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Abstract: Programming online judges (POJs) are an emerging application scenario in e-learning
recommendation areas. Specifically, they are e-learning tools usually used in programming practices
for the automatic evaluation of source code developed by students when they are solving
programming problems. Usually, they contain a large collection of such problems, to be solved
by students at their own personalized pace. The more problems in the POJ the harder the selection of
the right problem to solve according to previous users performance, causing information overload
and a widespread discouragement. This paper presents a recommendation framework to mitigate this
issue by suggesting problems to solve in programming online judges, through the use of fuzzy tools
which manage the uncertainty related to this scenario. The evaluation of the proposal uses real data
obtained from a programming online judge, and shows that the new approach improves previous
recommendation strategies which do not consider uncertainty management in the programming
online judge scenarios. Specifically, the best results were obtained for short recommendation lists.

Keywords: programming online judges; fuzzy logic; problems recommendation

1. Introduction

Programming online judges (POJs) are e-learning platforms which have been widely accepted
in the last few years for programming practices in computer science education and for training in
competitive programming scenarios [1,2]. Basically, they are composed of a collection of programming
exercises to be completed by the users. As an important feature, these platforms automate the
evaluation of the proposed solution by doing an instantaneous verdict regarding its correctness.
Key examples of POJs are the University of Valladolid Online Judge with more than 210,000 users
and 1700 problems, and the Peking University Online Judge with more than 600,000 users and
3000 problems.

The typical interaction sequence between the user and the POJ is as follows:

• The user selects a problem to solve from the online judge (Figure 1).
• The code for solving such a problem is written.
• This source code is uploaded to the online judge (Figure 2).
• The judge automatically indicates whether the solution is correct or not. If not, classifies the

failure mainly in Wrong Answer, Time limited exceeded or Runtime Error, allowing new solution
attempts to the same problem.
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Figure 1. Typical interface with the set of problems to solve in an online judge.

Figure 2. Typical interface to upload a problem solution in an online judge.

One of the most important advantages of POJs is that they allow users to select and try to solve the
problems they consider suitable for improving their knowledge acquisition at their personalized pace.
According to the amount of problems finally solved by each user, the POJ also publishes a ranking
(Figure 3). The reaching of a top position in this ranking is an extra motivation for the users, being then
this gamification environment a very good scenario for boosting the users’ programming abilities and
knowledge [3].

The wide acceptance of POJs and the increasing number of users that are currently solving
a very high percentage of all the available problems, have implied an increment of such available
problems. Therefore, it is currently difficult for several users to find out the appropriate problem for
trying to solve, according to their current experience and learning needs. This is a typical information
overloading scenario, in which users can experiment a high discouragement and frustration when
the actual difficult level of the problems they are trying to solve does not match with their current
knowledge profile and therefore it is difficult to develop a successful solution.

Nowadays, the classical solution to face these information overload problems is the development
of a recommender system focused on the corresponding scenario. Recommender Systems goal is to
provide users the items that best fit their preferences and needs in an overload search space [4–6].
They have been successfully used in scenarios such as tourism [7], e-commerce, e-learning, or social
networks [8]. In the specific case of e-learning, there are also specific application scenarios such as
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the recommendation in learning objects repositories [9], in learning management systems [10], or in
the students’ course recommendation [11]. However, in contrast to its wide use in other e-learning
context, there have been few research efforts focused on the development of recommendation tools for
POJs [12,13].

Figure 3. Typical interface showing the users’ ranking in an online judge.

Regarding the e-learning systems research area, it is important to remark that the problem we are
facing in the current research is different from the task related to users’ guiding through the learning
context, which is usually handled with very traditional approaches such as Intelligent Tutoring Systems
or ontologies-supported approaches [14,15]. Generally, such approaches require as input an important
amount of structured information characterizing e-learning content and user activity associated to
the corresponding e-learning scenario, for guaranteeing an appropriate user characterization. At this
moment such information is not available for typical POJs scenarios, making very difficult the use of
traditional approaches such as the previous ones. Therefore, recommender systems will be used in this
context as an appropriate solution for reducing information overload in these scenarios. Specifically,
we will focus on collaborative filtering recommendation [16], which is a popular paradigm that does
not depend on the availability of structured information.

This paper is then focused on the development of an uncertainty-aware framework for
recommending problems to be solved in POJs, supporting and guiding the users in the search of
problems they should be able to solve during their knowledge acquisition, and avoiding in this way
failures and frustration. The management of the uncertainty associated to the user’s behavior in
the current scenario, would improve the recommendation generation process in relation to previous
proposals that perform a crisp management of the user profile.

The main contributions of the paper are:

• A fuzzy based uncertainty-aware approach for recommending problems to solve in POJs.
• A data preprocessing strategy to be used on the user profile to remove anomalous behaviors that

could affect the later recommendation generation.

This paper is structured as follows. Section 2 shows the needed background for the proposal
presentation, including programming online judges, fuzzy tools in recommender systems,
and recommender systems approaches for POJs. Section 3 presents the new uncertainty-aware
proposal for problems recommendation in POJs, which also includes a novel data preprocessing
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approach to be used in this scenario. Section 4 presents the evaluation of the proposal, including
comparison against previous related works. Section 5 concludes the current research, pointing out
future works.

