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Abstract: If mid-air interaction is to be implemented in smart home environments, then the user 
would have to exercise in-air gestures to address and manipulate multiple devices. This paper 
investigates a user-defined gesture vocabulary for basic control of a smart home device ecosystem, 
consisting of 7 devices and a total of 55 referents (commands for device) that can be grouped to 14 
commands (that refer to more than one device). The elicitation study was conducted in a frame 
(general scenario) of use of all devices to support contextual relevance; also, the referents were 
presented with minimal affordances to minimize widget-specific proposals. In addition to 
computing agreement rates for all referents, we also computed the internal consistency of user 
proposals (single-user agreement for multiple commands). In all, 1047 gestures from 18 participants 
were recorded, analyzed, and paired with think-aloud data. The study reached to a mid-air gesture 
vocabulary for a smart-device ecosystem, which includes several gestures with very high, high and 
medium agreement rates. Furthermore, there was high consistency within most of the single-user 
gesture proposals, which reveals that each user developed and applied her/his own mental model 
about the whole set of interactions with the device ecosystem. Thus, we suggest that mid-air 
interaction support for smart homes should not only offer a built-in gesture set but also provide for 
functions of identification and definition of personalized gesture assignments to basic user 
commands. 

Keywords: frame-based; elicitation study; mid-air interaction; smart home; gesture proposal 
consistency; personalized gestures 

 

1. Introduction 

During the last decade, we have experienced an explosion in affordable motion tracking 
technologies, small enough to be integrated within home appliances or smart environments such as 
homes, industrial buildings, classrooms, labs, etc. These devices employ various technologies such 
as depth cameras, wearable assistive devices, and smartwatches to capture user’s motion and 
translate it to a mid-air command to a specific device. Thus, mid-air interaction is becoming possible 
in various scenarios of pervasive and ubiquitous computing, and it is rapidly evolving into a 
distinguishable style of human–computer interaction (HCI) characterized by touchless, gesture-
based interactions with remote displays or devices [1]. 

In mid-air interaction, there are neither universal gesture vocabularies nor established design 
patterns. The identification of appropriate gestures depends on the context of use and, thus, it is an 
important design issue. A user-centered approach to deal with gesture design is the gesture elicitation 
(or guessability) study, which is applied by designers to extract appropriate gestures that “meet 
certain design criteria such as discoverability, ease-of-performance, memorability, or reliability” [2]. 
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The need for mid-air control of home devices can be argued for many use cases including user 
convenience (i.e., immediate (fast) control of a device, over remote control, which requires another 
control device), as well as for people that have temporary injuries or permanent mobility 
impairments which affect their mobility inside the home. Mid-air interactions have been investigated 
in the smart home mainly to identify and craft gestures for single device interactions, like the TV [3–9] 
or various media (e.g., [6,10]). However, a smart home environment consists of several 
interconnected devices with variable sensing capabilities, which may be controlled and manipulated 
remotely. Thus, if mid-air interaction is to be implemented in smart home environments, then the 
user would have to exercise in-air gestures to address and manipulate multiple devices. A few studies 
have investigated mid-air interactions for a smart home device ecosystem; most of them employ 
gestures created by system designers [6,11–13] in contrast to a single study with user elicitation [14]. 

This paper presents an elicitation study of upper-body gestures for accessory-free, mid-air 
control of a smart home device ecosystem, consisting of 7 devices and a total of 55 referents 
(commands for device) that can be grouped to 14 commands (that refer to more than one device). We 
have investigated a potentially uniform gesture set for any device so that users would not have to 
remember different gestures for multiple devices in the home. The first result of this work is a user-
defined gesture vocabulary for basic control of a smart home device ecosystem, which includes 
several gestures with very high, high, and medium agreement rates. Another important finding is 
that most users developed and applied their own mental model about the whole set of interactions 
with the device ecosystem, which resulted in high consistency within their gesture proposals across 
commands that apply to multiple devices. Thus, we suggest that mid-air interaction support for smart 
homes should not only provide a built-in gesture set, but also functions of identification and 
definition of personalized gesture assignments to basic user commands. 

2. Related Work 

2.1. On the Elicitation Study Method 

A major issue in mid-air interaction design is the identification and crafting of gestures that are 
usable, comfortable, memorable, and discoverable. A user-centered approach to deal with gesture 
design is the gesture elicitation (or guessability) study, which aims at “maximizing and evaluating the 
guessability of symbolic user input” [15]. In brief, an elicitation study includes the following steps: (i) 
the researcher presents a referent (the effect of an action) to the participant; (ii) the participant 
proposes one or more gestures that better match the referent and possibly fills in a short post-task 
questionnaire; (iii) after all referents are presented, a wrap-up discussion or a questionnaire is filled 
in by the participant; (iv) the gesture set is derived from data analysis which mainly includes the 
calculation of agreement rates [16], among gesture proposals for each referent. 

