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Abstract: Increasingly fast computing systems for simulations and high-accuracy measurement
techniques drive the generation of time-dependent volumetric data sets with high resolution
in both time and space. To gain insights from this spatio-temporal data, the computation and
direct visualization of pairwise distances between time steps not only supports interactive user
exploration, but also drives automatic analysis techniques like the generation of a meaningful
static overview visualization, the identification of rare events, or the visual analysis of recurrent
processes. However, the computation of pairwise differences between all time steps is prohibitively
expensive for large-scale data not only due to the significant cost of computing expressive distance
between high-resolution spatial data, but in particular owing to the large number of distance
computations (O(|T|2)), with |T| being the number of time steps). Addressing this issue, we present
and evaluate different strategies for the progressive computation of similarity information in a time
series, as well as an approach for estimating distance information that has not been determined so far.
In particular, we investigate and analyze the utility of using neural networks for estimating pairwise
distances. On this basis, our approach automatically determines the sampling strategy yielding the
best result in combination with trained networks for estimation. We evaluate our approach with
a variety of time-dependent 2D and 3D data from simulations and measurements as well as artificially
generated data, and compare it against an alternative technique. Finally, we discuss prospects and
limitations, and discuss different directions for improvement in future work.

Keywords: time-dependent data; neural networks; adaptive sampling; volume visualization

1. Introduction

Time-dependent data sets with increasing resolution in both time and space are generated at
a fast rate, enabled by advances in parallel computing systems for simulations and high-accuracy
measurement techniques. This data can feature millions of cells and thousands of time steps, and thus
poses significant challenges for visual analysis. Even if the complete data—well-exceeding the available
memory in most cases—could be presented to the user interactively, still numerous issues due to visual
clutter and occlusion need to be prevented. A popular and natural choice to visualize the data without
(temporal) occlusion and clutter issues is animation (i.e., sequentially rendering individual time steps).
However , it has been shown to be ineffective as only a limited number of frames can be memorized by
an observer (e.g., [1]). This motivates the development of visualization approaches that select and/or
aggregate data in a data-driven way to enable efficient visual analysis and exploration.

For some of these type of data-driven visualization approaches, the computation of mutual
distances between time steps is a fundamental operation for automatic analysis techniques.
Recent examples of applications in visualization include the generation of a meaningful static overview
visualization, the identification of rare events, as well as the visual analysis of recurrent processes.
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Apart from that, visualizing the similarity information alone directly can also drive interactive visual
exploration by indicating processes of interest to a user. In general, these application scenarios require
the full computation of pairwise differences between all time steps. This is prohibitively expensive in
particular in the context of large-scale data. This is not only due to (1) the significant cost of computing
expressive distance between high-resolution time steps, but (2) especially owed to the large number of
distance computations involved (O(|T|2)), with |T| being the number of time steps). This means that
thousands of time steps already induce millions of (costly) distance computations.

In this work, we present and evaluate different strategies for the progressive computation
of similarity information in a time series, as well as an approach for estimating missing distance
information based on neural networks. Different strategies for sampling we consider range from
purely random sampling over uniform (data-agnostic) to adaptive (data-driven) sampling strategies.
With this sampled similarity information (i.e., a subset of a pairwise distances D of a time series T),
we then aim to reconstruct the full set of pairwise distances D using a neural network. The goal of
this approach is to let the neural network implicitly capture the special structure and properties of
similarity information in spatio-temporal data. We then essentially combine both aspects by training
neural networks for similarity estimation particularly on different sampling patterns of the different
strategies. This eventually allows to automatically determines the sampling strategy yielding the best
result in combination with trained networks for estimation.

The remainder of this paper is structured as follows. First, we review related work in Section 2.
Then, we introduce our problem statement and give an overview of our approach in Section 3. We then
discuss the two main parts of this work: different strategies for the sampling of similarity data
(Section 4), as well as neural networks for the estimation of similarities (Section 5). Finally, we evaluate
and discuss the properties of our approach in Section 6, before concluding our work in Section 7.

2. Related Work

2.1. Visualization of Spatio-Temporal Data

For the visualization of time-varying data, and extensions to many techniques could be applied
to make them more general towards dealing with multi-field data. Lee and Shen [2] visualize trend
relationships among variables in multivariate time-varying data. Joshi and Rheingans [3] evaluate
illustration-inspired techniques for time-varying data, like speedlines or flow ribbons. One approach
is to interpret the data as a space-time hypercube, and apply extended classic visualization operations
like slicing and projection techniques [4] or temporal transfer functions [5] to it (cf. Bach et al. [6] for
on overview). Another way to approach time-dependent data are feature-based techniques. Here,
particularly Time Activity Curves (TAC) that contain each voxel’s time series have been used as the
basis for different techniques (e.g., [7]). Apart from such techniques working directly with scalar
volume data, a large body of work in time-dependent volume visualization is based on feature
extraction. Wang et al. [8] extract a feature histogram per volume block (typically hundreds to
thousands of voxels). They then derive entropy-based importance curves that characterize the local
temporal behavior of each block, and classify them via k-means clustering. Widanagamaachchi et al. [9]
employ feature tracking graphs. Lee and Shen [10] visualize time-varying features and their motion
on the basis of time activity curves (TAC) that contain each voxel’s time series. Fang et al. [7] use TACs
in combination with different similarity measures. Silver et al. [11] isolate and track representations
of regions of interest. The robustness of this approach has been improved by Ji and Shen [12] with
a global optimization correspondence algorithm based on the Earth Mover’s Distance. Scale-space
based methods and topological techniques have also been used here (e.g., [13,14]). Schneider et al. [15]
compare scalar fields on the basis of the largest contours.