2. Background

This section reviews in short different concepts about programming online judges, fuzzy tools in
recommender systems, and the application of recommender systems in POJ scenarios. These research
topics are of particular interest regarding the current contribution.

2.1. Programming Online Judges

POJs are typically web applications that contain a large list of programming problems to be solved.
Several authors have reported their experiences with online judges for supporting programming
subjects. As far as we know, the first references to POJs in literature were performed by Kurnia et al. [1],
presenting POJs as useful tools for evaluating source codes that solve the proposed problems.
Furthermore, Leal and Silva [17] developed more portable online judges applications that can be
also used on-the-fly in programming contests. More recently, Llana et al. [18] introduced new
administration facilities through new POJs interfaces; and Wang et al. [2] exposed their experiences on
the integration of a POJ in a practice-oriented programming course. The literature has also reported
the integration of POJs with learning management systems such as Moodle [19]. Beyond these
representative works, Ala-Mutka [20] and Caiza and Del Amo [21] have developed more exhaustive
surveys on tools for automatic evaluation of solutions to programming problems.

The current contribution presents a fuzzy-based approach for suggesting problems to be solved
by the users in this scenario, assuming that the objective of the users in this kind of applications is to
solve as many problems as they can, to improve the knowledge acquisition process. These users’ goal
in POJ has been previously documented by several authors [13,22,23], pointing out that this success
implies a stronger degree of achievement and satisfaction [23], increasing then the learners’ efforts
and performance in knowledge acquisition according to a basic pedagogical rule (“learners’ effort will
increase if they are more satisfied”) [22].

2.2. Fuzzy Tools in Recommender Systems

Recommender systems are software tools focused on providing users the information that best
fits their preferences and needs, in a search space overloaded with possible options. They can be
classified in two big families: the content-based recommendation approaches, and the collaborative
filtering-based recommendation approaches [8]. Content-based approaches are mainly focused on
using item attributes for building items’ and users’ profiles, and at last generating the recommendations
depending on the matching degree between the current user and all the available items. In contrast,
collaborative filtering generates the recommendations by matching the current user profiles with the
profile of other users, for generating the most appropriate item recommendations. This matching
could be through direct similarity calculation (in the case of memory-based collaborative filtering),
or through the learning of more complex predictive models (in model-based collaborative filtering) [16].
Specifically, memory-based collaborative filtering has been a popular approach regarding it reaches
an appropriate balance between its simplicity, justifiability, efficiency, and stability [24]. Therefore,
this approach will be used as base for the current proposal.

Furthermore, the previous two families of recommender systems approaches have been explored
by using several tools taken from the soft computing fields in recommendation scenarios. Specifically,
a recent survey has showed that fuzzy logic tools have been successfully used in the last few years [25],
both in content-based and collaborative filtering. Specifically, such survey refers to several research
works that have effectively incorporated fuzzy modelling in memory-based collaborative filtering.

Regarding the relatively large amount of recommendation approaches using fuzzy tools [25],
here we will focus on such works that also incorporate memory-based collaborative filtering,
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being this group directly related to the current proposal. Particularly, Al-Shamri and Al-Ashwal [26]
present a fuzzy-weighted Pearson correlation coefficient for collaborative recommender systems,
Zhang et al. [27] introduce a recommendation approach which combines fuzzy extensions of
user-based and item-based collaborative filtering, and Cheng and Wang [28] present a fuzzy
recommender system based on the integration of subjective preferences and objective information,
where the preferences are presented through a fuzzy linguistic model. Following similar ideas,
Menhaj and Jamalzehi [29] propose a proximity-based similarity measure containing a fuzzy inference
system that depends on homophily correlation and influence correlation, and Son [30] proposes
a novel hybrid user-based method that integrates fuzzy similarity degrees between users based on the
demographic data.

On the other hand, the recent literature has reported some efforts toward the application of fuzzy
tools in e-learning recommender systems [25]. Former works propose frameworks for a personalized
learning recommender system, which aims to help students to find learning materials they would need
to read [31]. More recently, other works have presented a fuzzy tree-structured learning activity model
and a learner profile model to comprehensively describe the complex learning activities and learner
profiles [32,33]. Eventually, Myszkorowski and Zakrzewska [34] use fuzzy logic for creating groups of
students with similar needs enabling to differentiate appropriately their environment features.

The works referred in this section suggest that the incorporation of fuzzy modeling could lead to
positive results in collaborative filtering-based, e-learning recommendation. The proposal developed
in the current paper, aims at using fuzzy tools to improve recommendations in POJs scenario.

2.3. Recommender Systems in POJs Scenarios

The POJs recommendation scenario is different from the typical e-commerce collaborative filtering
scenario, because the relation user-item is much more complex in the case of POJs. Basically, while in
e-commerce scenarios this relationship tends to be only modeled through a simple rating, in POJs the
user usually needs several solution attempts to successfully solved the associated item (in this case the
problems). Therefore, it is necessary to propose new approaches focused in this specific scenario.