User elicitation is a genuinely user-centered method of requirements and design, however, it is 
not without some inherent shortcomings that need to be carefully addressed (as with any empirical 
research method). A primary concern is legacy bias [2], which leads users to propose gestures known 
from prior interactions because they cannot understand the fundamental capabilities of novel 
technologies; however, these proposals are often contextually irrelevant. Legacy bias can be reduced 
with the strategies of production, partners, and priming. ‘Production’ means to require users to propose 
many gestures for each referent, and ‘Partners’ suggests recruiting users in groups in order to 
leverage their ideas. Production is often encouraged in elicitation studies, in contrast to employing 
partners, since this increases the number of required participants. ‘Priming’ requires from users “to 
think about the capabilities of a new form factor or sensing technology in order to produce ecologically valid 
gestures”. To increase the added value of priming, Cafaro et al. [17] propose the variation of ‘Framed 
Guessability’, which puts users within a ‘frame’, i.e., a scenario, to propose contextually relevant 
gestures (i.e., gestures and body movements that would make sense in the priming frame (scenario)). 
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2.2. Elicitation Studies for Control of Smart Home Devices 

Several elicitation studies of mid-air gestures for control of home devices have been conducted. In 
a recent review of 47 mid-air gesture elicitation studies [18], mid-air interaction with the smart home is 
investigated by 8.5% of papers examined while there are additional studies about control of digital 
content and devices that can be used in the home, like the TV (12.8%) and various media (14.9%). 

Notably, elicitation studies of mid-air gestures for the smart home typically investigate user-
defined gestures for interactions with one particular device. The most common device is the TV [3–9], 
which has evolved to an interactive multimedia device allowing web browsing, content 
manipulation, and media playback. There are many differences among these elicitation studies, 
including: differences among participants (sample sizes ranging from 18 to 81 users, apparent 
individual differences among participant groups, cultural differences); differences in the application 
of the gesture elicitation method; and different assumptions about sensor technology (e.g., some 
studies assume whole body tracking, others hand tracking only). Most importantly, a comparison of 
the results of the studies reveals that the proposed gestures are quite different, therefore a “universal 
gesture set” for mid-air interaction with smart TVs has not been obtained. Other home devices or 
activities investigated include music playback control [10] and “entertainment environment” [6]. 

In addition, a few studies have investigated particular interaction techniques for addressing [19] 
alternate devices or opt-in/opt-out from interactions [20], which are necessary in a multi-device 
interaction context. According to Freeman et al. [19] to address a device in mid-air interaction 
“involves finding where to gesture so that their actions can be sensed, and how to direct their input towards 
that system so that they do not also affect others or cause unwanted effects”. In their approach, they propose 
an interaction technique where devices provide consistent light, tactile, and audio feedback to 
indicate to users how and where to gesture; off course, this presupposes that home devices are 
equipped with additional actuators. In a similar context, Walter et al. [21] investigated different ways 
to reveal the registration gesture which defines the beginning of mid-air interaction on a public 
display. This is an important affordance of any public device that can detect mid-air interactions, 
which can also contribute to avoiding the phenomenon of ‘Midas’ touch’, i.e., activating a device 
accidentally. Also, in [20], a couple of interaction techniques for opt-in (wave with one or two hands) 
and opt-out (arms crossed and turn around with raised hand) from a distant display are empirically 
evaluated. Although these interaction techniques have not emerged from user elicitations, they have 
proven to be usable. 

Recently a number of elicitation studies attempt to constrain the types of gestures investigated 
into particular types like on-skin [22] and single-hand microgestures [3]. Bostan et al. [22] investigate 
hand specific on-skin gestures for the control of a desktop interface and their main conclusion is that 
users tend to use their hands as a self-interface, where one hand plays the role of a surface and the 
other of a ‘controller’ to apply gestures similar to those of a multi-touch surface. Chan et al. [3], have 
conducted an elicitation study for single-hand microgestures, which can be tracked with wearable 
sensors like the Myo Armband. Another interesting approach of microgestures is proposed by 
Siddhpuria et al. [23], which assumes a smartwatch as a wearable sensor and actuator. These studies 
employ simple commands as referents which, to some extent, are similar to those required in a smart 
home environment. Furthermore, they explore interesting constraints on the type of features they 
investigate, which provides a more specific context of application; this is important, since that, most 
usually, the participants to an elicitation study are “free, however, to suggest completely unrelated gestures 
for different effects” [17]. Additionally, microgestures are discrete, which is an important requirement 
for ubiquitous environments, however, for the home this is perhaps not a high-priority requirement. 
However, all aforementioned studies investigated interactions with distant displays and, therefore, 
more research is required to validate their suitability to the context of a smart home device ecosystem. 

Several studies have investigated mid-air interaction with a smart home device ecosystem 
however, one only was an elicitation study. Choi et al. [14] have conducted a repeated elicitation 
study for 7 devices and 20 referents to investigate whether the top gestures proposed by participants 
are consistently repeated in a second study. They conclude that 65% of the top gestures selected in 
the first experiment were changed in the second, which indicates that there is variability in top 



Informatics 2019, 6, 23 4 of 16 

 

gesture proposals even if the same users are involved in subsequent experiments. In [12], the design 
of a gesture-based prototype for context-sensitive interaction with smart homes is presented for 7 
commands and 4 devices; their work did not involve gesture elicitation but prototype development 
with designer-defined interaction techniques and usability testing. Ng et al. [13] also present a 
prototype for home automation for 5 devices and 2 commands only (switch on/off). Other studies 
about pervasive smart home interactions either assume a handheld device (e.g., a Wiimote in [6]) or 
a smartphone used as a gesture surface only [11]. 

