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Abstract: In this work, a new approach for training artificial neural networks is presented which
utilises techniques for solving the constraint optimisation problem. More specifically, this study
converts the training of a neural network into a constraint optimisation problem. Furthermore,
we propose a new neural network training algorithm based on the L-BFGS-B method. Our numerical
experiments illustrate the classification efficiency of the proposed algorithm and of our proposed
methodology, leading to more efficient, stable and robust predictive models.
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1. Introduction

Artificial neural networks constitute distributed processing systems, comprised of densely
interconnected, adaptive processing units, characterised by an inherent propensity for learning
from experience and also discovering new knowledge. The excellent capability of self-learning and
self-adapting of these learning systems has established them as powerful tools for pattern recognition
and as vital component of many classification systems. Thus, they have been extensively studied and
widely used in many applications of artificial intelligence (see [1–7] and the references there in). In the
literature, although many different models and have been proposed, the Multi-Layer Perceptron (MLP)
is the most commonly and widely used in a variety of applications. The operation of an MLP is usually
based on the following equations:

netl
j =

Nl−1

∑
i=1

wl−1,l
ij yl−1

i + bl
j, yl

j = f (netl
j),

where netl
j is the sum of its weighted inputs for the j-th node in the l-th layer (j = 1, . . . , Nl), wl−1,l

ij are

the weights from the i-th neuron at the (l − 1) layer to the j-th neuron at the l-th layer, bl
j is the bias of

the j-th neuron at the l-th layer, yl
i is the output of the j-th neuron that belongs to the l-th layer and

f (netl
j) is the j-th neuron activation function.
The problem of training an MLP is an incremental adaptation of connection weights which

propagate information contained in the examples of the training set, between simple processing units
called neurons [8]. More mathematically, the problem of training an MLP can be formulated as the
minimisation of an error function E defined by the sum of square differences over all examples of the
training set, namely

E(w) =
1
2

P

∑
p=1

NL

∑
j=1

(oL
j,p − tj,p)

2, (1)

where oL
j,p is the actual output of the j-th neuron that belongs to the L-th (output) layer, NL is the

number of neurons of the output layer, tj,p is the desired response at the j-th neuron of the output layer
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at the input pattern p and P represents the total number of patterns used in the training set. To simplify
the formulation of the above equations, let us use a unified notation for the weights. To this end, for an
MLP with n weights, let w ∈ Rn be a column weight vector with components w1, w2, . . . , wn and w∗ be
an optimal weight vector defined by the solution of

min
w∈Rn

E(w) (2)

Gradient-based training algorithms are usually applied to deal with this problem (2) by generating
a sequence of weights {wk} utilising the following iterative formula

wk+1 = wk + ηkdk, k = 0, 1, . . . , (3)

where k is the current iteration usually called epoch, w0 ∈ Rn is a given starting point, ηk is a stepsize
(or learning rate) with ηk > 0 and dk is a descent search direction. Furthermore, the gradient can be
easily obtained by means of back propagation of errors through the network layers.

Since the appearance of backpropagation [8], a variety of approaches were suggested for
improving the efficiency of the minimisation error process. It is worth noting that the optimisation
problem (2) is significantly challenging since its dimensionality is usually high and the corresponding
nonconvex multimodal error function possesses multitudes of local minima and has broad flat
regions adjoined with narrow step ones. Therefore, several methods based on the well established
unconstrained optimisation theory have been suggested which utilize second order derivative
related information, such as limited memory quasi-Newton methods [9–11] and conjugate gradient
methods [12–14]. Another interesting approach for improving the generalisation efficiency of a neural
network was based on the adaptation of nonmonotone learning strategies, exploiting the accumulated
information with regard to the most recent values of the error function. Along this line, Peng and
Magoulas [15–18] and Livieris and Pintelas [19] proposed nonmonotone training algorithms which
possess strong convergence properties and also have good classification performance. Karras and
Perantonis [20,21] considered incorporating knowledge in the form of constraints in neural networks
learning process and presented a Lagrange multiplier approach for the minimisation of the error
function (1) in order to improve convergence. The advantage of their proposed method was that the
weights updates in two successive epochs are highly aligned, therefore, avoiding zig-zag trajectories
in the parameter space and improving the speed of convergence.

