of clusters or topics based on the
so-called “perplexity” metric. This metric gives an approximate indication of how well the distribution
predicts a held-out test sample. Other methods for determining the number of topics have been
subsequently introduced. A general discussion suggest that perplexity is still relevant [32] for cases
without any tagged data. One automatic alternative to perplexity-based plotting is argued to be
faster in analyst time but approximately equivalently accurate [33]. Further alternative entropy-based
measures to perplexity are proposed for cases in which perplexity does not achieve a minimum
or the elbow curves are not clear [34]. Note that in our primary example, we do not have tagged
data and our perplexity does achieve a minimum value. Therefore, we apply perplexity plot-based
model determination.

3. Notation

In our notation, the ordinary or low-level data are the pixels indices in each image or document.
Specifically, wd,n represents a so-called word in an image or document for d = 1, . . . , D and
for n = 1, . . . , Nd. Therefore, “D” is the number of images or documents and “Nd” is the number of
words in the dth document. We use the term “documents” to describe the low-level data instead
of images because the images are converted to un-ordered listings of pixel indices before there are
analyzed. This means that we convert 2D images into 1D vectors of pixel indices. We use 8-bit gray
scale which runs from 0 to 255. The higher the gray scale the more repeated pixel indices which are the
words in the documents. Table 1(a) provides an example of how the images are related to words in the
documents. This example applies to the relatively simple face image example in Section 5, which only
has 25 pixels in each image. The laser welding source images in Figure 1 all have over 15,000 words,
i.e., Nd > 15,000 for d = 1, . . . , 20.

A random variable is the multinomial or cluster or topic assignment, zd,n, for wd,n. The
T-dimensional random vector θd represents the probabilities a randomly selected pixel in document
d is assigned to each of the T topics or clusters. The parameter “WC” represents the number or pixels
or words in the dictionary. For example, in our laser welding study there are D = 20 images each with
200 pixels. Therefore, WC = 200. The WC-dimensional random vector φt represents the probability that
randomly selected words are assigned to each pixel in the topic indexed by t = 1, . . . , T. The posterior
mean of φt for each pixel is generally used to define the topics as has been shown in Figure 2. The prior
parameters α and β are usually scalars in that all documents and all pixels are initially treated equally.
Generally, low values or “diffuse priors” are applied such that only a small amount of shrinkage is
applied, and adjustments are made on a case-by-case basis [35].

The key purpose of this article is to study the effects of our proposed high-level data on image
analysis applications. The high-level data derives from imagined counts xt,c from binomial thought
experiments with possible values as high as Nt,c. The elicitation question is, “Out of Nt,c random draws
relating to topic t, how many times would pixel c occur?” If xt,c = 0 and ∆t,c = Nt,c − xt,c � 0, the
user or expert is zapping the pixel in that image. This is equivalent to erasing that pixel in the topic.
If ∆t,c = 0 and Nt,c > 0, then the user or expert is boosting or affirming that pixel in that topic.
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Latent Dirichlet Allocation

With these parameter definitions, LDA is defined by the following joint posterior distribution
function proportional condition:

P(w, z,θ,φ
∣∣∣α, β) = P(θ|α)P(z|θ)P(φ

∣∣∣β)P(w∣∣∣z,φ)

∝

D∏
d=1

Dir(θd|α) ×
D∏

d=1

Nd∏
n=1

Mult
(
zd,n

∣∣∣θd
)
×

T∏
t=1

Dir(φt
∣∣∣β)

×

D∏
d=1

Nd∏
n=1

Mult
(
wd,n

∣∣∣φzd,n

) (1)

where

Dir(θ|α) =
1

B(α)

|α|∏
t=1

θαt−1 (2)

and

Mult(x|θ, n) =
n!∏K

k=1 xk!

K∏
k=1

θxk
k → Mult(x|θ, 1) =

K∏
k=1

θxk
k (3)

The graphical model in Figure 4 summarizes the conditional relationships between the variables
in the LDA model. The rectangles indicate the number of elements in each random vector or
matrix. For example, the random matrices z and w have Nd elements for each of the D images as
mentioned previously.
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Griffiths and Steyvers [35] invented the so-called collapsed Gibbs updating function which permits
Gibbs sampling for estimation of the proportionality constant in Equation (1) via only sampling the
zd,n random variables. The other random variables (θ and φ) are effectively “integrated out” and
their posterior means are estimated after thousands of iterations as functions of the sampled zd,n
values. This approach is many times faster than ordinary Gibbs sampling and can avoid the need for
abandoning the Bayesian model formulation.
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To apply collapsed Gibbs sampling for LDA, we define the indexing matrix Ct,d,c, which is the
number of times word c is assigned to topic t in document d, where t is topic index, d is the document
index and c is the word index, as the following:

Ct,d,c =

Nd∑
j=1

I
(
zd, j = t & wd, j = c

)
(4)

where I() is an indicator function: 1 if the condition is true and 0 if false. Then, the topic-document
count matrix is:

Ct,∗,c =
D∑

d=1

Ct,d,c (5)

and the topic-word count matrix is:

Ct,d,∗ =
WC∑
c=1

Ct,d,c (6)

We further define qt,c = βc + Ct,∗,c and q−(t,c)t,c = βc + C−(t,c)t, ∗,c . The collapsed Gibbs multinomial
probabilities for sampling the topic za,b for word b in document a are:

P
(
za,b

∣∣∣z−(a,b), w, α, β
)
∝ P

(
za,b

∣∣∣z−(a,b), w, α, β
)

∝

(
C−(a,b)

za,b, a,∗ + αza,b

)
×

q−(a,b)
za,b ,wa,b∑WC

j=1 q−(a,b)
za,b , j

for za,b = 1, . . . , T.
(7)

The posterior mean for the topic definition probabilities,φt,c, are:

E(φt,c
∣∣∣t, N, x, w, β) =

qt,c∑WC
j=1 qt, j

for t = 1, . . . , T and c = 1, . . . , WC. (8)

The collapsed Gibbs estimation process begins with a uniform random sampling of the za,b
for every document, a, and word, b, and then continues with repeated applications of multinomial
sampling based on Equation (7), again for all a and b pairs. After a sufficient number of complete
replications, the za,b assignments approximately stabilize and the posterior mean probabilities are
estimated using Equation (8). Replication sufficiency can be established by monitoring the approximate
stability of the estimated parameters, e.g., in Equation (8). The iterations before the establishment of
stability may be called the “burn-in” period. After convergence, the probabilities can then be converted
into images by linear scaling based on the high and low values for all pixels so that all resulting values
range between 0 and 255 and then rounding down to obtain the grayscale images, e.g., see Figure 2.

Topic modeling methods including those based on Gibbs sampling have been criticized for being
unstable [36], i.e., they produce different groupings on subsequent runs even for the same data. Some
measure stability and directly try to minimize cross-run differences based on established stability
measures [37]. Others propose innovative stability or similarity measurements [38]. Still others
propose both innovate stability measures and methods to maximize stability [39]. An objective of
the methods described in the next section is to make the final results more repeatable and accurate
by focusing directly on accuracy, i.e., increased stability is a by-product. The numerical study in
Section 5 seeks to demonstrate that the proposed methods are both more stable and more accurate
than previous methods.

4. Methods

Widely acknowledged principles for modeling and automation include that the models should
be both “observable” so that the users can see how they operate and “directable” so that users can
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make adjustments on a case-by-case basis [40]. We argue that topic models are popular partly because
they are simpler and, therefore, more observable than alternative models, which might include expert
systems having thousands of ad hoc, case-specific rules. Yet, the only “directability” in topics models
comes through the prior parameters α and β. Specifically, adjustments to α and β only control the
degree of posterior uniformity in the document-topic probabilities and the degree of uniformity of the
topic-word probabilities, respectively. Therefore, α and β are merely Bayesian shrinkage parameters.