3. Study Design 

3.1. Aim and Scope 

The aim of the study is to identify a user-defined gesture vocabulary for mid-air control of a 
smart home device ecosystem consisting of 7 common devices: TV, speakers, video player, audio 
player, air-conditioner, lights, blinds. We are interested in identifying across-device interactions in 
which users would apply a single gesture for a command that applies for multiple devices in the 
home (e.g., the command ‘switch on/off’ applies for many devices). Therefore, we have also 
investigated user consistency of gesture proposals across devices, which has not been examined in 
previous studies. 

3.2. Methodology and Procedure 

In terms of methodology, we have followed a similar approach to framed guessability proposed 
by Cafaro et al. [17] in order to assist users in providing more intuitive and contextually relevant 
gestures. More specifically, we had prepared (a) a summary of a scenario of use all devices and (b) a 
more detailed a script of use of all home devices that was narrated to users at the time of the 
experiment. As a consequence, participants initially had to reflect on the scenario summary at the 
beginning of the process and then (during the process, at particular instances of the script) had to 
stop and think about how to apply a mid-air gesture to control a device. The process followed was 
identical for all users as well as the order by which the referents were presented. We did not record 
timings (thinking time, time-to-propose a gesture, etc.) because we followed a (concurrent) think-
aloud approach which inevitably included some discussion with the researcher. 

To minimize the legacy bias [2] or any other affordances that may stem out from particular 
devices, we had prepared referents (in a slideshow) with minimal illustrations of devices (without 
handlers or controls). 

We focused on upper-body gestures assuming the user will be standing or seated, which is 
typical in the home. Furthermore, we were interested in ‘walk up and use’, ‘bare hand and body’ 
interactions that do not require any accessories or wearables; this implies that tracking technology 
would be ambient but oriented similarly to the location of the home devices. 

We also instructed participants that they should think about interacting directly with the devices 
(illustrated in slides, like those of Figure 1) and not make assumptions about particular digital content 
or specific manipulations or user interfaces with menus, controls, buttons, etc. 

During the unfolding of the scenario, when it was time for participants to apply a gesture, they 
were asked to produce more than one gesture for a referent, while for the referents of registration 
on/off, they were instructed to produce exclusive gestures for each device. During this procedure, 
they were encouraged to think aloud and verbally state the beginning and the end of each proposed 
gesture. The experiment took about one hour, on average, for each participant, and extensive notes 
were taken. 
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Figure 1. Sample slides for the list of referents. 

3.3. Participants 

Eighteen participants took part in this study, 6 females and 12 males whose age ranged from 24 
to 47 (Mage = 37.8, SDage = 7.4). Most of them were recruited from our research lab environment. Their 
background was in computer science, engineering, and design. Ten participants had some experience 
with mid-air gesture interaction because they had participated in other empirical studies (concerning 
interactions with Leap motion and Kinect), however, none were highly experienced with the 
technology (e.g., a researcher in the field or a designer or developer). 

3.4. Apparatus 

We conducted the study in a home office room. A MacBook pro was connected to an external 
26-inch monitor and the participants were seated in front of it in approximately 2 m. We used MS 
PowerPoint to display slides of each referent per device. A webcam was used to video capture the 
whole process with Camtasia Studio software (https://www.techsmith.com/video-editor.html). 

3.5. Referents 

After the review of related work on commands and references for smart home devices 
(especially [4,5,9–11,14,24–29]), we identified a list of commands that were frequently used and 
applicable in multiple devices. We listed all commands and then removed those that referred to 
particular controls of a user interface. We ended up with twelve (12) commands, each one applying 
to at least 2/7 home devices of our scenario (Table 1). We have added two more commands to these: 
registration on and registration off, which apply to all devices. User registration is required to avoid 
the phenomenon of ‘Midas Touch’, which refers to that “every active hand action, even unintentional, 
could be recognized as a command by vision-based technology” [29]. 

We were concerned with the form and function of referents and the affordances these may 
convey to users. To minimize interaction affordances [30], the device icons did not include details of 
the controls (i.e., buttons, knobs, sliders etc.) since users might associate them with specific gestures 
(Figure 1). 

Table 1. List of 7 devices, 14 commands, and 55 referents. 

Devices 
Commands TV Speakers Video 

Player 
Audio 
Player 

Air-
Conditioner Lights Blinds 

Registration On        
Registration Off        

Turn On        
Turn Off        

Up        
Down        
Next        

Previous        
Mute        

Fast Forward        
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Fast Rewind        
Play        

Pause        
Stop        

Referents 9 7 11 11 6 6 5 

3.6. Data Analysis 

Data analysis included retrospective video analysis, gesture classification, and calculation of 
agreement rates. Retrospective video analysis included the review of the video recordings from each 
user and extracting the ‘stroke’ phase [31] for every gesture proposed. Then a list was made with a 
small description of the gesture and an index number (i.e., G1, G2, G3, …, etc.) was assigned to each 
one of them. Gestures with similar motion or posture were considered as the same. MS Excel was 
used to list all the gestures index-number by user and by referent and to calculate the most popular 
gesture for each referent. 