However, even though the use of recommender systems have been currently expanded to
several domains, there have been too few research efforts focused on the development of problems
recommendation tools for POJs.

An early reported research of a recommendation approach in POJs uses a basic user-based
collaborative filtering that considers the problems solved/not solved by the users which are similar to
the active one [12]. The effectiveness of this method was evaluated with data collected from a POJ,
proving that the collaborative filtering principle can perform well in this specific scenario.

Caro and Jimenez [35] have also explored several similarity-based approaches for recommender
systems in POJs, specifically considering user-based and item-based similarity schemes. This work uses
a graph representation for modelling the relationship between users and problems, and incorporates
concepts from social network analysis theory to develop new recommendation strategies.
The evaluation of the proposal is performed through a dataset gathered by an online judge developed
by the authors.

Recently, Yera and Martínez [13] have completed a further detailed representation of the user
profiles, by taking into account in addition to solved/not solved problems, the amount of previous
failed attempts which occur before the final effective or ineffective problem solution. The experimental
study developed in this work, proves that the development of advanced user similarity functions that
consider this additional information leads to an improvement in the recommendation performance.
In addition, this proposal also includes a classification scheme for users and problems according
to the efforts required by users when they solve problems, for using this information later in the
development of a data preprocessing step to eliminate anomalous users’ interactions that would affect
the recommendation accuracy.
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This recent research exposes an emerging but effective framework for suggesting problems to
solve in POJs. However, as a major challenge it has to improve the reliability and flexibility of the
user profiling, considering it is supported on crisp models. Therefore, the current proposal introduces
a new method centered on a more flexible and reliable user profile management, through the use of
fuzzy tools to support recommendation generation. Moreover, it is presented a new data preprocessing
approach that couples well with the new fuzzy logic-supported proposal.

3. Problems Recommendation in Programming Online Judges Using Fuzzy Tools

In this section it is introduced the fuzzy-based recommendation framework for POJs. This framework
is composed by four phases (Figure 4):

1. Data preparation, to put data into a suitable format for recommendation generation (Section 3.1),
2. The data preprocessing strategy to remove anomalous behaviors over the initial data

(Section 3.2),
3. The fuzzy transformation of the POJ data, to provide flexibility to the representation of the

interaction between any user and problem (Section 3.3), and
4. The users similarity calculation and final problems recommendation (Section 3.4).

Figure 4. Framework for problems recommendation in POJ using fuzzy tools.

Table 1 summarizes the most relevant notation used in this section for our proposal.

Table 1. Main notation used across the proposal presentation.

Notation Meaning

M[u, p] Binary value indicating whether the user u solves problem p
F[u, p] Number of attempted solutions the user u has tried over the problem p
F∗[u, p] Fuzzy membership value associated to the number of failures F[u, p]

xu Average number of attempts for user u
devu Average deviation of xu
xs

u Average number of attempts for solved problems, by user u
devs

u Average deviation of xs
u

x f
u Average number of attempts for finally failed problems, by user u

dev f
u Average deviation of x f

u
Cu,v Set of problems which solutions have been attempted by both users u and v

SimProbp(u, v) Similarity between the users u and v according to a specific problem p
Sim(u, v) Global similarity between two users u and v

wp Recommendation score for the problem p

3.1. Data Preparation

The current proposal receives as input the past performances of all the POJ users, i.e., a set
of triplets < u, p, j >, each one representing an attempt of the user u for solving the problem p,
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receiving as verdict the judgement j, which could be accepted if the problem was successfully solved,
or not accepted, if not. The current work will not differentiate between the several kinds of failures
mentioned in Introduction section (e.g., Wrong Answer, Time limited exceeded or Runtime Error).

In order to transform these data into a suitable format for recommendation generation in the POJ
context, they are converted in two different matrices, M and F, with dimensions nu × np. Being nu and
np the number of users and problems. Such matrices respectively represent the judgements and the
number of failures of each user, trying to solve each problem. Specifically, M[u, p] = 1 if the user u has
successfully solved the problem p, and M[u, p] = 0 otherwise. In the case of F, F[u, p] is the number of
attempted solutions the user u has tried over the problem p, disregarding if it was finally solved or not.

3.2. Data Preprocessing Strategy

This section presents a simple but effective method for data preprocessing, to be applied on
the F users’ profiles data. Initially, it is introduced a global approach that considers the amount of
solution attempts provided by a user u over a problem p. This approach is then extended into an
evaluation-based approach that also takes into account whether the user u is successful in the resolution
of the problem p or not.

A previous work referred in Section 2.3 has also focused on preprocessing POJs users’ data [13].
However, such previously presented approach cannot be applied to the current proposal because
it is based on crisp classifications of users trying to solve a specific problem (e.g., solved needing
few attempts, not solved having too many attempts, and so on). In contrast, the aim of our current
proposal is to avoid the use of crisp classifications, and then to perform an effective management of
the uncertainty in the original POJ data through fuzzy tools. It is then necessary the use of further data
preprocessing methods that could be coupled to the uncertainty-aware approach we are proposing here.