We propose for image analysis the subject matter expert refined topic (ERT) model in Figure 5 to
make the LDA topic model more directable. The left-hand-side is identical to LDA in Figure 4, which
has multinomial response data, w. The right-hand-side is new and begins with the arrow from φ to x.
This portion introduces binomially distributed response data, xt,c for t = 1, . . . , T and c = 1, . . . , WC.
The xt,c represent the number of times for a given topic, t, word c is selected in Nt,c trials. Therefore,
Nt,c is a sample size for thought experts.
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Figure 5. Expert Refined Topic (ERT) model with a handle permitting expert or user editing of the
cluster or topic definitions. This figure is equivalent to the distribution in Equation (9).

Like LDA, ERT models are merely distributions to be fit to data. The usual data points are
assumed to be random (multinomial) responses (ws) which are part of the LDA “wing” (left-hand-side
of Figure 5). The inputs from the experts (or just users) are random counts (xs) from imaged “thought”
experiments on the right-hand-side (right wing) of Figure 5.

In our examples, we use Nt,c = 1M for cases when the expert or user is confident that they want to
remove a word (“zap”). Smaller sizes, e.g., Nt,c = 1000, might subjectively indicate less confidence or
weight in the expert data. In our preliminary robustness studies, sample sizes below 1M often had
surprisingly little effect for zapping. Note also that the choice of Nt,c in the model is arbitrary and
many combinations of topics t and words c can have Nt,c = 0.

We refer to the right-hand-side portions in Figure 4 (the rectangles including N and x) as handles
because they permit users to interact with the model in a novel way in analogy to using a carrying
appendage on a pot. These experiments are “designed” because the analyst can plan and direct the
data collection. These binomial thought experiments have relatively high leverage on specific latent
variables, i.e., φ. We propose that users can apply this model in two or more stages. After initially
applying ordinary LDA, the user can study the results and then gather data from experiments involving
potentially subject matter experts (SMEs) leading to Expert Refined Topic (ERT) models or Subject
Matter Expert Refined Topic (SMERT) models. Note that a similar handle could be added to any other
topic model with a similarly defined topic definition matrix, φ.
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The so-called “latency experiments” [4] could be literal as having the expert create prototype
images for each topic and then extracting the binomial counts from these images. Alternatively, the
experiments could be simple thought experiments, i.e., out of several trials, how many draws would
you expect to result in a certain pixel image being derived? One difference than makes ERT models
different for images as compared with text [4] is that zapping is essentially an “eraser” for the topic
definitions. This could even be accomplished using eraser icons on touch screens.

As an example, consider that an expert might be evaluating topic 1 in Figure 2. The expert might
conclude that topic t = 1 should be transformed to resemble topic 2 (undercut) in Figure 3. The expert
might focus on pixel c = 22, which is in the middle top. The expert concludes that in N1,22 = 1 million
samples from the topic (trials), the topic index should be found x1,22 = 0 times, i.e., the pixel should be
black because it is in the middle of the cavity. We have found in our numerical work that the boosting
and zapping tables need to address a large fraction of the words in each topic to be effective, i.e.,
little missing data. Otherwise, the estimation process can shift the topic numbers to avoid the effects
of supervision.

The Collapsed Gibbs Sampler

The joint posterior distribution that defines the ERT model has proportionality given by:

P(z, w, x,θ,φ
∣∣∣N,α, β)

∝

D∏
d=1

Dir(θd|α) ×
D∏

d=1

Nd∏
n=1

Mult
(
zd,n

∣∣∣θd
)
×

T∏
t=1

Dir(φt
∣∣∣β)

×

D∏
d=1

Nd∏
n=1

Mult
(
wd,n

∣∣∣φzd,n

)
×

T∏
t=1

WC∏
c=1

Bin(xt,c
∣∣∣Nt,c,φt,c)

(9)

where z, w, x,θ,φ and N are vectors defining assignments for all words in all documents. The binomial
distribution function is:

Bin(xt,c
∣∣∣Nt,c,φt,c) =

(
Nt,c

xt,c

)
φ

xt,c
t,c (1−φt,c)

Nt,c−xt,c (10)

Here, we generalize our definitions such that qt,c = βc + Ct,∗,c + xt,c and we also define ∆t,c =

Nt,c − xt,c. Further, we define the set S to include combinations of t and c such that ∆t,c > 0 in the
high-level data (i.e., the zaps). Appendix A builds on previous research [4,41,42]. Appendix A describes
the derivation of the following collapsed Gibbs updating function for the combinations with za,b and
wa,b ∈ S:

P
(
za,b

∣∣∣z−(a,b), w, α, β
)
∝ P

(
wa,b

∣∣∣z−(a,b), w−(a,b), β
)

∝

(
C−(a,b)

za,b, a,∗ + αza,b

)
×

q−(a,b)
za,b ,wa,b

∆za,b ,wa,b+
∑WC

j=1

(
q−(a,b)

za,b , j

) (11)

For, za,b and wa,b < S the updating function is:

P
(
za,b

∣∣∣z−(a,b), w, α, β
)
∝ P

(
wa,b

∣∣∣z−(a,b), w−(a,b), β
)

∝

(
C−(a,b)

za,b, a,∗ + αza,b

)
×

q−(a,b)
za,b ,wa,b∑WC

i=1

(
q−(a,b)

za,b ,i

)
−
∑

j∈S

(
q−(a,b)

za,b , j

)

×

1−
∑

k∈S

 q−(a,b)
za,b ,k

∆za,b ,k+
∑WC

i=1

(
q−(a,b)

za,b ,i

)



(12)
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The posterior mean for the combinations with t and c ∈ S is:

E(φt,c
∣∣∣t, N, x, w, β) =

qt,c

∆t,c +
∑WC

j=1 qt, j
(13)

For t and c < S we have:

E(φt,c
∣∣∣t, N, x, w, β) =

qt,c∑WC
j=1 qt, j −

∑
j∈S qt, j

1−
∑
k∈S

 qt,k

∆t,k +
∑WC

j=1

(
qt, j

) 
 (14)

Note that if Nt,c = 0 for all t = 1, . . . , T and c = 1, . . . , WC, then Equation (12) reduces to Equation (7)
and Equation (14) reduces to Equation (8). As is clear from Figures 4 and 5, the ERT model is a
generalization of the LDA model. In addition, as clarified in Appendix A, Equations (11)–(14) are
approximate for cases in which the set S contains more than a single pixel in each topic. Yet, the
numerical investigations that follow and the computational experiment in Appendix C indicate that
the quality of the approximation is often acceptable.

Note that the pseudocode for ERT sampling is identical to LDA sampling pseudocode with
Equation (12) replacing Equation (7). Therefore, the scaling of computational costs with the number of
pixel gray scale values follows because the document lengths grow proportionally (see Table 1(a)).
Boosting minimally affects the computation since it does not relate to the set S. Zaps, however, require
the calculation of two additional sums, which directly inflate the core costs linearly in the number of
zapped words.

In our computational studies, we have found that each iteration is slower because of the associated
sums in Equation (7). Yet, the burn-in period required is less, e.g., 300 iterations instead of 500.
Intuitively, burn-in is faster because the high-level data anchors the topic definitions.