3.6.1. Gesture Classification—Taxonomy 

Numerous studies have categorized gesture preferences into taxonomies according to their 
characteristics, to gain some insights and get a better understanding of the users’ design space. Most 
of them are based on the taxonomy proposed by Wobbrock et al. in 2009 [32], which involved gestures 
for interactive tabletops. Since then, similar taxonomies has been adapted for studies on mid-air 
interaction [11,29] with mobile phones [33], wearables [23,34,35], on-skin microgestures [22], 
augmented reality [36], etc. In our study, gestures are classified along five main dimensions: Nature, 
Form, Body Part, Flow, and Spatial (Table 2). 

Table 2. Taxonomy of motion gestures based on collected gestures. 

Dimension Category Description 

Nature 
Symbolic Gesture depicts a symbol. 

Metaphorical Gesture indicates a metaphor. 
Abstract Gesture-command mapping is arbitrary. 

Form 
Static Gesture is a pose. 

Dynamic Gesture involves body movement. 

Body Part 
One hand Gesture is performed with one hand. 

Both Hands Gesture is performed with both hands. 
Full body Gesture involves movement or pose of upper body.  

Flow 
Discrete Command is performed on gesture completion. 

Continuous Command is performed during the gesture. 

Spatial 
2-Dimensional Gesture is performed on single axis. 
3-Dimensional Gesture is performed in 3D space. 

The Nature dimension refers to the mental model behind the gesture-meaning relationship and 
involves subcategories of symbolic, metaphorical, and abstract gesture types. Symbolic gestures depict 
a symbol, such as an “X” formed with both arms, or a rectangle sketched on the air with both hands to 
denote a cancelation of a command. Metaphorical gestures mimic real-world interaction, such as 
rotating a knob or moving a slider control up/down to adjust the volume. Any gesture that has an 
arbitrary mapping with the referent is characterized as abstract, such as opening or closing a fist. 

Form dimension distinguished moving gestures and postures. Static gestures trigger the 
command after the body part(s) are still, in a specific location for a certain amount of time, such as 
forming a “+” with two pointers. In opposite, dynamic gestures, such as a hand-swipe to the left or 
right, involve a movement of body parts during the “stroke” phase and between the “preparation” 
and “retraction” phases [31] of the gesture. 
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The Body Part dimension indicates whether a gesture is performed with one hand or both hands. 
In cases where a gesture acts in combination with another part of the body, such as “pointing on eye”, 
or “covering both ears”, we characterize it as full body. 

In the Flow dimension, gestures are categorized as either discrete or continuous. A discrete 
gesture triggers the command only when completed. For example, the gesture of pushing a button 
with a palm to turn on/off a device is considered as discrete since the command will be triggered only 
when the user stretches her arm to a certain level. In Continuous gestures, the command acts as long 
as the gesture is performed. 

The Spatial dimension is used to describe whether the gesture acts in a 2D plane or in 3D space 
[8]. Two-dimensional gestures involve gestures in which users move their hands in either the vertical 
or horizontal axis in a 2D plane, such as swipe with one hand left/right or up/down. Others, for 
example, hand rotational motion, or metaphorical gestures, such as holding arms with their hands, 
or covering their ears, require movement in three axes, and are categorized as 3-dimensional. 

3.6.2. Gesture Consensus Level Among Users (Agreement Rate) 

To evaluate the level of gesture consensus between users, the gesture agreement rate (AR) was 
calculated using the Equation (1) [16] with the accompanying AGATe (AGreement Analysis Gesture 
Toolkit) software (http://depts.washington.edu/madlab/proj/dollar/agate.html), where P is the 
number of all proposals for a given referent r, and Pi is a subset of the identical gesture proposals. 
AR can take values from 0 (no agreement) to 1 (total agreement). 

𝐴𝑅ሺ𝑟ሻ ൌ |𝑃||𝑃| െ 1 ෍ ቆ|𝑃௜||𝑃|ቇଶ
୔೔∈௉ െ 1|𝑃| െ 1 (1)

For example, for the “Blinds-Stop” referent, we obtained 4 different gestures with popularity 13, 
2, 2, and 1, from 18 users. The agreement rate is computed as follows: 𝐴𝑅ሺ𝐵𝑙𝑖𝑛𝑑𝑠 െ 𝑆𝑡𝑜𝑝ሻ ൌ 1818 െ 1 ቈ൬1318൰ଶ ൅  ൬ 218൰ଶ ൅  ൬ 218൰ଶ ൅  ൬ 118൰ଶ቉ െ 118 െ 1 ൌ 0.52. 

Agreement rates were calculated, and the referents were classified as “Very high”, “High”, 
“Medium” or “Low” based on the agreement intervals of >0.5, 0.3–0.5, 0.1–03 and ≤0.1 respectively, 
according to the classification proposed in [16]. 