Therefore, our current work considers the outliers detection on the amount of users attempts
trying to solve a specific problem, as the basic data preprocessing scheme to follow. Specifically,
for each user, it is considered the problems where the number of attempts is out of the range
[α× (xu − devu); α× (xu + devu)], being xu the average number of attempts for user u and devu the
average deviation of such attempts. In addition, it is considered the coefficient α ≈ 1 for adding some
flexibility to the definition of the range.

For the problems which are out of this range, we propose to replace the associated amount of
attempts, with the xu value (Equation (2)). This transformation is fully-represented in Equation (4),
on the left side of the arrow appears the two conditions (problem p attempted by u, and F[u, p] not in
the mentioned range), and on the right side appears the transformation to do. We name this strategy
as the global data preprocessing approach:

Attemptedu = {set o f problems p attempted by user u, i.e., veri f ying F[u, p] > 0} (1)

xu =
∑p∈Attemptedu F[u, p]
|Attemptedu|

(2)

devu =
∑p∈Attemptedu abs(F[u, p]− xu)

|Attemptedu|
(3)

p ∈ Attemptedu and F[u, p] /∈ [α× (xu − devu); α× (xu + devu)] → F[u, p] = xu (4)

Alternatively, we also propose an evaluation-based data preprocessing strategy, in which the
outliers detection is done independently first for the set of accepted (solved) problems, and then for
the problems attempted but at last not solved. Here, two pairs are defined for each user:

1. A pair [α× (xs
u − devs

u); α× (xs
u + devs

u)] characterizing accepted problems, and
2. A pair [α× (x f

u − dev f
u); α× (x f

u + dev f
u)] characterizing problems attempted but failed.
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Here α ≈ 1 is also used with the same purpose in relation to the previous strategy:

Solvedu = {problems p solved by user u, i.e., veri f ying M[u, p] = 1} (5)

Failedu = {problems p f ailed by user u, i.e., veri f ying M[u, p] = 0 and F[u, p] > 0} (6)

xs
u =

∑p∈Solvedu F[u, p]
|Solvedu|

(7)

devs
u =

∑p∈Solvedu abs(F[u, p]− xs
u)

|Solvedu|
(8)

x f
u =

∑p∈Failedu F[u, p]
|Failedu|

(9)

dev f
u =

∑p∈Failedu abs(F[u, p]− x f
u)

|Failedu|
(10)

In both cases, if the amount of attempts associated to an accepted problem p falls out of the range
[α× (xs

u − devs
u); α× (xs

u + devs
u)], for recommendation purposes its amount of previous failures is

replaced by xs
u (Equation 11). On the other hand, if the problem was attempted but failed, and its

amount of failures is out of the range [α × (x f
u − dev f

u); α × (x f
u + dev f

u)], then it is replaced by x f
u,

for recommendation purposes (Equation (12)), being both conditions checked for all the users in the
POJ dataset. Here xs

u, devs
u, x f

u, and dev f
u will be always available for any user that has submitted

solutions to the system, considering that they are calculated through F[u, p] values (e.g., the current
amount of solution attempts of user u over problem p), which is always an integer value.

p ∈ Solvedu and F[u, p] /∈ [α× (xs
u − devs

u); α× (xs
u + devs

u)] → F[u, p] = xs
u (11)

p ∈ Failedu and F[u, p] /∈ [α× (x f
u − dev f

u); α× (x f
u + dev f

u)] → F[u, p] = x f
u (12)

Finally, we will consider a third strategy that performs the data preprocessing only over
the problems failed by the user. Therefore, it only applies the Equation (12), disregarding the
cases in which Equation (11) is verified. This strategy is named in the rest of the paper as the
failed-evaluation-based strategy.

Remark 1. We also evaluated a strategy that applies only Equation (11), disregarding the cases where
Equation (12) is verified. However, it leads to poor results and therefore it was not included in the current paper.

3.3. Fuzzy Transformation

In this section is introduced a fuzzy transformation whose input is the matrix F preprocessed in
the previous step, such a transformation manages in a proper and flexible way the inherent vagueness
and uncertainty associated to the users’ attempts behaviour and information. This fuzzy modelling
allows, as a concrete benefit to the current framework, a more robust representation of the users’
behavior. Such robustness and flexibility cannot be easily handled through other comparable soft
computing approaches [25], such as Bayesian networks, Markov models, or neural networks.

To provide flexibility to the modelling of the relationship between any user u and problem p,
it is then considered the fuzzy set difficult that represents the difficulty level of a problem, which is
represented through the membership function presented in Figure 5. As it is typically considered in
this kind of fuzzy representation, it is very difficult the predefined initialization for the parameter t in
the mentioned figure. This parameter is focused on characterizing the uncertainty level associated to
each possible number of failures associated to some user in relation to a specific problem. Its optimal
values will be analyzed as part of the experimental section.
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Figure 5. Membership function for the fuzzy set difficult.

Regarding this fuzzy set, the matrix F containing the number of failures for each user is then
transformed into a matrix F∗ which has the membership values associated to such kind of failures
according to the fuzzy set difficult (Equation (13)).

F∗[u, p] = µdi f f icult(F[u, p]) (13)

This new matrix F∗ is actively used at the users similarity calculation in the next phase of
our contribution.