5. Results: Examples

In this section, three examples are described for which the first two have the true model or “ground
truth” known. The first is a “simple face” example and the second is the well-studied vertical and
horizontal bars example [35]. The third and fourth are the widely studied Fashion Modified National
Institute of Standards and Technology (MNIST) and Tungsten inert gas welding examples. Note that
we did no hyperparameter tuning our examples and simply used αz = α = 0.5 and βc = β = 0.1 for
simplicity. An additional hand-written numbers example is provided in Appendix D.

5.1. Simple Face Example

The first five out of 100 total source images each with 100 words for the simple face example are
shown in Figure 6. Each word in each document was generated through a random selection among
the 3 topics based on the overall topic probabilities: 0.60 for topic 1, 0.35 for topic 2 and 0.05 for topic 3,
represented in Figure 7a. This makes the images as 5 × 5 pixels resembling parts of the human face
(eyes, nose and mouth).
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Figure 7. Information generated by the analyses including the: (a) ground truth used to generate
low-level data; (b) LDA model; (c) ERT model.

In the generation process, the pixel index was selected randomly based on the topic probabilities.
The document corresponding to the first image is given in Table 1(a). The ordering of the pixel indices
within the document is unimportant because of the well-known bag of words assumption common
to topic models. Therefore, without loss of generality, we sorted the indices. We then applied 3000
iterations of LDA updating function in Equation (7) with each iteration assigning topics for all the
100 × 100 = 10,000 words. Then, we used the posterior mean formula in Equation (8) to create the
initial topic definitions in Figure 7b. Figure 7c is a more accurate representation of the Figure 7a than
Figure 7b. This demonstrates the usefulness of the ERT approach intuitively.

In a second stage of the analysis, we prepare the so-called high-level data in Table 1(b) and
apply the ERT analysis method to produce the topic definitions in Figure 7c. The high-level data was
developed in response to the lack of interpretability of the topics in Figure 7b. As mentioned previously,
the high-level data could derive from literal experiments on experts. Here, the subject matter expert
(SME) identifies three topics for words in the documents: eyes, nose and mouth. Once the first topic is
identified as eyes, the SME uses binomial thought experiments to effectively “erase” all the pixels in
topic 1 not relating to eyes. Similarly, for topic 2, all pixels are erased not pertaining to nose. The mouth
topic is rare so the SME uses expertise to “draw” the mouth using thought experiments each with two
trials and two successes.

Clearly, the ERT model posterior means φ values in Figure 7c resemble much more closely the
ground truth in Figure 7a than the LDA posterior mean in Figure 7b. One way to quantify topic model
accuracy is to use the symmetrized Kullback–Leibler (KL) divergences or “KL distances” from all
combinations of estimated topic posterior means to the true topic probabilities [37]. These distances are,

formally,
∑
x

P(x) log
[

P(x)
Q(x)

]
+ Q(x) log

[
Q(x)
P(x)

]
, where P(x) and Q(x) are the two distributions (i.e., the

case topic models). Being close to the ground truth summarizes both the stability and accuracy of the
fit model.
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Table 2(a) shows the KL distances for the LDA posterior mean φ and Table 2(b) shows the distances
for the ERT model posterior mean φ. The closeness is measured by identifying the combination of
true and estimated topic pairing that minimize the sum of distances and then comparing the resulting
distances. The gain from adding the 25 high-level data points in Table 1(b) is apparent. For example,
the maximum distance for the LDA model is 16.5 units while the maximum distance for the ERT model
is 1.5 units.

Table 2. Kullback–Leibler (KL) distances from: (a) sampling (S) to LDA topics; (b) sampling to
ERT topics.

(a)

True LDA1 LDA2 LDA3 M. Distance

True1 5.8401 6.3563 6.0461 1 5.8401

True2 10.4052 9.9058 10.0556 2 9.9058

True3 16.0514 16.0815 16.5708 3 16.5708

(b)

True ERT1 ERT2 ERT3 M Distance

True1 0.1480 25.6169 25.6613 1 0.1480

True2 25.9283 1.4619 26.3251 2 1.4619

True3 19.9218 15.5279 0.3864 3 0.3864

In our previous research relating to text analysis [4], we describe the fuzzy c means clustering
methods and pre-processing using principle components analysis (PCA) followed by fuzzy c means
clustering. We also defined the minimum average root mean squared (MARMS) error. This is the
difference between the estimated topic definitions probabilities and the ground truth values from the
simulation root mean squared. Here, we include part of the results of the computational experiment
omitted from 4 for space reasons. Figure 8 shows the accuracies of the various alternatives including
two ERT variations. The first ERT variation has three high level data points per topic. The second has
five per topic.
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Note that there is replication error from the simulation such that only a portion of the factor effects
was found to be significant. For example, the different between the ERT variations is not significant but
the improvement over the alternatives is significant. The comparison shows that ERT offers reduced
errors regardless of document how diverse or different the simulated documents are (document
diversity) and how much overlap the topics have in using the same words or pixels (topic overlap).

5.2. Bar Example

Figure 9a shows the ground truth model for a 10-topic example involving vertical and horizontal
bars from [35]. In the original example, the authors sampled 1000 documents each of length 100 words
and the derived LDA model based on Equations (7) and (8) very closely resembled the true model.
Our purpose is to evaluate a more challenging case with only D = 200 document with Nd = 100-pixel
indices (words). Each of the 20,000 low-level words is derived from first sampling the topic with the
topic probabilities given in Figure 9a and then sampling the words based on the probabilities indicated
in the images. The derived LDA posterior mean values from 3000 collapsed Gibbs sampling iterations
are pictured in Figure 9b. Without loss of generality, we order the estimated topics by their posterior
mean topic proportions, shown in parentheses in Figure 9b.Informatics 2020, 7, 21 14 of 27 
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Figure 9. (a) Ground truth used to generate low-level data; (b) LDA model; (c) ERT model.

In general, the estimated posterior means in Figure 9b are identifiable as either vertical or
horizontal bars. Therefore, the function of the second stage editing using the high-level data in Table 3
is to clean up or erase the blemishes to the topic definitions. By saying that in one out of 1M binomial
thought experiments, zero would have a specific word on a topic, that word is erased or zapped from
the definition. Similarly, other words could be boosted but Table 3 only contains zaps. Figure 9c shows
the posterior means derived from 3000 iterations of collapsed Gibbs ERT model sampling using the
approximate updating and mean estimation formulas in Equations (11)–(14).
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Table 3. The 200 high-level data points for the bar numerical example. This shows many zaps in the
topic definitions.