3.6.3. Gesture Consensus Level Among Devices (Consistency Rate) 

As noted above, our goal in this study is to also examine how consistent each user is when (s)he 
proposes gestures for similar referents on different devices (i.e., a single command). To quantify the 
user consistency, we employed the same formula as was used for calculating the agreement rate, 
since we detected many similarities. More specifically, agreement rate measures the agreement of the 
gestures proposed from many users, for a given referent on one device, while in our case, we examine 
the agreement of the gestures proposed from one user for a given command on many devices (Figure 2). 

 
Figure 2. Comparison of agreement rate and consistency rate. 

In short, we do not introduce a new metric, rather, we suggest a new way of using the agreement 
rate to evaluate user’s gesture consistency among different devices. For simplicity reasons, we will 
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refer to it as “consistency rate—CR(c)” (Equation (2)), where P is the number of all proposals for a 
given command c which is similar in all devices, and Pi is a subset of the identical gesture proposals. 

𝐶𝑅ሺ𝑐ሻ ൌ |𝑃||𝑃| െ 1 ෍ ቆ|𝑃௜||𝑃|ቇଶ
௉೔∈௉ െ  1|𝑃| െ 1 (2)

For example, for the command “Up” which is applied on five devices (i.e., referents: TV—
volume up, speakers—volume up, air-conditioner—temperature up, lights—dim up, blinds—up) a 
user proposed 2 different gestures with popularity 4 and 1. We calculate the consensus rate as follows: 𝐶𝑅ሺ𝑈𝑝ሻ ൌ 55 െ 1 ቈ൬45൰ଶ ൅ ൬15൰ଶ቉ െ 15 െ 1 ൌ 0.6 

Users’ CR(r) for registration on and off was not evaluated since these referents must not be the 
same among different devices. We used the same classification intervals (Very high: >0.5, High: 0.3–
0.5, Medium: 0.1–0.3, and Low ≤ 0.1) as in AR(r). 

4. Results 

4.1. User-Defined Gesture Set 

A total of 1047 gestures (108 unique) were proposed from 18 participants for 55 referents. 
Agreement rates were calculated for each referent. We selected the most popular gesture for each 
referent to construct the gesture vocabulary, which is shown in Table 3 and illustrated in Figure 3. 
From these gesture proposals, 3 (5%) were with very high agreement, 8 (15%) with high agreement, 
13 (24%) with medium agreement and 31 (56%) with low agreement. 

Figure 3. Proposed gestures with higher agreement rates (*: Clockwise, **: Counter-Clockwise). 

 
Opening Fist Closing Fist Clap 

 
Binoculars 

 
Form a rectangle Split hands 

Palm up 
 

Form a circle 
 

Palm push 
 

Holding arms 
 

Shsss Point ear 

 
Swipe down 

 
Swipe up 

 
Swipe left 

 
Swipe right Point Point up 

 
Thumb up 

 
Thumb down 

 
Thumb left 

 
Thumb right Roll CW * Roll CCW ** 
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Table 3. List of gestures for each command. * Gestures with both hands. Agreement rate (AR) for each 
command (c) is shown in parenthesis. Color of cells denote the classification of gesture agreement 
depending on the value of AR(c)—green color for AR ≥ 0.1 and white for AR < 0.1. 

 TV Speakers Video Player Audio Player Air Condition Lights Blinds 

Registration 
On 

Form a 
rectangle * 

(0.11) 

Form a circle * 
(0.03) 

Binoculars * 
(0.09) 

Point on ear 
(0.04) 

Hands holding 
arms * (0.07) Clap * (0.05) Point (0.04) 

Registration 
Off 

Form a 
rectangle * 

(0.05)  

Form a Circle * 
(0.02) 

Binoculars * 
(0.06) 

Point on ear 
(0.02) 

Hands holding 
arms * (0.06) 

Clap * (0.03)  Point (0.01) 

Turn On Point (0.04) 
Opening fist 

(0.05) 
Opening fist 

(0.01) 
Palm push 

(0.05) 
Opening fist 

(0.07) 
Point up (0.05)  

Turn Off Closing fist 
(0.05) 

Closing fist 
(0.08) 

Closing fist 
(0.04) 

Closing fist 
(0.03) 

Closing fist 
(0.07) 

Closing fist 
(0.03) 

 

Up Swipe up 
(0.52) 

Swipe up 
(0.46) 

  Swipe up 
(0.28) 

Swipe up 
(0.28) 

Swipe up 
(0.33) 

Down Swipe down 
(0.52) 

Swipe down 
(0.46) 

  Swipe down 
(0.33) 

Swipe down 
(0.32) 

Swipe down 
(0.33) 

Next Swipe 
left/right (0.34)  

Point right 
(0.14) 

Swipe 
left/right (0.16)    

Previous 
Swipe 

left/right (0.34)  Point left (0.14) 
Swipe 

left/right (0.16)    

Mute Ssshhh (0.12) Ssshhh (0.10)      

Fast Forward   Swipe 
left/right (0.17) 

Move hand 
clockwise 

(0.09) 
   

Fast Rewind   
Swipe 

left/right (0.17) 