After a neural network is successfully trained, its classification accuracy is depended on its
architecture, but mostly on the values of its weights. Nevertheless, since there are no restrictions and
limitations on the weights during the training process, a small number of weights may significantly
affect the output of the network. In other words, in case some of the weights have large values,
they dominate and sometimes determine the neural network’s output; therefore, degrading the
classification efficiency of the network since only some of the inputs of the network will be
efficiently explored.

The major novelty of this work is that the problem of efficiently training an ANN is re-formulated
as a constrained optimisation problem by defining bounds on the weights. More specifically, in order
to avoid the degradation of the classification accuracy, we consider the training problem as follows

min E(w),
subject to l ≤ w ≤ u

(4)

where the vectors l and u denote the lower and upper bounds on the weights w of the optimisation
problem, respectively. Our basic aim and motivation is focused on defining the weights in the trained
network in more uniform way, by restricting them from taking large values. In this case all the inputs
will be efficiently explored for improving the classification ability of the network. Furthermore, in order
to evaluate the efficacy and the efficiency of our proposed methodology, we propose a new weight
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constrained neural network training algorithm which is based on the L-BFGS-B method. The rationale
behind this selection is based upon the fact that limited memory BFGS constitutes an elegant choice
for efficiently training neural networks due to their numerical efficiency and their very low memory
requirements [22]. Our preliminary numerical experiments illustrate the classification efficiency of the
proposed algorithm and our proposed methodology.

The remainder of this paper is organized as follows: Section 2 presents the proposed weight
constrained neural network training algorithm and Section 3 presents the numerical experiments
using the performance profiles Dolan and Morè [23]. Finally, Section 4 presents the discussion,
our concluding remarks and our proposals for future research.

Notations. Throughout this paper, the gradient of the error function is indicated by ∇E(wk) = gk
and the vectors sk = wk+1 −wk and yk = gk+1 − gk represent the evolutions of the current point and
of the error function gradient between two successive iterations.

2. Weight Constrained Neural Network Training Algorithm

In this section, we present the proposed neural network training algorithm, which is based on the
L-BFGS-B method.

L-BFGS-B [24] constitutes one of the most successful and efficient large-scale bound-constrained
optimisation methods. More analytically, L-BFGS-B is a limited-memory algorithm which minimizes
a nonlinear function subject to simple bounds on the variables, by efficiently combining L-BFGS
updates with a gradient-projection strategy. In contrast to the traditional BFGS method which stores a
dense approximation, the L-BFGS-B stores only a small number, say m, of vectors which implicitly
describe the approximation. Thus, this moderate requirement of memory makes L-BFGS-B well
suitable especially for the optimisation problems with a large number of variables.

At each iteration of the L-BFGS-B algorithm, the error function E is approximated by a quadratic
model mk(w) at a point wk, that is

mk(w) = Ek + gT
k (w−wk) +

1
2
(w−wk)

TBk(w−wk) (5)

where Ek = E(wk) and the Hessian approximation Bk is defined as follows. Let m̂ = min{k, m− 1},
then given the set of correction vector pairs (si, yi) for i = k− m̂, . . . , k− 1, we define the n×m matrices

Sk = [sk−m̂, . . . , sk−1] and Yk = [yk−m̂, . . . , yk−1].

The Hessian approximation Bk (in compact form) resulting from m̂ updates to the basic matrix
B(k)

0 = θkI is given by

Bk = θkI− [θkSk Yk]

[
θkST

k Sk Lk
LT

k Dk

]−1 [
θkST

k
YT

k

]
, (6)

where θk is a positive scalar and Dk and Lk are the matrices

Dk = diag
[
sT

k−m̂yk−m̂, . . . , sT
k−1yk−1

]
and (Lk)ij =

 (sk−m̂−1+i)
T(yk−m̂−1+j), if i > j,

0, otherwise,

Subsequently, the algorithm approximately minimizes mk(w) subject to the feasible domain
D = {w ∈ Rn | l ≤ w ≤ u} utilizing the gradient projection method to find a set of active bounds,
followed by a minimisation of mk(w) treating those bounds as equality constraints. In more detail, this
procedure is performed in three stages: (1) the computation for the generalized Cauchy point; (2) the
subspace minimisation; and (3) the line search.
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Stage I: Cauchy point computation. The basic objective of this stage is to compute the generalized
Cauchy point wC. This is defined as the local minimum wC = w(t∗) of quadratic approximation of the
error function, starting from the current point wk, on the path defined by the projection of the steepest
descent direction on the feasible domain D, that is

w(t) = P(wk − tgk; l; u).