# t c N x # t c N x # t c N x # t c N x

1 1 6 1M 0 51 3 14 1M 0 101 6 1 1M 0 151 8 11 1M 0
2 1 7 1M 0 52 3 15 1M 0 102 6 2 1M 0 152 8 12 1M 0
3 1 8 1M 0 53 3 17 1M 0 103 6 3 1M 0 153 8 13 1M 0
4 1 9 1M 0 54 3 18 1M 0 104 6 4 1M 0 154 8 14 1M 0
5 1 10 1M 0 55 3 19 1M 0 105 6 5 1M 0 155 8 15 1M 0
6 1 11 1M 0 56 3 20 1M 0 106 6 6 1M 0 156 8 21 1M 0
7 1 12 1M 0 57 3 22 1M 0 107 6 7 1M 0 157 8 22 1M 0
8 1 13 1M 0 58 3 23 1M 0 108 6 8 1M 0 158 8 23 1M 0
9 1 14 1M 0 59 3 24 1M 0 109 6 9 1M 0 159 8 24 1M 0

10 1 15 1M 0 60 3 25 1M 0 110 6 10 1M 0 160 8 25 1M 0
11 1 16 1M 0 61 4 1 1M 0 111 6 16 1M 0 161 9 1 1M 0
12 1 17 1M 0 62 4 3 1M 0 112 6 17 1M 0 162 9 2 1M 0
13 1 18 1M 0 63 4 4 1M 0 113 6 18 1M 0 163 9 3 1M 0
14 1 19 1M 0 64 4 5 1M 0 114 6 19 1M 0 164 9 4 1M 0
15 1 20 1M 0 65 4 6 1M 0 115 6 20 1M 0 165 9 5 1M 0
16 1 21 1M 0 66 4 8 1M 0 116 6 21 1M 0 166 9 11 1M 0
17 1 22 1M 0 67 4 9 1M 0 117 6 22 1M 0 167 9 12 1M 0
18 1 23 1M 0 68 4 10 1M 0 118 6 23 1M 0 168 9 13 1M 0
19 1 24 1M 0 69 4 11 1M 0 119 6 24 1M 0 169 9 14 1M 0
20 1 25 1M 0 70 4 13 1M 0 120 6 25 1M 0 170 9 15 1M 0
21 2 1 1M 0 71 4 14 1M 0 121 7 1 1M 0 171 9 16 1M 0
22 2 2 1M 0 72 4 15 1M 0 122 7 2 1M 0 172 9 17 1M 0
23 2 4 1M 0 73 4 16 1M 0 123 7 3 1M 0 173 9 18 1M 0
24 2 5 1M 0 74 4 18 1M 0 124 7 4 1M 0 174 9 19 1M 0
25 2 6 1M 0 75 4 19 1M 0 125 7 6 1M 0 175 9 20 1M 0
26 2 7 1M 0 76 4 20 1M 0 126 7 7 1M 0 176 9 21 1M 0
27 2 9 1M 0 77 4 21 1M 0 127 7 8 1M 0 177 9 22 1M 0
28 2 10 1M 0 78 4 23 1M 0 128 7 9 1M 0 178 9 23 1M 0
29 2 11 1M 0 79 4 24 1M 0 129 7 11 1M 0 179 9 24 1M 0
30 2 12 1M 0 80 4 25 1M 0 130 7 12 1M 0 180 9 25 1M 0
31 2 14 1M 0 81 5 1 1M 0 131 7 13 1M 0 181 10 1 1M 0
32 2 15 1M 0 82 5 2 1M 0 132 7 14 1M 0 182 10 2 1M 0
33 2 16 1M 0 83 5 3 1M 0 133 7 16 1M 0 183 10 3 1M 0
34 2 17 1M 0 84 5 5 1M 0 134 7 17 1M 0 184 10 4 1M 0
35 2 19 1M 0 85 5 6 1M 0 135 7 18 1M 0 185 10 5 1M 0
36 2 20 1M 0 86 5 7 1M 0 136 7 19 1M 0 186 10 6 1M 0
37 2 21 1M 0 87 5 8 1M 0 137 7 21 1M 0 187 10 7 1M 0
38 2 22 1M 0 88 5 10 1M 0 138 7 22 1M 0 188 10 8 1M 0
39 2 24 1M 0 89 5 11 1M 0 139 7 23 1M 0 189 10 9 1M 0
40 2 25 1M 0 90 5 12 1M 0 140 7 24 1M 0 190 10 10 1M 0
41 3 2 1M 0 91 5 13 1M 0 141 8 1 1M 0 191 10 11 1M 0
42 3 3 1M 0 92 5 15 1M 0 142 8 2 1M 0 192 10 12 1M 0
43 3 4 1M 0 93 5 16 1M 0 143 8 3 1M 0 193 10 13 1M 0
44 3 5 1M 0 94 5 17 1M 0 144 8 4 1M 0 194 10 14 1M 0
45 3 7 1M 0 95 5 18 1M 0 145 8 5 1M 0 195 10 15 1M 0
46 3 8 1M 0 96 5 20 1M 0 146 8 6 1M 0 196 10 16 1M 0
47 3 9 1M 0 97 5 21 1M 0 147 8 7 1M 0 197 10 17 1M 0
48 3 10 1M 0 98 5 22 1M 0 148 8 8 1M 0 198 10 18 1M 0
49 3 12 1M 0 99 5 23 1M 0 149 8 9 1M 0 199 10 19 1M 0
50 3 13 1M 0 100 5 25 1M 0 150 8 10 1M 0 200 10 20 1M 0

With 10 topics, there is greater ambiguity about how the estimated topics map onto the ground
truth topics. Table 4(a) shows the KL distances from the true topics to the estimated topics derived
using LDA. Table 4(b) shows the KL distances from the true topics to the estimated topics using ERT
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posterior mean probabilities. The largest distance is reduced from 6.0 units to 0.013 units through the
addition of the 25 high-level data points and the application of the ERT model.

Table 4. KL distances from: (a) sampling (S) to LDA topics; (b) sampling to ERT (SM) topics.

(a)

True LDA1 LDA2 LDA3 LDA4 LDA5 LDA6 LDA7 LDA8 LDA9 LDA10 M. SKLD

True1 11.735 17.543 17.072 18.732 16.917 11.487 1.625 15.089 17.305 14.733 7 1.625
True2 15.367 13.628 14.362 4.175 15.719 16.352 20.028 13.045 13.831 15.554 4 4.175
True3 19.184 13.224 14.740 11.620 10.874 16.358 16.846 13.438 20.525 0.826 10 0.826
True4 13.354 15.048 12.553 14.818 15.444 4.040 15.638 18.329 17.717 18.037 6 4.040
True5 15.957 14.095 11.527 13.543 15.472 17.619 13.433 18.227 2.181 18.782 9 2.181
True6 5.810 12.624 12.989 15.081 15.195 16.413 15.618 18.551 16.902 20.962 1 5.810
True7 14.073 14.527 5.976 16.036 13.825 12.995 20.513 16.851 17.520 14.544 3 5.976
True8 12.944 5.982 14.020 15.453 18.161 17.094 18.289 14.326 14.613 15.857 2 5.982
True9 15.137 12.078 14.484 16.773 12.799 18.294 15.991 3.767 19.836 18.757 8 3.767
True10 15.323 15.389 14.863 17.439 5.164 14.795 17.071 13.000 13.891 16.676 5 5.164

(b)

True SM1 SMS2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10 M. SKLD

True1 20.984 25.917 25.917 25.920 25.918 20.823 0.006 21.026 21.052 20.731 7 0.006
True2 20.198 25.917 25.917 0.009 25.918 20.775 25.919 20.776 20.219 20.947 4 0.009
True3 25.918 20.668 20.324 20.161 20.768 25.916 21.174 25.919 25.922 0.003 10 0.003
True4 25.918 20.571 20.924 20.577 20.845 0.001 20.817 25.919 25.922 25.917 6 0.001
True5 25.918 20.931 20.875 21.237 20.296 25.916 20.230 25.919 0.013 25.917 9 0.013
True6 0.005 20.422 20.595 20.989 20.604 25.916 20.817 25.919 25.922 25.917 1 0.005
True7 20.968 25.917 0.004 25.920 25.918 20.610 25.919 21.026 20.707 20.862 3 0.004
True8 20.710 0.004 25.917 25.920 25.918 20.548 25.919 20.124 20.354 20.354 2 0.004
True9 25.918 21.081 20.956 20.726 21.165 25.916 20.643 0.007 25.922 25.917 8 0.007
True10 20.818 25.917 25.917 25.920 0.006 20.909 25.919 20.730 21.368 20.777 5 0.006

5.3. Fashion Example

Next, we consider the “Fashion-MNIST” dataset with 10,000 28 × 28-pixel grayscale images [43].
The dataset is tagged with 10 categories: t-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker,
bag and ankle boot. In a preprocessing step, we reduce the number of grayscale levels by a factor
of 200 to keep our document lengths sufficiently small for our VBA implementation storage sizes.
The granularity seems visually acceptable for differentiating between categories (Figure 10a–c). Next,
we created the documents by repeating the pixel numbers proportionally to the reduced gray scale
values. For example, a value of 2 for pixel 37 results in “37, 37” being included in the document.