This fuzzy representation through F∗ matrix assumes that all problems with more than t attempts
are considered of similar difficulty for the current user (i.e., the maximal difficulty). We want to
remark that this assumption could not be considered through the former matrix F, that only represents
a numeric scale which lacks of flexibility. We have performed additional experiments, not included
in this paper, verifying that the execution of the procedure considering F∗ outperforms the same
procedure but considering F.

3.4. Users Similarity Calculation and Problems Recommendation

As a collaborative filtering recommendation approach, the current proposal needs to define a user
similarity calculation scheme for considering the information available in the current scenario, in this
case the M and F∗ matrices. In order to obtain such scheme, first it is necessary to consider the set Cu,v

of problems which solutions have been attempted (successfully or unsuccessfully), by each pair of
users u and v (Equation (14)).

Cu,v = {set o f problems where F∗[u, p] > 0 and F∗[v, p] > 0} (14)

Afterwards, it is defined the similarity SimProbp(u, v) between the users u and v according to
a specific problem p, taking as basis the absolute difference between the membership values in the
F∗ matrix, for both users at the problem p. Specifically, it will be considered for those problems located
in the set Cu,v, and which have the same final verdict for both users ((M[u, p]= M[v, p])). In other cases,
the value of SimProbp(u, v) will be zero. Equation (15) formalizes this similarity function.

SimProbp(u, v) =


1− abs(F∗[u, p]− F∗[v, p]), i f M[u, p] = M[v, p]

and problem p is in Cu,v

0, otherwise
(15)

Finally, the global similarity between two users u and v is calculated as the average value for all
the SimProbp(u, v) values, considering all the problems p in the set Cu,v (Equation (16)).
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Sim(u, v) =
∑p∈Cu,v SimProbp(u, v)

|Cu,v|
(16)

This similarity function is used by the current proposal, for finding the top k nearest neighbors for
a current user u, to suggest him/her problems to solve.

These top k users are employed to calculate a score wup for each problem p not solved by the active
user u, as the sum of the similarities between u and the neighbors that solved p (Equation (17)). At last,
the top n problems p with the highest scores wup are recommended to u as the final recommendation
list. This list can be composed by both problems previously attempted or not attempted by the user u,
it will depend on problems attempted by the top k nearest neighbors.

wup = ∑
v∈top_k(u)

Sim(u, v) (17)

4. Experimental Study

The evaluation of the current proposal is done through a dataset obtained from the Caribbean
Online Judge, composed of 1910 users, 584 problems, and around 148,000 user attempts. This dataset
has been already used in previous research works presented in the background section [13].

Considering this dataset, the training and test sets were created according to a typical splitting
procedure for this kind of recommender systems scenarios [36]. Specifically, it is based on a popular
hold out scheme where all the solved problems for each user are randomly splitted in two sets
which are respectively appended to the training set and the test set. As a feature of the hold out
protocol, this splitting procedure was developed 10 times, composing 10 pairs of training-test sets.
The recommendation accuracy of each set is calculated independently, and the average of the accuracy
values are then showed in the results presented in the current section.

The F1 measure will be used for evaluating the generated recommendations, being a popular
evaluation criteria for the top-n recommendation generation task [36]. F1 (Equation (18)) is defined in
terms of Precision and Recall measures (Equations (19) and (20)), that in addition, as it is presented
in Table 2, depend on the amount of recommended problems that were solved (precision) and the
amount of solved problems that were recommended (recall).

F1 =
2× precision× recall

precision + recall
(18)

precision =
#tp

#tp + # f p
(19)

recall =
#tp

#tp + # f n
(20)

Table 2. Possible recommendation results, regarding solved and recommended problems.

Recommended Not Recommended

Solved True-Positive (tp) False-Negative (fn)
Not solved False-Positive (fp) True-Negative (tn)

Specifically, the evaluation protocol is performed by obtaining a list of recommended problems
for each user, considering training set data. Such list, as well as the solved problems at the test set,
are used for calculating F1 for each user. Finally, the global F1 value is calculated by averaging the
F1 values obtained for each user.

The current proposal depends on three main parameters:
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• The amount of k nearest neighbors: It will be used k = 80, considering it is a value previously
used in related works presented in the background section. As future works, it will be explored
the behavior of the proposal for other values of k.

• The value of t, in the fuzzy membership function presented in Figure 5. This value is connected
to the number of attempts where the difficulty of the problems can be considered as maximum
(see Section 3.3). Therefore, it could be linked with the global average of xu, being xu the average
number of attempts for user u (see Table 1). Regarding that the average of xu for the current data
was 1.18 with a mean deviation of 1.17, here it will be considered t ≥ 3. Specifically, it will be
reported the results for t = 4, t = 5, and t = 6. Further experiments were developed considering
other values (e.g., t = 3), but their performances were under the associated to the mentioned ones.

• The value of α in the data preprocessing strategy. To verify whether the flexibility in the definition
of the interval for the outliers characterization leads to positive results, it will be considered α = 1
(no flexibility), and α = 0.8 (a small flexibility, considering correct values to some small amounts
of attempts treated as outliers by α = 1).