Notice that the variables whose value at wC is at lower or upper bound, comprising the active set
A(wC), are held fixed.

Stage II: Subspace minimisation. After the generalized Cauchy point wC is obtained, the quadratic
function (5) is minimized for the free variables in wC i.e. variables whose values are not at lower or
upper bound. To solve this minimizing problem, a direct primal method [24] is utilized to find the
minimizer wk+1, by using the following formulation:

wk+1 = arg min
w∈DS

mk(w) (7)

Notice that the feasibility domain is reduced at a subspace of the feasibility domain

DS =
{

w ∈ R | li ≤ wi ≤ ui, ∀i 6∈ A(wC)
}

.

by considering as free variables, the variables that are not fixed on limits while the rest variables are
fixed on their boundary value obtained during the Cauchy point calculation stage.

Step III: Line search. After an approximate solution wk+1 of this problem has been obtained,
we compute the new iterate wk+1 by a line search along dk = wk+1 −wk which satisfies the strong
Wolfe line search conditions, that is

Ek+1 ≤ Ek + c1ηkgT
k dk

|gT
k+1dk| ≤ c2|gT

k dk|.

with 0 ≤ c1 ≤ c2 < 1. Summarizing the above discussion, we present a high level description of the
proposed Weight Constrained Neural Network (WCNN) training algorithm.

Algorithm 1: Weight Constrained Neural Network Training Algorithm

Step 1. Initiate w0, EG, c1, c2, vectors l and u and kMAX.
Step 2. Set k = 0.
Step 3. repeat
Step 3. Calculate the error function value Ek and its gradient gk.
Step 4. Set the quadratic model mk(w) at a point wk, that is (Stage I)

mk(w) = Ek + gT
k (w−wk) +

1
2
(w−wk)

TBk(w−wk)

where the Hessian approximation Bk is defined by (6).
Step 5. Calculate the generalized Cauchy point wC.
Step 6. Solve (Stage II)

wk+1 = arg min
w∈DS

mk(w)

Step 7. Set dk = wk+1 −wk.
Step 8. Compute the learning rate ηk satisfying the strong Wolfe line search (Stage III)

conditions

Ek+1 ≤ Ek + c1ηkgT
k dk

|gT
k+1dk| ≤ c2|gT

k dk|.

Step 9. Update the weights wk+1 = wk + ηkdk and set k = k + 1.
Step 10. until (stopping criterion).
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It is worth noticing that since the Algorithm 1 is implemented with a line search which
satisfies the strong Wolfe conditions, every Hessian approximation Bk is positive definite. Therefore,
the solution wk+1 of the quadratic problem (7) defines a descent direction dk = wk+1 −wk for the
error function [24]. The significance of the sufficient descent property is highlighted in [12,13,19] in
order to avoid the usually inefficient restarts which degrade the overall efficiency and robustness of
the minimisation process.

3. Experimental Analysis

In this section, we will present experimental results in order to evaluate the performance of the
proposed neural network training algorithm in six famous classification problems acquired by the
UCI Repository of Machine Learning Databases [25]: the breast cancer problem, the Australian credit
card problem, the diabetes problem, the Escherichia coli problem, the Coimbra problem and the SPECT
heart problem. Table 1 presents a brief description of each datasets’ structure i.e., number of attributes
(#Features) and the number of instances (#Instances) and the network architectures and total number
of weights for each problem.

Table 1. Brief description of datasets and neural network architectures used in our study.