With all 10,000 images and 10 topics, LDA can approximately recover the categories as shown in
Figure 10a. This figure is based on 500 iterations. Note that the skinny dress is apparently missing
and there are two tea shirts. When analyzed using LDA and only the first 1000 images and again
500 iterations, the results are blurrier, and the dress is still missing as shown in Figure 10b. If the top 20
pixels for the LDA run are used to supervise the ERT model based on 1000 datapoints, the result from
300 iterations is shown in Figure 10c. This required approximately 11 h using an i7 1.8 GHz processor
with 16 GB of RAM. The result is arguably more accurate than LDA based on all 10,000 images because
the dress appears as topic 6 and there is only a single tea shirt.



Informatics 2020, 7, 21 17 of 27

Informatics 2020, 7, 21 17 of 27 

the top 20 pixels for the LDA run are used to supervise the ERT model based on 1000 datapoints, the 
result from 50 iterations is shown in Figure 10f. This required approximately 1 h using an i7 1.8 GHz 
processor with 16 GB of RAM. The result is arguably more like the ideal pictures in [45] accurate than 
either LDA application. 

(a) 

 

(b) 

(c) 

(d) 

 

(e) 

(f) 

Figure 10. Fashion data (a) LDA topics with 10,000 images, (b) LDA topics with 1000 
images, (c) ERT model with 1000 images and Tungsten Inert Gas (TIG) data (d) LDA topics 
with 10,000 images, (e) LDA topics with 1000 images, (f) ERT model with 1000 images. 

6. Results: Laser Welding Study 

In the previous section, we applied ERT modeling to two numerical examples in which the 
ground truth was known. Next, we focus on analyzing the 20 source images for the laser welding 
aluminum alloy study shown in Figure 1. None of the LDA derived posterior mean topics in Figure 
2 directly corresponded to any of the nonconformity issues in Figure 3 from standard textbooks [30]. 
As a result, even if we could perfectly classify the existing or new welds perfectly into the LDA 
derived topics, we would have difficulty documenting the failures and analyzing their causes. 

Looking at the source welds, we can clearly identify which welds have which nonconformities 
as pictured in Figure 3. Therefore, we have “expert” judgment that the classical nonconformity codes 
are relevant. We began our development of the 198 high-level data in Table 5, by identifying an 
approximate correspondence between the topics in Figure 2 and the ideals in Figure 3. We identified 
topic 1 as undercut, topic 2 as stickout, topic 3 as good welds, topic 4 as backside undercut and topic 
5 as stickout and undercut. Intuitively, we boosted parts of the images that look like the architypes 
in Figure 3 and zapped the other parts. 

With these identifications, we then determined which pixels needed erasing and which pixels 
needed boosting or addition. We did this manually but with software there is the possibility of 
selecting the pixels en-mass in a fully interactive fashion. Most of the topics had large sections of 
pixels that needed filling-in but a few pixels required erasure. For example, all the pixels in the lower 
middle section of topic 1 needed boosting so that the resulting topic definition in Figure 11 resembled 
undercut in Figure 3. 

Once we identified the high-level data set, our custom C++ software was able to perform 3000 
iterations of collapsed Gibbs sampling and derive the posterior mean probabilities shown in Figure 
11 in 12 min on our 2.5 GHz Core 2 Quad processor. 

Results from four alternative cluster definition methods are described in Figure 11. The fuzzy c 
method only identifies topics 1 and 2 accurately in terms of standard conventions in Figure 3. LDA 

Figure 10. Fashion data (a) LDA topics with 10,000 images, (b) LDA topics with 1000 images, (c) ERT
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5.4. Tungsten Inert Gas Welding Example

Next, we consider the “Tungsten Inert Gas (TIG) Welding” dataset with 10,000 20 × 20 truncated
pixel grayscale images [44]. The dataset is tagged with 6 categories: good weld, burn through,
contamination, lack of fusion, misalignment and lack of penetration. In a preprocessing step, we reduce
the number of grayscale levels by a factor of 50 to keep our document lengths sufficiently small for
our VBA implementation storage sizes. The granularity seems visually acceptable for differentiating
between categories (Figure 10d–f). Next, we created the documents by repeating the pixel numbers
proportionally to the reduced gray scale values.

With all 10,000 images and 10 topics, LDA can approximately recover the categories as shown
in Figure 10d. This figure is based on 500 iterations. Note that all the topics are difficult for us to
interpret with the naked eye (as is true for the images with a few exceptions). When analyzed using
LDA and only the first 1000 images and again 500 iterations, the results are blurrier (Figure 10e). If
the top 20 pixels for the LDA run are used to supervise the ERT model based on 1000 datapoints, the
result from 50 iterations is shown in Figure 10f. This required approximately 1 h using an i7 1.8 GHz
processor with 16 GB of RAM. The result is arguably more like the ideal pictures in [45] accurate than
either LDA application.

6. Results: Laser Welding Study

In the previous section, we applied ERT modeling to two numerical examples in which the ground
truth was known. Next, we focus on analyzing the 20 source images for the laser welding aluminum
alloy study shown in Figure 1. None of the LDA derived posterior mean topics in Figure 2 directly
corresponded to any of the nonconformity issues in Figure 3 from standard textbooks [30]. As a result,
even if we could perfectly classify the existing or new welds perfectly into the LDA derived topics, we
would have difficulty documenting the failures and analyzing their causes.

Looking at the source welds, we can clearly identify which welds have which nonconformities as
pictured in Figure 3. Therefore, we have “expert” judgment that the classical nonconformity codes
are relevant. We began our development of the 198 high-level data in Table 5, by identifying an
approximate correspondence between the topics in Figure 2 and the ideals in Figure 3. We identified
topic 1 as undercut, topic 2 as stickout, topic 3 as good welds, topic 4 as backside undercut and topic 5
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as stickout and undercut. Intuitively, we boosted parts of the images that look like the architypes in
Figure 3 and zapped the other parts.

Table 5. The 198 high-level data points for the laser welding example.