The current experiments have two main objectives. In both cases it will be considered two
scenarios regarding the size of the recommendation list:

1. At first it will be considered recommendation lists with large sizes, varying such size n in the
range [5, 25] with step 10, and

2. At second it will be considered smaller recommendation lists, varying n in the range [1, 5] with
step 1.

Objective 1: Determine whether the fuzzy recommendation approach outperforms previous
approaches that do not consider the management of the uncertainty associated to POJ data.

In order to accomplish this objective, we compare the accuracy (F1) of the current proposal
(without the data preprocessing step), in relation to the proposals presented by Yera and Caballero [12]
(UCF-OJ in the results tables), and Yera and Martínez [13], in the last case also without considering the
data preprocessing step (UCF-OJ++ in the tables). It is also included a comparison against a successful
approach presented at [35], specifically the problem-based approach using as similarity the weight of
the relation between two problems, regarding the social network analysis-related strategies presented
in the mentioned [35] (PCF-OJ in the tables). Other approaches in [35] perform worse in this scenario
and then were not included here. As it was explained before, the current proposal considers t = 4,
t = 5, and t = 6 as possible values of the parameter t, being identified as Fuzzy-UCF-OJ in the
mentioned tables.

Tables 3 and 4 show the results of this comparison for larger and smaller recommendation
lists, respectively. As it was expected the performance associated to the new proposal is similar or
better than the related to the previous approaches. Specifically, the more notable improvements were
obtained for n = 5 in larger recommendation lists, and for all cases in smaller recommendation lists.
However, for larger values of n the improvement becomes modest in relation to Yera and Martínez [13].
Furthermore, the best results of the proposal were obtained for t = 6 and t = 5, leaving for t = 4
a lower accuracy value.

Table 3. Comparison between the current proposal and previous approaches, without considering data
preprocessing step at Section 3.2. Large recommendation lists.

5 15 25

UCF-OJ [12] 0.3568 0.3555 0.3237
PCF-OJ [35] 0.3187 0.2965 0.2657

UCF-OJ++ [13] 0.3613 0.3610 0.3277
Fuzzy-UCF-OJ (t = 6) 0.3663 0.3600 0.3281
Fuzzy-UCF-OJ (t = 5) 0.3640 0.3613 0.3286
Fuzzy-UCF-OJ (t = 4) 0.3625 0.3607 0.3279
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Table 4. Comparison between the current proposal and previous approaches, without considering data
preprocessing step at Section 3.2. Smaller recommendation lists.

1 2 3 4 5

UCF-OJ [12] 0.2454 0.2990 0.3316 0.3471 0.3568
PCF-OJ [35] 0.2327 0.2869 0.3127 0.3182 0.3187

UCF-OJ++ [13] 0.2407 0.2958 0.3268 0.3469 0.3613
Fuzzy-UCF-OJ (t = 6) 0.2494 0.3010 0.3305 0.3517 0.3663
Fuzzy-UCF-OJ (t = 5) 0.2487 0.3024 0.3320 0.3512 0.3640
Fuzzy-UCF-OJ (t = 4) 0.2466 0.3021 0.3297 0.3488 0.3625

It is also remarkable the poor performance associated to the work [35]. In this case, this approach
was originally evaluated in a different dataset in relation to the used in the current proposal. Therefore,
we think that its positive performance previously reported by [35], could be closely related to the
nature of data where it is used. Furthermore, this mentioned work disregards the number of previous
attempts as a valuable information for recommendation generation, being proved later in [13] that
this information could be important in such task. We think that this fact could justify this unexpected
behavior, although a future analysis should be developed to support these assumptions and to fully
exploit the results exposed by [35].

Table 5 presents the statistical comparison using Wilcoxon test [36], between the previous work
that performs best in the state-of-art [13], and the three evaluated proposals (with t = 4, t = 5,
and t = 6). For all cases, our proposals statistically outperform the previous work (p < 0.05).

Table 5. Statistical analysis of the results, without considering data preprocessing at Section 3.2.
Wilcoxon test (p < 0.05).

Significance Values

Fuzzy-UCF-OJ (t = 6) vs. UCF-OJ++ [13] 0.043
Fuzzy-UCF-OJ (t = 5) vs. UCF-OJ++ [13] 0.018
Fuzzy-UCF-OJ (t = 4) vs. UCF-OJ++ [13] 0.043

Objective 2: Determine the effect of the proposed data preprocessing strategy, in contrast to
previous approaches that also consider data preprocessing in POJ scenarios.

To accomplish this objective it will be considered the use of the data preprocessing strategy
previously presented in this work, to clean the original data and therefore improve the recommendation
accuracy. With this aim in mind, it will be considered the values of t and α previously mentioned in
this section, together with the three data preprocessing schemes explained in the previous section
(global, evaluation-based, and failed-evaluation-based). In the failed-evaluation-based strategy, it was
only considered t = 6 because other values obtained poor results and therefore they were not
reported. We also consider a comparison against a previous related work that also considers data
preprocessing [13], which is identified as UCF-OJ++ + preproc in the tables. Our current proposal in
this case is identified as Fuzzy-UCF-OJ + preproc.