Classification Problem #Features #Instances Neural Network Architecture Total Number of Weights

Breast cancer 9 683 9-4-2-2 56
Australian credit card 15 690 15-16-8-2 410
Diabetes 8 768 8-4-4-2 66
Escherichia coli 7 336 7-16-8 264
Coimbra 9 100 9-5-2-2 68
SPECT heart 13 270 13-16-8-2 230

All MLPs had logistic activation functions and received the same sequence of input patterns.
Moreover, the weights were initiated using the Nguyen-Widrow method [26]. The classification
accuracy of each algorithm was evaluated using the standard procedure called stratified k-fold
cross-validation. The implementation code was written in Matlab 7.6 and the simulations have been
carried out on a PC (2.66GHz Quad-Core processor, 4Gbyte RAM) running Linux operating system
while the results have been averaged over 300 simulations.

Our experimental analysis was obtained by conducting a two phase procedure: In the first phase,
the classification performance of the proposed algorithm WCNN was evaluated against the classical
training method L-BFGS. The rationale for the selection of these algorithms is based upon the fact
that L-BFGS-B is a substantial extension of the classical L-BFGS [22] for constrained optimisation
problems; hence, both methods require the same information per iteration. In the second phase, we
evaluate the performance of WCNN against the state-of-the-art neural network training algorithms
Resilient backpropagation [27], scaled conjugate gradient [14] and Levenberg-Marquardt training
algorithm [28].

The cumulative total for a performance metric over all simulations does not seem to be too
informative, since a small number of simulations tend to dominate these results. For this reason,
we utilize the performance profiles of Dolan and Morè [23] relative to the performance metrics:
accuracy and F1-score, to present perhaps the most complete information in terms of robustness,
efficiency and solution quality. The use of performance profiles eliminates the influence of a small
number of simulations on the benchmarking process and the sensitivity of results associated with the
ranking of solvers [23]. The performance profile plots the fraction P of simulations for which any given
method is within a factor τ of the best training method.

More specifically, assume that there exist ns solvers and np problems for each solver s and
problem p, Requiring a baseline for comparisons, Dolan and Morè compared the performance αp,s
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(based on a metric) by solver s on problem p with the best performance by any solver on this problem;
namely, using the performance ratio

rp,s =
ap,s

min{ap,s : s ∈ S} .

The performance of solver s on any given problem might be of interest, but we would like to obtain
an overall assessment of the performance of the solver. Next, the function ρs was the (cumulative)
distribution function for the performance ratio is defined by

ρs(α) =
1

np
size

{
p ∈ P : rp,s ≤ a

}
.

where P is the set of all problems. Notice that the performance profile ρs : R→ [0, 1] for a solver was a
non-decreasing, piecewise constant function, continuous from the right at each breakpoint [23].

In other words, the performance profile plots the fraction P of problems for which any given
algorithm is within a factor α of the training algorithm. The horizontal axis of each figure gives the
percentage of the simulations for which a training algorithm achieved the best performance (efficiency).
Regarding the above rules and discussion, we can conclude that one solver whose performance profile
plot lies on top right, outperforms the rest of the solvers.

3.1. Performance Evaluation Against L-BFGS Algorithm

Next, we briefly describe each classification problem and present the performance comparison
between the proposed algorithm WCNN and L-BFGS training algorithm. The curves in the following
figures have the following meaning

• “WCNN1” stands for Algorithm 1 with bounds on the weights −1 ≤ wi ≤ 1.
• “WCNN2” stands for Algorithm 1 with bounds on the weights −2 ≤ wi ≤ 2.
• “WCNN3” stands for Algorithm 1 with bounds on the weights −5 ≤ wi ≤ 5.
• “L-BFGS” stands for the limited-memory BFGS.

WCNN and L-BFGS were evaluated using m = 3 and m = 7 as in [22] and were implemented with
the same line search [24] with c1 = 10−4 and c2 = 0.9.

3.1.1. Breast Cancer Classification Problem

The first benchmark concerns the diagnosis of breast cancer malignancy. The data have been
collected from 683 patients from the University of Wisconsin each having 9 attributes and a class
label (malignant or benign tumor). We have used neural networks with 2 hidden layers of 4 and
2 neurons respectively, as suggested in [12]. The stopping criterion is set to EG ≤ 0.02 within the limit
of 2000 epochs and all networks were tested using 10-fold cross validation.