Move hand 
counterclockw

ise (0.09) 
   

Play   Palm up (0.03) Point (0.08)    

Pause   Palm stop 
(0.09) 

Palm stop 
(0.15) 

   

Stop   Palm stop * 
(0.07) 

Hands split * 
(0.14) 

  Palm stop 
(0.52) 

During the study, almost one-third of the users (7 out of 18, 39%) showed difficulty in 
understanding the meaning of the registration on/off command, confusing it with the turn on/off 
command, especially at the beginning of the study. Many participants reported the concept of 
registration to a device as quite abstract and new for them, and in most cases, we had to provide 
further explanation about the similarity with the real world by comparing it with the act of grabbing 
the device’s remote control before interacting with it. After understanding the idea of registration, 
many users asked to change their initial proposals, and two of them mentioned that it would be 
helpful to have a kind of feedback from the device (such as a green light) as long as the user is 
registered indicating that motion tracking has been activated. The majority of the participants came 
up with arbitrary gestures with low agreement rates, confirming the association of abstract referents 
and arbitrary gestures [4,11,37–39]. 

Swipe up/down gestures (Figure 3) showed great consensus across users for the referents of 
increasing and decreasing a device’s function such as the volume (TV and speakers), temperature 
(air-conditioner), luminance (lights and blinds). Their agreement rates ranged above 0.3 for most of 
them (8 out of 10, 80%). 

Many users attempted to reduce their cognitive load by using same gestures for either binary 
referents on the same device or for the same commands across devices. Binary referents have an 
on/off meaning, such as turn on/off and registration on/off. For those referents, most participants 
assumed that they could interchange these two binary states by using the same gesture, such as 
pushing an imaginary button with their palm to turn on and off the TV, or clapping to turn on and 
off the lights. Surprisingly, even though participants used the same gestures for binary commands, 
these commands showed low agreement rates (Table 3). 

Many users claimed that the referents are too many to remember in a real scenario. Most of them 
eventually figured out that while they are been registered on a device, any gesture they perform is 
ignored by the other devices, and they could therefore reuse the same gesture for the same commands 
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on different devices. For instance, the gesture of “Shhsss” (Figure 3) was proposed for muting the 
volume on the TV and speakers. 

Even though we repeatedly encouraged participants to propose more than one gestures for each 
referent, only 7 out of 18 (39%) did so. These 5 participants, although they were very productive at 
the beginning of the study (one of them was proposing about 3–4 gestures for each referent), as the 
study evolved, the rate of gesture production was diminishing and at the end, only single gestures 
were proposed for similar referents. 

4.2. Gesture Taxonomy 

In the Nature dimension of our taxonomy, the majority of gestures proposed were metaphorical 
(62%), followed by abstract (22%) and symbolic (16%) (Figure 4). In most cases, metaphorical gestures 
users were correlating their sense organs with a device, such pointing or covering their ear to interact 
with audio device, point on eyes to interact with TV or video player. Symbolic gestures involved 
either in-air sketching a symbol or a letter with their pointer finger (such as sketching a triangle, for 
the play command, binding it with the standard icon ▻ that can be found in most players), or forming 
a symbol with their hands (such as forming a rectangle with both hands as a symbolization of the 
TV’s shape). 

 
Figure 4. Gesture taxonomy for identified gestures. 

The Form dimension has an almost equal distribution of gestures along its static (44%) and 
dynamic (56%) category. We observed that many of the static gestures proposed were used to indicate 
a direction (up/down for volume or luminance, left/right for next and previous) using their thumb or 
pointer finger. 

In the Body Part dimension, more than half (54%) of the proposed gestures were performed with 
one hand, such as opening and closing a fist, swiping one arm left/right, in air sketching symbols, etc. 
The majority of the full body gesture proposed were also symbolic ones, such as pointing or covering 
eyes or ears, and touching their chest. 

In the dimension of gesture Flow, continuous gestures were very few (15%) in comparison to 
discrete ones (85%). Commands like increase/decrease volume or fast-forward and fast-rewind were 
considered as continuous gestures by many of our participants and, in most cases, involved repeating 
movements. However, there were some users that proposed a hand posture, like a palm or thumb 
facing left/right, to keep the command on, as long as their hand was steady. 

In regard to the Spatial dimension, almost two-thirds (69%) of the participants’ gestures were 2-
dimensional. Most of these gestures were swipe up/down/left/right, performed with one hand on a 
single axis of a two-dimensional plane. Other 3-dimensional gestures, such as clapping or splitting 
hands, were performed in 3D space. 
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4.3. Users Gesture Consistency among Devices 

For every user, we calculated the consistency rate for the 12 similar commands (excluding 2 
commands about registration on/off, as explained earlier) among the 7 devices and their averages are 
shown in Figure 5. Based on the same classification intervals as [16], 3 users (17%) had medium 
consistency, 2 users (11%) had high consistency, and the majority of them (13 out of 18, 72%) showed 
very high consistency. Interestingly, there was no participant with low CR(c) (>0.1). 

 
Figure 5. Average consistency rate per user. 