# t c N x # t c N x # t c N x # t c N x

1 1 58 20 20 51 2 106 20 20 101 3 148 20 20 151 4 111 20 20
2 1 59 20 20 52 2 107 20 20 102 3 149 20 20 152 4 131 20 20
3 1 66 10 10 53 2 108 20 20 103 3 154 20 20 153 4 185 20 20
4 1 67 10 10 54 2 109 20 20 104 3 156 20 20 154 4 169 20 20
5 1 68 10 10 55 2 110 20 20 105 3 165 20 20 155 4 171 20 20
6 1 69 10 10 56 2 126 20 20 106 3 166 20 20 156 4 177 20 20
7 1 70 10 10 57 2 127 20 20 107 3 167 20 20 157 4 178 20 20
8 1 71 10 10 58 2 128 20 20 108 3 168 20 20 158 4 186 20 20
9 1 72 10 10 59 2 129 20 20 109 3 170 20 20 159 4 187 20 20

10 1 73 20 20 60 2 130 20 20 110 3 174 20 20 160 4 188 20 20
11 1 74 20 20 61 2 131 20 20 111 3 175 20 20 161 5 64 20 20
12 1 75 20 20 62 2 59 20 20 112 3 176 20 20 162 5 65 20 20
13 1 76 20 20 63 2 77 20 20 113 3 190 20 20 163 5 66 20 20
14 1 77 20 20 64 2 78 20 20 114 3 192 20 20 164 5 69 20 20
15 1 78 20 20 65 2 79 20 20 115 4 44 1M 0 165 5 84 20 20
16 1 79 20 20 66 2 96 20 20 116 4 84 10 10 166 5 85 20 20
17 1 87 10 10 67 2 97 20 20 117 4 104 10 10 167 5 86 20 20
18 1 88 10 10 68 2 98 20 20 118 4 5 20 20 168 5 87 20 20
19 1 89 10 10 69 2 99 20 20 119 4 11 20 20 169 5 88 20 20
20 1 90 10 10 70 2 116 20 20 120 4 14 20 20 170 5 89 20 20
21 1 91 10 10 71 2 117 20 20 121 4 15 20 20 171 5 90 20 20
22 1 92 20 20 72 2 118 20 20 122 4 16 20 20 172 5 92 20 20
23 1 93 20 20 73 2 119 20 20 123 4 17 20 20 173 5 93 20 20
24 1 94 20 20 74 2 137 20 20 124 4 18 20 20 174 5 104 20 20
25 1 95 20 20 75 2 138 20 20 125 4 30 20 20 175 5 105 20 20
26 1 96 20 20 76 2 139 20 20 126 4 32 20 20 176 5 106 20 20
27 1 97 20 20 77 2 43 1M 0 127 4 33 20 20 177 5 107 20 20
28 1 98 20 20 78 2 81 1M 0 128 4 35 20 20 178 5 108 20 20
29 1 99 20 20 79 3 83 1M 0 129 4 36 20 20 179 5 109 20 20
30 1 199 30 30 80 3 103 1M 0 130 4 37 20 20 180 5 110 20 20
31 1 22 1M 0 81 3 6 20 20 131 4 38 20 20 181 5 111 20 20
32 1 162 1M 0 82 3 10 20 20 132 4 50 20 20 182 5 112 20 20
33 1 185 10 10 83 3 12 20 20 133 4 48 20 20 183 5 113 20 20
34 2 46 10 10 84 3 13 20 20 134 4 53 20 20 184 5 114 20 20
35 2 148 20 20 85 3 34 20 20 135 4 54 20 20 185 5 124 20 20
36 2 46 20 20 86 3 26 20 20 136 4 56 20 20 186 5 125 20 20
37 2 47 20 20 87 3 45 20 20 137 4 65 20 20 187 5 126 20 20
38 2 48 20 20 88 3 46 20 20 138 4 66 20 20 188 5 127 20 20
39 2 49 20 20 89 3 47 20 20 139 4 69 20 20 189 5 128 20 20
40 2 50 20 20 90 3 49 20 20 140 4 71 20 20 190 5 129 20 20
41 2 66 20 20 91 3 59 20 20 141 4 72 20 20 191 5 130 20 20
42 2 67 20 20 92 3 125 20 20 142 4 73 20 20 192 5 131 20 20
43 2 68 20 20 93 3 126 20 20 143 4 74 20 20 193 5 132 20 20
44 2 69 20 20 94 3 127 20 20 144 4 75 20 20 194 5 133 20 20
45 2 70 20 20 95 3 128 20 20 145 4 76 20 20 195 5 134 20 20
46 2 86 20 20 96 3 129 20 20 146 4 77 20 20 196 5 135 20 20
47 2 87 20 20 97 3 130 20 20 147 4 78 20 20 197 5 158 20 20
48 2 88 20 20 98 3 145 20 20 148 4 86 20 20 198 5 159 20 20
49 2 89 20 20 99 3 146 20 20 149 4 87 20 20
50 2 90 20 20 100 3 147 20 20 150 4 105 20 20

With these identifications, we then determined which pixels needed erasing and which pixels needed
boosting or addition. We did this manually but with software there is the possibility of selecting the pixels
en-mass in a fully interactive fashion. Most of the topics had large sections of pixels that needed filling-in
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but a few pixels required erasure. For example, all the pixels in the lower middle section of topic 1 needed
boosting so that the resulting topic definition in Figure 11 resembled undercut in Figure 3.
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Once we identified the high-level data set, our custom C++ software was able to perform 3000
iterations of collapsed Gibbs sampling and derive the posterior mean probabilities shown in Figure 11
in 12 min on our 2.5 GHz Core 2 Quad processor.

Results from four alternative cluster definition methods are described in Figure 11. The fuzzy c
method only identifies topics 1 and 2 accurately in terms of standard conventions in Figure 3. LDA is
only marginally better in Figure 11b. Principal Component Analysis (PCA) followed by fuzzy identifies
approximately three topics correctly.

For ERT, examination of the posterior mean probabilities for the document-topic probabilities, θd,
provides both an indication of the value of the derived ERT model and a level of validation. Table 6
shows the document-topic probabilities based on the topic definitions in Figure 11d. If we interpret
these probabilities as indications of the probability each topic is relevant, we find that the most probable
topics match in 20 out of 20 cases how a subject matter expert (SME) would classify the source welds.
For example, the first image (source 1) clearly corresponds to a weld with both undercut and stickout.
Clearly, engineers would find these probabilities significantly more relevant than probabilities for LDA
model topic in Figure 2.

Table 6. Topic assignment probabilities from the ERT for the 20 laser welding images.

1st Topic (Prob.) 2nd Topic (Prob.) 3rd Topic (Prob.) 4th Topic (Prob.) 5th Topic (Prob.)

source 1 5 (0.675) 2 (0.316) 1 (0.005) 3 (0.004) 4 (0.000)
source 2 5 (0.904) 4 (0.093) 1 (0.002) 2 (0.001) 3 (0.000)
source 3 3 (0.896) 5 (0.091) 4 (0.012) 2 (0.001) 1 (0.000)
source 4 3 (0.749) 5 (0.162) 4 (0.088) 1 (0.000) 2 (0.000)
source 5 3 (0.648) 2 (0.166) 5 (0.106) 4 (0.080) 1 (0.000)
source 6 3 (0.689) 5 (0.220) 4 (0.089) 1 (0.002) 2 (0.000)
source 7 5 (0.826) 2 (0.165) 4 (0.006) 1 (0.002) 3 (0.001)
source 8 5 (0.747) 2 (0.252) 1 (0.001) 3 (0.000) 4 (0.000)
source 9 3 (0.898) 2 (0.057) 5 (0.040) 4 (0.002) 1 (0.002)

source 10 3 (0.951) 4 (0.042) 5 (0.008) 1 (0.000) 2 (0.000)
source 11 3 (0.685) 5 (0.210) 4 (0.101) 1 (0.004) 2 (0.000)
source 12 3 (0.748) 2 (0.225) 4 (0.014) 1 (0.011) 5 (0.003)
source 13 4 (0.583) 2 (0.406) 3 (0.006) 5 (0.005) 1 (0.000)
source 14 2 (0.735) 4 (0.258) 1 (0.005) 3 (0.001) 5 (0.001)
source 15 2 (0.714) 4 (0.278) 1 (0.006) 5 (0.001) 3 (0.001)
source 16 3 (0.986) 4 (0.008) 5 (0.003) 1 (0.002) 2 (0.001)
source 17 4 (0.803) 2 (0.197) 3 (0.000) 1 (0.000) 5 (0.000)
source 18 1 (0.780) 5 (0.214) 3 (0.004) 2 (0.002) 4 (0.000)
source 19 1 (0.994) 4 (0.003) 3 (0.002) 5 (0.001) 2 (0.000)
source 20 1 (0.521) 4 (0.478) 3 (0.001) 2 (0.000) 5 (0.000)
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7. Discussion

The authors have significant experience applying topic models to real-world data sets. In our
applications, we have often found that the initially derived topic model definitions usually were more
interpretable than the LDA topics for the welding and simple face problems (Figures 2 and 7b) but
less comprehensible than the LDA topics for the bar example in Figure 8b. So far, we have never
encountered an example in which we did not wish that we could edit some or all of the topics to
enhance the model accuracy and/or subjective interpretability.