Figures 1 and 2 present the performance profiles for the breast cancer classification problem,
based on accuracy and F1-score, respectively. Firstly, it is worth noticing that all versions of WCNN
exhibited better performance than L-BFGS, regarding both performance metrics. Therefore, the bounds
on the weights, substantially led to the development of trained neural networks with improved
classification accuracy. Regarding the performance of the proposed algorithm, WCNN1 illustrates the
best performance in terms of generalisation ability, followed by WCNN2 and WCNN3. Moreover,
the interpretation of Figures 1 and 2 report that tighter the bounds on the weights, the more efficient
the resulting classification performance will be (in most cases).
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Figure 1. Log10 scaled performance profiles based on accuracy for the breast cancer classifica-
tion problem.
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Figure 2. Log10 scaled performance profiles based on F1-score for the breast cancer classification
problem.

3.1.2. Australian Credit Card Classification Problem

The Australian credit approval dataset contains all the details about credit card applications.
This dataset is interesting because the data varies and has mixture of attributes which is continuous,
nominal with small numbers of values and nominal with larger numbers of values. We have used
neural networks with two hidden layers with 16 and 8 neurons and an output layer of 2 neurons [12].
The termination criterion is set to EG ≤ 0.1 within the limit of 1000 epochs and all networks were
tested using 10-fold cross validation.

Figures 3 and 4 illustrate the performance profiles for the Australian credit card classification
problem, investigating the efficiency and robustness of each training method. Similar observations
can be made with the previous benchmark. WCNN1 outperforms all other training methods, since its
curves lie on the top, relative to each value of parameter m. More specifically, WCNN1 for m = 3 and
m = 7 reported 65%, and 69.3% of simulations with the highest classification accuracy, respectively;
while L-BFGS reported only 46% and 50%, in the same situations. Summarizing, we conclude that the
tighter the bounds get, the higher the chance for good generalisation performance (i.e., the classification
ability of the neural network will he higher).
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Figure 3. Log10 scaled performance profiles based on accuracy for the Australian credit card classi-
fication problem.
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Figure 4. Log10 scaled performance profiles based on F1-score for the Australian credit card classi-
fication problem.

3.1.3. Diabetes Classification Problem

The aim of this real-world classification task is to decide when a Pima Indian female is diabetes
positive or not. The data of this benchmark consists of 768 different patterns each of them having
8 features of real continuous values and a class label (diabetic positive or not). We have used neural
networks with 2 hidden layers of 4 neurons each and an output layer of 2 neurons [12]. The termination
criterion is set to EG < 0.14 within the limit of 2000 epochs and all networks were tested using 10-fold
cross validation [29].

Figures 5 and 6 illustrate the performance profiles for the diabetes classification problem,
relative to each performance metric. WCNN2 exhibits the best probability of being the optimal
solver in terms of efficiency and robustness, outperforming all training methods, followed by WCNN1

and WCNN3 which exhibited almost similar performance. More specifically, WCNN2 reported
62.6% and 60% of simulations with the highest classification accuracy for m = 3 and m = 7,
respectively, while L-BFGS presented the worst performance among all training methods. In general,
the interpretation of Figures 5 and 6 reveal that the bounds on the weights increased the overall
classification accuracy, in most cases. Nevertheless, in contrast to the previous benchmarks, in case
the bounds are too tight, this substantially did not benefit much the classification performance of
the networks.
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Figure 5. Log10 scaled performance profiles based on accuracy for the diabetes classification problem.
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Figure 6. Log10 scaled performance profiles based on F1-score for the diabetes classification problem.

3.1.4. Escherichia coli Classification Problem

This problem is based on a drastically imbalanced data set of 336 patterns and concerns the
classification of the E. coli protein localisation patterns into eight localisation sites. E. coli, being a
prokaryotic gram-negative bacterium, is an important component of the biosphere. Three major
and distinctive types of proteins are characterized in E. coli: enzymes, transporters and egulators.
The largest number of genes encodes enzymes (34%) (this should include all the cytoplasm proteins)
followed by the genes for transport functions and the genes for regulatory process (11.5%) [30].
The network architectures consists of one hidden layer with 16 neurons and an output layer of 8
neurons [31]. The termination criterion is set to EG ≤ 0.02 within the limit of 2000 epochs and all
neural networks were tested using four-fold cross-validation.