The analysis of the presented results for large recommendation lists (Table 6), at first concludes
that for smaller sizes of such list the proposal introduces an improvement in the recommendation
accuracy (e.g., for n = 5, the best F1 value for the proposal was 0.3674, while for the previous work
was 0.3615). However, for larger sizes the improvements become more modest.

Additionally, it is worthy to note that although for higher values of n the best performance was
obtained for the global strategy for t = 6 and α = 0.8; for smaller values in such Table 6 (where the
improvement is more relevant), it is not a specific execution scenario that leads to the achievement of
the best F1 values. Here, the best performance was obtained for the failed-evaluation-based strategy
with t = 6 and α = 1 (in n = 5), and for the evaluation-based strategy also with t = 6 and α = 1
(in n = 15).
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Globally, as an unexpected finding in large recommendation lists, it was detected that the most
sophisticated data preprocessing strategy (the evaluation-based), does not necessarily lead to the
reaching of a better recommendation accuracy.

Table 6. Comparison between the current proposal and previous approaches, considering data
preprocessing. Large recommendation lists.

5 15 25

UCF-OJ++ + preproc [13] 0.3615 0.3619 0.3280
Fuzzy-UCF-OJ + preproc(t = 6, α = 1, global) 0.3652 0.3607 0.3288
Fuzzy-UCF-OJ + preproc (t = 5, α = 1, global) 0.3652 0.3604 0.3285
Fuzzy-UCF-OJ + preproc (t = 4, α = 1, global) 0.3643 0.3612 0.3288

Fuzzy-UCF-OJ + preproc (t = 6, α = 0.8, global) 0.3649 0.3624 0.3291
Fuzzy-UCF-OJ + preproc (t = 5, α = 0.8, global) 0.3649 0.3614 0.3289
Fuzzy-UCF-OJ + preproc (t = 4, α = 0.8, global) 0.3640 0.3606 0.3288

Fuzzy-UCF-OJ + preproc (t = 6, α = 1, eval-based) 0.3633 0.3626 0.3280
Fuzzy-UCF-OJ + preproc (t = 5, α = 1, eval-based) 0.3649 0.3609 0.3273
Fuzzy-UCF-OJ + preproc (t = 4, α = 1, eval-based) 0.3662 0.3611 0.3275

Fuzzy-UCF-OJ + preproc (t = 6, α = 0.8, eval-based) 0.3659 0.3620 0.3279
Fuzzy-UCF-OJ + preproc (t = 5, α = 0.8, eval-based) 0.3644 0.3601 0.3274
Fuzzy-UCF-OJ + preproc (t = 4, α = 0.8, eval-based) 0.3667 0.3605 0.3268

Fuzzy-UCF-OJ + preproc (t = 6, α = 1, failed-eval-based) 0.3674 0.3620 0.3290
Fuzzy-UCF-OJ + preproc (t = 6, α = 0.8, failed-eval-based) 0.3664 0.3613 0.3287

In contrast to the results obtained for large recommendation lists, in the case of smaller
recommendation lists with sizes lying in the range [1, 5] (Table 7), for all cases it was obtained
that the more sophisticated data preprocessing strategies lead to the reaching of the best results
(i.e., evaluation-based and failed-evaluation-based).

Table 8 presents the statistical comparison using Wilcoxon test [36], between the previous
work that performs best in the state-of-art [13], and four evaluated proposals which have positive
performance across all the parameter settings. For all cases, our proposals statistically outperforms the
previous work (p < 0.05).

Table 7. Comparison between the current proposal and previous approaches, without considering data
preprocessing. Smaller recommendation lists.

1 2 3 4 5

UCF-OJ++ + preproc [13] 0.2430 0.2967 0.3268 0.3485 0.3615
Fuzzy-UCF-OJ + preproc (α = 1, t = 6, global) 0.2501 0.3044 0.3302 0.3523 0.3652
Fuzzy-UCF-OJ + preproc (α = 1, t = 5, global) 0.2481 0.3038 0.3313 0.3515 0.3652
Fuzzy-UCF-OJ + preproc (α = 1, t = 4, global) 0.2471 0.3017 0.3318 0.3505 0.3643

Fuzzy-UCF-OJ + preproc (α = 0.8, t = 6, global) 0.2479 0.3029 0.3299 0.3532 0.3649
Fuzzy-UCF-OJ + preproc (α = 0.8, t = 5, global) 0.2493 0.3026 0.3318 0.3525 0.3649
Fuzzy-UCF-OJ + preproc (α = 0.8, t = 4, global) 0.2476 0.3014 0.3308 0.3511 0.3640

Fuzzy-UCF-OJ + preproc (α = 1, t = 6, eval-based) 0.2545 0.3047 0.3296 0.3529 0.3633
Fuzzy-UCF-OJ + preproc (α = 1, t = 5, eval-based) 0.2509 0.3051 0.3307 0.3520 0.3649
Fuzzy-UCF-OJ + preproc (α = 1, t = 4, eval-based) 0.2535 0.3035 0.3316 0.3513 0.3662