The intent of the proposed subject matter expert refined topic (ERT) models with their handles is to
facilitate user interaction with the models, i.e., the directability. We suggest that model handles function
in relation to topic models in an analogous manner erasers function in relation to pencils. Admittedly,
there is a need to balance between the degree of subjectivity possibly entering through the handle
and the relative objectivity of the ordinary low-level data. In our primary application, we included
supervision of only 198 out of 200 × 5 = 1000 possible pixels or 19.8%. With this limited addition, we
have derived highly interpretable topic definitions in the form of posterior mean φ. In addition, we
have achieved perfect assignment of the source welds to the interpretable topic definitions or clusters
(20/20).

There are important limitations of current codes. First, the number of grayscale levels must be
reduced (generally) to achieve manageable file sizes. This issue is not special to ERT and relates to the
bag of words image representation in which each grayscale level makes the documents proportionally
longer. Reducing granularity can make the images blurry, e.g., see Figure 9. In addition, in ERT the
user must boost almost every topic, or the estimation will adjust such that the zapping will apply
harmlessly to images with darkness already at the associated pixel locations. Yet, the effort to boost
each topic can be minimal. For example, we supplied only 20 pixels (out of 784 pixels) per topic to
supervise the Fashion MNIST images in Section 5.

8. Conclusions

In conclusion, in this article we propose a method to edit the cluster definitions in topic modeling
with applications in image analysis. The proposed method creates high-level data which is a potentially
important concept with a broad range of possible applications. We demonstrate in our numerical
example that the proposed ERT modeling method can derive more accurate and more stable topic
model fits than LDA. In addition, for our main laser welding application we show that a small amount
of high-level data is able to perturb the model so that the clusters align with intuitive and popular
definitions of defects or nonconformities. We suggest that the concepts of ERT and handles can be
explored in a wide range of supervised and unsupervised modeling situations. The resulting high-level
data may become a major output from knowledge workers in the future.

There are a number of opportunities for future work. First, more computationally efficient and
stable methods for fitting ERT models to images can be developed. The collapsed Gibbs sampling
method is only approximate for cases with more than a single zap and it can be time consuming. Second,
other types of high-level data besides boosts and zaps can be developed. Perhaps these might relate to
archetypal images. Third, the concept of handles can be extended to other types of distribution fits such
as regression and time series modeling. Fourth, more efficient methods for image processing besides
the bag of words methods can be explored and related to ERT-type modeling. The document lengths
can be prohibitively long if too many gray scale gradations are applied in the current representations.
New representations can be studied that are more concise. Fifth, documented editing using ERT
can be enhanced with tablet applications that permit quick boosting (using pen-type features) and
zapping (using eraser-type features). Fifth, exploration of the E-M algorithm for ERT procedures could
speed up estimation. Using standard notation [13], we have φd,t,c as the document-specific estimated
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topic definition probabilities, φd,t,c, and the document-specific indicator function for the words is wc
d,n.

We conjecture that the conditional multinomial may approximately satisfy:

φt,c ∝


0 i f Nt,c � 0; xt,c = 0 (zaps)

D∑
d=1

Nd∑
n=1

(
φd,t,c +

xt,c
Nd+Nt,c

)
wc

d,notherwise (boosts)
(15)

Further, accuracy issues associated with ERT models can be studied further including through
investigating alternatives quality measures (to KL distance) such as topic model semantic [46] and
topic [47] coherence measures.
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Appendix A Derivations

This appendix describes exact and approximate formulas for the posterior mean relating to the ERT
model formulation. We focus on the posterior mean because the collapsed Gibbs sampler probability
in equation is simply related to the posterior mean. It is the posterior mean probability with the current
sampling point (word in a document) removed. This holds both for the LDA and ERT model as shown
by generalizing the steps provided in detail in [38] to reproduce the results in [35].

We also focus on the case in which there is a single zapped word or pixel for which closed
form solutions can be developed. Again, we define qt,c = βc + Ct,∗,c + xt,c and ∆t,c = Nt,c − xt,c.
Equations (7)–(10) give the joint posterior density function. Here, we focus only on dependence on
the topic probabilities, φt,c for t = 1, . . . , T and c = 1, . . . , WC. We need to compute the normalizing
constant, V, for the joint probability distribution, having marginalized out all dependence except on
the φt,c for c = 1, . . . , WC. The constant is obtained by integrating over the unit simplex, S:

∫
S

WC∏
c=1

φ
qt,c−1
t,c (1−φt,ct)

∆t,cdφt,c = V (A1)

The posterior mean for φt,w is, therefore, exactly given by:

E(φt,w
∣∣∣t, N, x, w, β) =

1
V

∫
S
φt,w

WC∏
c=1

φ
qt,c−1
t,c (1−φt,ct)

∆t,cdφt,c (A2)

Unfortunately, there does not appear to be any closed form solution to this equation for the
general case. In addition, numerical integration of the above equation is too computationally expensive
to be relevant for Gibbs sampling. Yet, for the case in which there is only a single nonzero ∆t,c,
analytical formulas can be computed. Without loss of generality, we have ∆t,c = 0 for c , ct and ∆t,ct >

0. The marginal for c = ct is:

f (φt,c
∣∣∣t, N, x, w, β)

=
Γ(∆t,ct+

∑WC
c=1 qt,c)

Γ(qt,c)Γ(∆t,c+
∑WC

c=1 qt,c−qt,ct)

×φ
qt,ct−1
t,ct

(1−φt,ct)
∆t,c+

∑WC
c=1 qt,c−qt,ct−1

(A3)
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Multiplying by φt,ct and integrating over the support [0, 1], the posterior mean for φt,c is, after
rearranging and applying xΓ(x) = Γ(x + 1):

E(φt,ct

∣∣∣t, N, x, w, β) =
qt,ct

∆t,ct +
∑WC

j=1 qt, j
(A4)

Equation (A4) reproduces Equation (13) and both clearly generalize the LDA posterior mean
in Equation (6). The marginal for φt,c with c , ct for topics is more complicated and is most easily
expressed using so-called “regularized hypergeometric” functions. The marginal is:

f (φt,c
∣∣∣t, N, x, w, β)

=
Γ(

∑WC
c=1 qt,c−qt,ct)

Γ(qt,c)
×

Γ(∆t,ct+
∑WC

c=1 qt,c)
Γ(∆t,ct+

∑WC
c=1 qt,c−qt,ct)

×(1−φt,c)
Qt,c−1φ

qt,c−1
t,c 2

∼

F1(qt,ct ,−∆t,ct ; Q; 1−φt,c)

(A5)

where Qt,c =
WC∑
j=1

qt, j − qt,c and where the 2
∼

F1 is the regularized hypergeometric function. Next, we

multiply by φt,c, and represent the posterior mean as integral function of 2
∼

F1:

E(φt,c
∣∣∣t, N, x, w, β)

=
Γ(

∑WC
c=1 qt,c−qt,ct)

Γ(qt,c)
×

Γ(∆t,ct+
∑WC

c=1 qt,c)
Γ(∆t,ct+

∑WC
c=1 qt,c−qt,ct)

×

∫ 1
0 (1−φt,c)

Qt,c−1φ
qt,c
t,c 2

∼

F1(qt,ct ,−∆t,ct ; Q; 1−φt,c)dφt,c

(A6)

Next, we change variables using y = 1 − φt,c. Note that (1− y)qt,c as a generalized binomial
expansion series. The expansion uses the “Pochhammer” symbol, which is a subscript, to denote the
generalized binomial coefficient. This follows because qt,c is generally non-integer. For simplicity, we
quote the results assuming integral qt,c but the results easily generalize. The result is:

E(φt,c
∣∣∣t, N, x, w, β)

=
Γ(

∑WC
c=1 qt,c−qt,ct)

Γ(qt,c)
×

Γ(∆t,ct+
∑WC

c=1 qt,c)
Γ(∆t,ct+

∑WC
c=1 qt,c−qt,ct)

×

∫ 1
0

( qt,c∑
i=0

(−1)i ∏i−1
j=0(qt,c− j)

Γ(i+1) yi+Qt,c−1
)
× 2
∼

F1(qt,ct ,−∆t,ct ; Qt,c; y)dy

(A7)

Next, we use the general identity (from functions.wolfram.com):∫
yα−1

2
∼

F1(qt,c,−(Nt,ct − xt,ct); Qt,c; y)dy = yαΓ(α)3
∼

F2(qt,c,−∆t,ct ,α; Qt,c,α+ 1; y) (A8)

Substituting in the zero limit gives a zero value, so the definite integral becomes:

E(φt,c
∣∣∣t, N, x, w, β)

=
Γ(

∑WC
c=1 qt,c−qt,ct)

Γ(qt,c)
×

Γ(∆t,ct+
∑WC

c=1 qt,c)
Γ(∆t,ct+

∑WC
c=1 qt,c−qt,ct)

×

qt,c∑
i=0

(−1)i ∏i−1
j=0(qt,c− j)

Γ(i+1)

[
Γ(i + Qt,c) × 3

∼

F2(qt,c,−∆t,ct ,α; Qt,c, i + Qt,c + 1; 1)
] (A9)

where is 3
∼

F2 a generalized hypergeometric function. It can be checked numerically that this complicated
sum is equivalent to Equation (14).
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Appendix B Perplexity and the Number of Topics

This appendix describes a study to determine the appropriate number of topics in laser welding
study. There are many methods to evaluate options [35–37]. Here, we use the original perplexity
method [13]. For computational convenience and to standardize the images, we selected 5000 randomly
chosen pixels for each. Then, we select 20% of the images for the evaluation set (the last four).
Figure A1 shows the resulting perplexities for different numbers of topics on the left-hand-side. The
result is that five topics minimize the perplexity and conform to the standard mentioned previously.
The right-hand-side of Figure A1 shows the increasing computational times associated with LDA
estimation for increasing numbers of topics.

An explanation of the right-hand-side of Figure A1 relates to Gibbs sampling in Equation (7).
For low values of the number of topics, the computational overhead dominates, e.g., initializing the
memory and loading the data. Then, the time in dependent of the number of topics T. Then, starting at
T = 5 topics, the elapsed time grows roughly linear in T as the dimension of the multinomial increases
in the core topic sampling process.
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Appendix C Approximation Evaluation Study

This appendix describes a numerical experiment evaluating the quality of the approximation
in Equations (13) and (14) in relation to the exact posterior mean in Equation (17). We focus on a
single topic and a four-word dictionary. We consider the six parameters q1, q2, q3, q4, ∆1 and ∆2 and
the eight-run resolution III fractional factorial experiment shown in Table A1. The response is root
mean squared error (RMSE) for the 4-posterior means. The main effects plot is in Figure A2. The exact
and approximate posterior values were computed with perfect repeatability using Mathematica. The
findings include the following. All the errors are in the third or fourth decimal point and represent less
than 2% of the estimated probabilities. If the count for a dimension that is zapped is high (q1), the
approximation deteriorates somewhat. If ∆2 = 0, then the approximation is exact.
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Table A1. Eight cases with the exact posterior probability and the approximate values.

# q1 q2 q3 q4 ∆1 ∆2
Exact Approximate

RMSE
µ1 µ2 µ3 µ4 µ1 µ2 µ3 µ4

1 1 1 10 100 200 100 0.003 0.005 0.090 0.902 0.003 0.005 0.090 0.902 0.000024
2 10 1 10 10 100 100 0.077 0.008 0.458 0.458 0.076 0.008 0.458 0.458 0.001007
3 1 10 10 10 200 0 0.004 0.332 0.332 0.332 0.004 0.332 0.332 0.332 0.000000
4 10 10 10 100 100 0 0.071 0.310 0.310 0.310 0.071 0.310 0.310 0.310 0.000000
5 1 1 100 100 100 0 0.003 0.005 0.496 0.496 0.003 0.005 0.496 0.496 0.000000
6 10 1 100 10 200 0 0.031 0.009 0.873 0.087 0.031 0.009 0.873 0.087 0.000000
7 1 10 100 10 100 100 0.005 0.045 0.864 0.086 0.005 0.045 0.864 0.086 0.000225
8 10 10 100 100 200 100 0.024 0.032 0.472 0.472 0.024 0.031 0.472 0.472 0.000708
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Appendix D Handwritten Digits Example

Next, we consider the “Handwritten Digits” dataset with 10,000 30× 30 pixel grayscale images [44].
The dataset is tagged with 10 categories which are the numbers 0 through 9. In a preprocessing step, we
again reduce the number of grayscale levels by a factor of 200 to keep our document lengths sufficiently
small for our VBA implementation storage sizes. In addition, we created the documents by repeating
the pixel numbers proportionally to the reduced gray scale counts.

With all 10,000 images and 10 topics, LDA is not able to approximately recover the categories as
shown in Figure A3a. This figure is based on 500 iterations. Note that the several numbers are not
clearly apparent including 2, 4, 5, 8 and 9. This occurs presumably because the handwriting is variable
such that the pixels for each number are quite different across images.

When analyzed using LDA and only the first 1000 images and again 500 iterations, the results are
blurrier, and the same numbers are still missing as shown in Figure A3b. If the top 20 pixels for the
LDA run are used to supervise the ERT model based on 1000 datapoints, the result from 300 iterations
is shown in Figure A3c. Again, this required approximately 11 h using an i7 1.8 GHz processor with
16 GB of RAM. This result is equally accurate or desirable compared with LDA with all 10,000 images.

As a result of the poor quality for all the previous methods, we consider an additional approach
for identifying high-level data. The top 50 pixels from manually selected “anchoring” images are



Informatics 2020, 7, 21 25 of 27

applied. The selected are (in order 0–9): 95, 8, 82, 74, 64, 480, 430, 52, 386 and 364. The results are
greatly improved as shown in Figure A3d. Admittedly, topics 2 and the 3 are still not clear. Further
improvements might be achievable through pre-processing the images with suitable shifting and
scaling so that the same numbers could consistently use the same pixels.
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Figure A3. Numbers data (a) LDA topics with 10,000 images, (b) LDA topics with 1000 
images, (c) ERT model with 1000 images using LDA boosts, (d) ERT with 1000 images 
improved high-level data. 
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