Figures 7 and 8 present the performance profiles for the Escherichia coli classification problem,
based on the performance metrics accuracy and F1-score, respectively. Similar observations can be
made with the previous benchmarks. Firstly, it is worth noticing that in most cases the bounds on the
weights, lead to the training of neural networks with higher classification accuracy. More specifically,
WCNN1, WCNN2 and WCNN3 exhibited better generalisation performance than the classical training
method L-BFGS. Furthermore, Figures 7 and 8 report that WCNN2 exhibits the best performance in
terms of classification ability, followed by WCNN1 and WCNN3.
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Figure 7. Log10 scaled performance profiles based on accuracy for the Escherichia coli classification
problem.
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Figure 8. Log10 scaled performance profiles based on F1-score for the Escherichia coli classification
problem.

3.1.5. Coimbra Classification Problem

This dataset is comprised of ten predictors, all quantitative, and a binary dependent variable,
indicating the presence or absence of breast cancer [32]. The predictors are anthropometric data
and parameters which can be gathered in routine blood analysis. Prediction models based on
these predictors, if accurate, can potentially be used as a biomarker of breast cancer. The network
architectures consists of two hidden layers of five and two neurons, respectively, and an output layer
of two neurons. The termination criterion is set to EG ≤ 0.05 within the limit of 1000 epochs and all
neural networks were tested using ten-fold cross-validation.

Figures 9 and 10 illustrate the performance profiles for the Coimbra classification problem,
investigating the classification efficiency of each training method. WCNN2 exhibited the best
performance, since its curves lie on the top, relative to each value of parameter m, followed by
WCNN1 and WCNN3. It is worth noticing that WCNN2 for m = 3 and m = 7 reported 62% and
55.3% of simulations with the highest classification accuracy, respectively; while L-BFGS exhibited the
worst performance, reporting only 32% and 33.3%, in the same situations. Although that in most cases
WCNN appears to train neural networks with higher classification accuracy on average; however if the
bounds are too tight, this substantially did not benefit much the generalisation ability of the networks.
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Figure 9. Log10 scaled performance profiles based on accuracy for the Coimbra classification problem.
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Figure 10. Log10 scaled performance profiles based on F1-score for the Coimbra classification problem.

3.1.6. SPECT Heart Classification Problem

This dataset contains data instances derived from cardiac Single Proton Emission Computed
Tomography (SPECT) images from the University of Colorado. This is also a binary classification
task, where patients heart images are classified as normal or abnormal. The class distribution has 55
instances of the abnormal class (20.6%) and 212 instances of the normal class (79.4%). From them there
have been selected 80 instances for the training process and the remainder 187 for testing the neural
networks generalisation capability [25]. The network architecture consists of two hidden layers with
16 and 8 neurons, respectively, and an output layer of two neurons [12]. The training goal was set to
EG = 0.1 and the maximum number of epochs was set to 1000 as in [12].

Figures 11 and 12 report the performance profiles for the SPECT heart classification problem,
relative to the values of parameter m. For m = 3, WCNN1, WCNN2, WCNN3 exhibited similar
performance, with WCNN3 presenting slightly better results. For m = 7, WCNN2 exhibits the
best probability of being the optimal solver, followed by WCNN1 and WCNN3 which exhibited
similar performance. Furthermore, L-BFGS presented the worst performance compared against all
training methods. Therefore, the interpretation of Figures 11 and 12 demonstrate that application
of the bounds on the weights of the neural network, increased the overall classification accuracy, in
most cases. Nevertheless, by comparing the performance of all versions of the proposed algorithm,
we are able to conclude that in case the bounds are too tight this will not substantially benefit much
the classification performance.
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Figure 11. Log10 scaled performance profiles based on accuracy for the SPECT heart classification
problem.
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Figure 12. Log10 scaled performance profiles based on F1-score for the SPECT heart classification
problem.