Fuzzy-UCF-OJ + preproc (α = 0.8, t = 6, eval-based) 0.2518 0.3020 0.3326 0.3541 0.3659
Fuzzy-UCF-OJ + preproc (α = 0.8, t = 5, eval-based) 0.2530 0.3058 0.3318 0.3538 0.3644
Fuzzy-UCF-OJ + preproc (α = 0.8, t = 4, eval-based) 0.2521 0.3059 0.3304 0.3520 0.3667

Fuzzy-UCF-OJ + preproc (α = 1, t = 6, failed-eval-based) 0.2530 0.3050 0.3334 0.3549 0.3674
Fuzzy-UCF-OJ + preproc (α=0.8, t = 6, failed-eval-based) 0.2510 0.3045 0.3365 0.3540 0.3664
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Table 8. Statistical analysis of the results, considering data preprocessing at Section 3.2. Wilcoxon test
(p < 0.05).

Significance Values

Fuzzy-UCF-OJ + preproc (t = 6, α = 0.8, global) vs. UCF-OJ++ + preproc [13] 0.018
Fuzzy-UCF-OJ + preproc (t = 6, α = 1, eval-based) vs. UCF-OJ++ + preproc [13] 0.028

Fuzzy-UCF-OJ + preproc (t = 6, α = 1, failed-eval-based) vs. UCF-OJ++ + preproc [13] 0.018
Fuzzy-UCF-OJ + preproc (t = 6, α = 0.8, failed-eval-based) vs. UCF-OJ++ + preproc [13] 0.028

Overall, these last results suggest that the use of techniques for preprocessing the data in the
current POJ scenario can improve the recommendation accuracy, in a similar way to other preprocessing
approaches for recommendation scenarios [37,38].

Beyond the two main objectives of the current evaluation, mentioned at the beginning of this
section and focused on the accuracy of the proposal, we also focus briefly on analyzing the amount of
data modified by the data preprocessing strategies. Table 9 presents the percentage of data modified in
the data preprocessing step. In the case of the global and the failed-eval-based strategies the values
were always under 17%, which guarantee a low intrusiveness level and match with values previously
obtained in similar works according to this criteria [39]. For the eval-based strategy, the intrusion
degree was higher.

Table 9. Percentage of data modified during the preprocessing step.

Fuzzy-UCF-OJ + Preproc (Global)

α = 0.8 α = 1
14.82% 8.74%

Fuzzy-UCF-OJ + preproc (eval-based)

α = 0.8 α = 1
36.69% 28.3%

Fuzzy-UCF-OJ + preproc (failed-eval-based)

α = 0.8 α = 1
16.09% 13.44%

Summarizing, the globally-obtained results suggest that the current proposal can be associated to
a POJ for generating effective problems’ recommendations. Furthermore, it is important to point out
that such proposal could be coupled with other very popular e-learning frameworks, being Massive
Open Online Courses (MOOCs) a key example of such platforms. MOOCs and POJs have as common
features, the fact that both contain e-learning content where users have to access at their personalized
pace. However, while current POJs are mainly focused on programming practices, the users at MOOCs
are usually learning and practising simultaneously inside the platform. Therefore, it is expected larger
levels of participation in MOOCs, in relation to POJs. This increasing number of users leads to a sparser
user preference dataset, which could make necessary the transformation of the current proposal, to be
used in this new scenario. In fact, recent works have faced the recommendation in MOOCs through
different innovative approaches such as the reciprocal recommendation [40], or the use of information
from external sources [41]. Our future work will then explore these approaches to extend the current
proposal to guarantee a successful tentative integration with MOOC-like frameworks. Furthermore,
with the same aim in mind, it will be developed user studies for a better understanding of their
motivations and needs.

In other direction, future works will also consider an adaptive modification of the size n of the top
n recommendation list, varying it according to past user behavior. This approach has been successfully
used in previous works such as [42].
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5. Conclusions

The current contribution has been focused on the incorporation of fuzzy logic tools for proposing
an approach to recommend problems to solve in POJs scenarios. This approach also incorporates a data
preprocessing strategy to correct anomalous users’ behavior which could affect the recommendation
generation. A relevant feature of the current work is the management of the uncertainty associated to
the POJ scenario, not performed previously as far as we know. The development of the experimental
evaluation of the proposal leads to the following conclusions:

• Both the fuzzy approach and the data preprocessing strategy outperform previous related works
in relation to the accuracy of the problem recommendation task, according to the F1 metric.

• The best performances were globally associated to smaller sizes of recommendation list (n ≤ 5).
• The use of more sophisticated data preprocessing strategy (the evaluation-based strategy), leads to

the best results in small sizes of recommendation list (n ≤ 5).
• The global and the failed-eval-based data preprocessing strategies modify always under 17% of

the data, guaranteeing a low intrusiveness level of the proposal.

Next future work will explore: (1) the adaptive modification of the size n of the top n recommendation
list, (2) the integration of the current framework in MOOCs scenarios, as well as (3) considering the
behavior of the users across the time. Furthermore, we will explore the use of alternative recommendation
techniques in the current scenario, that would allow a balance between recommendation accuracy,
efficiency, diversity, and transparency.
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