At the beginning of elicitation sessions, after the participants were presented with the summary 
of the scenario (frame), we observed that most users (15/18) spent some time (ranging from about 
half a minute to about 3 minutes) to think about a potentially universal gesture set for commands. 
During this think-aloud process, most users asked for clarifications about what types of gestures 
might be preferable or what parts of the body to employ, or to remind them about the devices and 
commands. Clarifications were given in a neutral manner. Therefore, the scenario summary 
presented to them at the beginning of the elicitation session helped most participants to reflect and 
prepare themselves for proposing meaningful gestures. 

As the study evolved, most users felt more confident about their proposals and needed less time 
to think. A possible reason is that participants created a mental model for interacting with the whole 
ecosystem, and after that, it became very natural to use same gestures for conceptually similar 
commands. However, three users begun proposing gestures quite fast, and it was soon apparent that 
they had obviously misunderstood the necessity of the registration gesture and the difference 
between registration and turn-on command. In such cases, we intervened and clarified the meaning 
of registration gesture/command. Most of these users (apart from one) were asked to reform their 
proposals, and in some cases, we had to roll-back the procedure and start from the beginning. 
Therefore, during the elicitation process, we attempted to keep users within the scenario given as 
well as eliminate misunderstandings, when detected. 

We identified three users with very high consistency rate (Figure 5), who all spent some time at 
the beginning of the process to elaborate the concept of our scenario and think about their proposals. 
All of them admitted seeking for gestures that would fit in most referents in order to reduce their 
cognitive load, and when they started to produce their preferences, they seemed very confident about 
their choices. To illustrate with an example, user U12 was concerned from the beginning of the 
process, about technical details of implementation, such as how many cameras are tracking his 
movements, how these are set up in the room, their vision angle, etc. He implied that he was trying 
to understand how the motion tracking ecosystem works as he was seeking to find a way to use only 
one gesture to register to all devices in order to minimize the total number of gestures needed. That 
user was 100% consistent (1 proposed gesture per command) for 11 out of 12 different commands. 
Similarly, U2 and U17 were 100% consistent in 9 and 10 respectively, out of 12 commands. All three 
users had in common the fact that they spend some time in the beginning to understand the concept 
and to find a way to minimize the different gestures needed for all the commands. Furthermore, they 
all had some experience with mid-air interactions. 
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On the other hand, three users with average consistency (bellow 0.3) reported that they could 
not find a similar pattern across the referents. These users had no prior experience with gestural 
interactions. We found that they were creative in their gesture proposals, but often these were 
contextually irrelevant. For example, U16 (CR = 0.21) could not anticipate at the beginning of the 
process, the total number of unique gestures that she would have to remember. Even when she 
realized that, just before the end of the process, she remained to her choices, implying that she wanted 
to be more kinesthetically expressive. Also, U9 and U18 seemed like they did not entirely understand 
the meaning of registration. 

5. Discussion 

5.1. Comparison to Other Gesture Sets 

Choi et al. [14], have presented a repeated elicitation study for 7 devices (air-conditioner, TV, 
lights, blinds, curtains, door, window) and 20 referents, without investigating a registration gesture. 
If we compare our results with the (second) gesture set (which presented significantly higher 
agreement rate), we can see that there are only a few gestures that are alike: the swipe left/right for 
changing TV channels, and the swipe up/down for air-conditioning. Furthermore, several gestures 
are similar to those identified in our study, however for other operations. For example, they identify 
a pointing gesture for turn on/off the air-conditioner, while in our study, this is what was proposed 
for the blinds. A possible explanation for this mismatch could be that in their research, Choi et al. [14] 
assume “that technical barriers on the gesture recognition are completely resolved” while, in our study, we 
approach this scenario more holistically, and we are concerned about the communication isolation 
between the user and the device at a time. Since we believe that this is a major design challenge and 
implementation issue for an interconnected ecosystem to function robustly, we have introduced the 
registration command which will be used to switch communication with another device. 

In [40], a prototype of gestural control of household appliances is presented, which includes ten 
(10) designer-defined, single-hand gestures for 2 devices: 6 gestures for the radio (on/off, 
increase/decrease volume, next/previous station) and 4 for lights (on/off, increase/decrease 
illuminance), while they address the devices with a pointing gesture. There is little agreement 
between their findings and ours. Our findings suggest the use of an iconic gesture for addressing a 
device, which is safer in terms of avoiding accidental activation. Many of their gesture definitions are 
similar to ours, for example, they also include swipe up/down, swipe left/right, but they match these 
gestures to other operations than those identified in our study. 

Comparisons to other gesture sets [6,10,12,13] yield similar results: there is some agreement in 
produced gestures, however, the operations typically differ. There are many reasons for this, 
including apparent cultural differences among participants (between studies), sampling issues 
(demographics, previous experience, etc.), as well as method application issues. 