3.2. Performance Evaluation against State-of-the-Art Training Algorithms

In the sequel, we evaluate the performance of the proposed neural network training algorithm
WCNN against state-of-the-art training algorithms, i.e. Resilient backpropagation, scaled conjugate
gradient and Levenberg-Marquardt training algorithm which were utilized with their default
parameter settings. The curves in the following figures have the following meaning

• “WCNN1” stands for Algorithm 1 with m = 7 and bounds on the weights −1 ≤ wi ≤ 1.
• “WCNN2” stands for Algorithm 1 with m = 7 and bounds on the weights −2 ≤ wi ≤ 2.
• “WCNN3” stands for Algorithm 1 with m = 7 and bounds on the weights −5 ≤ wi ≤ 5.
• “RPROP” stands for Resilient backpropagation.
• “SCG” stands for scaled conjugate gradient.
• “LM” stands for Levenberg-Marquardt training algorithm.

Figure 13 present the performance profiles based on accuracy of WCNN, RPROP, SCG and LM,
relative to all classification problems. It is worth mentioning all versions of the proposed algorithm
WCNN1 and WCNN2 exhibit better classification performance than RPROP, SCG and LM in all
cases while WCNN3 present similar or slightly worst performance compared to the classical training
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algorithms. Furthermore, it is worth noticing that WCNN2 demonstrate the best performance in four
out of six problems while WCNN1 report the best performance in the rest two classification problems.
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Figure 13. Log10 scaled performance profiles based on accuracy of WCNN against the state-of-the-art
training algorithms RPROP, SCG and LM.
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Figure 14 presents the performance profiles based on F1-score of each training algorithm, regarding
all classification problems. Similar observations can be made with Figure 13. Clearly, WCNN1

and WCNN2 exhibit better classification performance than the classical training algorithms RPROP,
SCG and LM, regarding all benchmarks. Moreover, WCNN2 illustrate the best performance since
it curves lie on the top in five out of six classification problems, followed by WCNN1. Regarding
WCNN3, it exhibits the worst performance among all versions of the proposed algorithm, nevertheless
its performance is similar or slightly better than the performance of the classical training algorithms,
regarding F1-score metric.

Based on the above discussion, we conclude that the interpretation of Figures 13 and 14 show
that in general the bounds on the weights increased the overall classification accuracy of the ANN,
however in case the bounds are too tight, this substantially may not benefit much the classification
performance of the networks.
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Figure 14. Log10 scaled performance profiles based on F1-score of WCNN against the state-of-the-art
training algorithms RPROP, SCG and LM.

4. Discussion, Conclusions and Future Research

In this work, we proposed a new direction for efficiently training a neural network.
More specifically, the problem of training of a neural network is formulated as constrained optimisation
problem by defining lower and upper bounds on the weights. The motivation consisted of improving
the classification accuracy by defining the weights in the trained network in more uniform way for
sufficiently exploring all inputs and neurons of the network. Additionally, in order to evaluate our
methodology, we proposed a new neural network training algorithm based on the L-BFGS-B method
and compared its classification accuracy against the efficient state-of-the-art training algorithms L-BFGS
algorithm, Resilient backpropagation, scaled conjugate gradient and Levenberg-Marquardt training
algorithm. Our numerical experiments demonstrated the classification efficiency of the proposed
algorithm, illustrating that the proposed methodology could improve the accuracy of neural networks
as confirmed statistically by the performance profiles.

Summarizing, it is worth mentioning that the bounds on the weights of a neural network
increased the overall classification accuracy in most cases. By placing these constraints on the
values of weights, reduces the likelihood that some weights will “blow up” to unrealistic values.
Therefore, we conclude that the proposed methodology, appears to efficiently train neural networks
with improved classification ability. Nevertheless, sometimes the bounds seems to be too tight in some
benchmarks, which substantially did not benefit much the classification performance of the networks.
As a consequence, it is difficult to set optimal bounds on the weights and more research is needed.
To this end, the question of what should be the values of the bounds or which additional constraints
should be applied is still under consideration. Probably, the research to answer these questions is very
likely to reveal additional and crucial information and questions.

In our future work, since our experimental results are quite encouraging, we commit to explore
its performance on imbalanced datasets [33] and also utilizing even more sophisticated performance
metrics [34]. Additionally, we intent to conduct extensive empirical experiments by applying the
proposed algorithm in specific scientific fields and evaluate its performance on large real-world
datasets, such as educational, healthcare, etc. Finally, another interesting aspect for future research is
to incorporate in our framework conjugate gradient methods for constrained optimisation [35,36] and
genetic algorithms [7,37–39].
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