Notwithstanding these known issues, it seems that many similar gestures have been identified, 
but for different operations; in other words, the gestures are here, but the exact interaction techniques 
remain to be designed. Definitely, in an iterative user-centered design process, several other steps 
follow up with gesture elicitation, including gesture modeling (to particular joints of the human 
body), user interface design, and prototyping (e.g., especially for operations with little gesture 
agreement); gesture recognition engine design and prototyping; empirical testing of the usability and 
UX of the end system. During this process, it has been shown that user-defined gestures are not 
always the most usable, and that measured usability significantly affects user preferred gestures [41]. 
Nevertheless, the results of the study presented in this paper are a good starting point for system 
designers and developers because they refer to the wider range of devices and referents compared to 
other studies and they have been produced with attention to the context of use. 
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5.2. Increased Consistency Rate Raises the Requirement for Personalized Gesture Construction 

We have examined the gesture consensus level among devices for every single participant 
(named: consistency rate) and we have found that consistency rate is very high for most, which is 
interesting for many reasons. 

We observed that most participants (15 from 18), sooner or later, formed a mental model for the 
device ecosystem, as a whole, that allowed them to propose similar gestures for similar commands. 
We observed several strategies about forming the mental model: some participants attempted to 
‘mimic another ecosystem’, such as the “in-vehicle ecosystem”, which was claimed to have some 
similarities (the driver is also seated, and there are some similar devices like, speakers, mp3 player, 
air condition, windows). Others attempted to bind the name of the referent with an iconic gesture 
(e.g., mid-air drawing of an ‘S’ to stop). Others performed gestures drawn from human-to-human 
communication like the ‘Sshhh’ and ‘Point ear’ (Figure 3). Regardless of the strategy, the fact that 
most participants attempted to group interactions among devices reveals that future interactions with 
a smart home device ecosystem will have to consider this requirement and allow users to define 
gestures on-the-fly. 

Therefore, personalized gesture production would allow users to revisit the given gesture set 
and alter it to match their own mental model and preferences. Generally, personalization of gesture 
interaction is recognized as a significant challenge which can address the diversity and cultural 
background belonging to different (communities of) users [42]. Several toolkits for gesture recording 
have been developed over the last few years [43–46], however, only a few studies have integrated 
user elicitation with gesture personalization in a prototype system like Wu et al. [29] for TV viewing 
and Albertini et al. [47], for manipulation of archaeological data. Apparently, a usable system for 
personalized construction of gestures in a multi-device smart home ecosystem presents several 
challenges which remain to be addressed by future work. 

5.3. Attending the Application Context in User Elicitation 

In this frame-based elicitation study, we have attempted to inculcate contextual conditions to 
participants by narrating a scenario of use of all devices and asking participants at particular times 
to interact with a device and propose a mid-air gesture. This approach was followed in order to 
maximize environmentally valid gesture proposals. We also found that it was more entertaining for 
the participants since they were encouraged to think about the scenario to produce intuitive gestures. 
This was achieved for most users, as revealed by the consistency rates. Therefore, in the same line to 
others [17,42], we suggest that an elicitation study needs to prime participants with a “context” in 
order to maximize environmental validity and intuitiveness of gesture proposals. 

5.4. Attending Referents’ Affordances  

We have designed the referents of this study so that these did not include details of the controls 
(i.e., buttons, knobs, sliders etc.), since users might associate them with specific gestures. There are 
several approaches of referent presentation in elicitation studies [18]: GUI animations, text messages 
on screen, described verbally, still images, and illustrations of manipulations of the actual artifacts. 
Apparently, if a referent has been designed in detail, it would have included widgets and handles 
which present affordances to participants of a gesture elicitation study. However, user elicitation (as 
a pre-design method) is typically conducted before detailed user interface design; in this case, it is 
important that the design of referents does not include unnecessary user interface controls or widgets 
that present—unwanted—affordances about particular user manipulations. 

6. Conclusions 

This paper presents an elicitation study of upper-body gestures for accessory-free, mid-air control 
of a smart home device ecosystem. We have investigated a potentially uniform gesture set for any 
device so that users would not have to remember different gestures for multiple devices in the home. 
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The proposed user-defined gesture vocabulary includes several gestures with very high, high, 
and medium agreement rates. Additionally, we have seen that most users developed and applied 
their own mental model about the whole set of interactions with the device ecosystem, which resulted 
in high consistency within their gesture proposals across commands that apply to multiple devices; 
this raises the requirement for personalized gesture construction in the home. 

We have followed an approach for user elicitation that inculcates contextual conditions to 
participants by narrating a scenario of use and asking participants at particular times to propose a 
mid-air gesture. We found that this approach was entertaining for the participants and that they 
achieved high consistency rates in their gesture proposals. More specifically, we first presented 
participants with a scenario summary, which we found that helped most participants to reflect and 
prepare themselves for proposing meaningful gestures. Additionally, during the elicitation process 
a scenario script (that had been prepared beforehand) was narrated by the researchers to until it was 
time for the participant to propose a gesture (the same scenario was narrated to all participants). We 
found that this process assisted most participants in producing contextually relevant gestures. 

The future work of this research is to refine the design and develop the proposed gesture set in 
a virtual smart home prototype or a living lab and empirically test and evaluate various usability and 
UX aspects using qualitative metrics such as users’ satisfaction, comfort, fatigue, appropriateness for 
tasks, as well as quantitative metrics such as task success, errors, time of completion, and others. 
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