Another line of techniques is based on the direct comparison of time steps. The Earth Mover’s
Distance (EMD, also known as the Wasserstein metric) is a common metric to compute the difference
between mass distributions (conceptually, it determines the minimum cost of turning one (mass)
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distribution into the other) [16]. For instance, Tong et al. [17] use different metrics to compute the
distance between data sets, and employ dynamic programming to select the most interesting time
steps accordingly. The field of video analysis also deals with related analysis problems, yet typically
employing different methodologies. Specialized image and video metrics are used to compare frames
(e.g., [18]), and distinct approaches were proposed to generate summaries of videos, e.g., based on the
motion of actors over time [19]. In addition, illustrative techniques have been used to depict processes
of interest. Lu and Shen [20] propose interactive storyboards composed of volume renderings and
descriptive geometric primitives. While most techniques mentioned above deal with volume data,
numerous approaches have been presented for flow visualization (cf. Post et al. [21] and McLoughlin et
al. [22] for an overview). Note that different fields have developed different methodologies to quantify
similarity for other application settings. For instance, to enable style-based search, Garces et al. [23]
present a method for measuring the similarity in style between two pieces of vector art, based on the
differences between four types of features: color, shading, texture, and stroke. Feature weightings are
learned from crowdsourced experiments.

Frey and Ertl [24] presented a technique to generate transformations between arbitrary volumes,
providing both expressive distances and smooth interpolates. On this basis, they presented a new
approach for the streaming selection of time steps in temporal data that allows for the reconstruction
of the full sequence with a user-specified error bound. An accelerated version with overall improved
efficiency as well as an extension to manycore devices (i.e., GPUs) has been presented in a follow-up
work [25]. We use this approach to quantify distances between time steps in this paper.

On the basis of similarity information between time steps, Frey and Ertl [26] adaptively select
time steps from time-dependent volume data sets for an integrated and comprehensive visualization.
This reduced set of time steps not only saves cost, but also allows to show both the spatial structure
and temporal development in one combined rendering. The selection optimizes the coverage of the
complete data on the basis of a minimum-cost flow-based technique to determine meaningful distances
between time steps. An interactive volume raycaster produces an integrated rendering of the selected
time steps, and their computed differences are visualized in a dedicated chart to provide additional
temporal similarity information.

2.2. Similarity Matrices to Directly Visualize and Analyze Similarity Information

Their benefits and utility of recurrence plots and similarity matrices are discussed in detail by
Marwan et al. [27]. There are also variants that extend those concepts from univariate to multivariate
data. One possibility to apply these concepts to study the spatial structure of data is to separate the data
into many one-dimensional data series, and to apply the recurrence analysis separately to each of these
series [28]. Another possibility is the extension of the temporal approachof recurrence plots to a spatial
one [29] at the cost of high-dimensional domains, e.g., a time-dependent 2D image is mapped to a 4D
recurrence plot, which is, however, hard to visualize. Bautista et al. [30] analyze the difference between
recurrence plots from different time series. For multi-field visualization, Frey et al. [31] presented an
interactive approach on the basis of similarity matrices for extracting and exploring time-dependent
phenomena, that allows to compare different locations, modalities, ensemble runs, or generally even
data sets with no direct relation. It focuses on periodic and quasi-periodic behavior at single points,
but was also used to analyze cross-correlations in ensemble and multi-variate data.

2.3. Machine Learning for Image Interpolation and Similarity Learning

Machine learning is popularly regarded as the only viable approach to building AI systems
that can deal with (very) complicated environments [32]. In particular, in this work, we employ
neural networks for estimating the similarity between different time steps. Image interpolation
is a different task with different inherent characteristics, but there are also some related aspects.
Hu et al. [33] propose an interpolation algorithm using a classification-based neural network approach
with the goal to improve the image quality. Plaziac [34] compared two adaptive algorithms for image
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interpolation based on a multilayer perceptron. More recently, Chen et al. [35] used anisotropic
probabilistic neural network on the basis of an anisotropic Gaussian kernel to provide high adaptivity
of smoothness/sharpness during image/video interpolation.

Neural networks have also been applied to similarity learning, which belongs to the category of
supervised machine learning in artificial intelligence. In general, this resembles our task of learning
the similarities between time steps of spatio-temporal data, yet previous work has been done mostly
for very different application scenarios. The goal is to learn from examples a similarity function that
measures how similar or related two entities are. It has applications in ranking, in recommendation
systems, visual identity tracking, face verification, and speaker verification. Guillaumin et al. [36]
present two methods for learning robust distance measures for assessing the similarity of faces.
Similarity learning is closely related to distance metric learning, in that metric learning is the task of
learning a distance function over objects. Kulis [37] presents an overview of existing research in metric
learning. Davis et al. [38] present an information-theoretic approach to learning a Mahalanobis distance
function (the Mahalanobis distance is a measure of the distance between a point and a distribution).

3. Overview

The motivation behind this work is to gain insights from spatio-temporal data. This data can
have different processes and structures, and be obtained via measurements and different types of
CFD simulations (Figure 1). This means that this type of analysis is of interest to a wide variety of
different fields. In this section, we first provide an introduction into similarity information from time
series data in Section 3.1. We then cover the fundamentals of neural networks that are the basis for our
similarity estimation approach discussed later in this work (Section 3.2). Finally, we give an outline of
our approach and its different components in Section 3.3.

3.1. Similarity Information from Spatio-Temporal Data

We aim to analyze our time series data T on the basis of similarities between individual time steps
t ∈ T. Here, the similarity between individual time steps is quantified by function d : T × T → R,
with the result being in the range [0, ∞) (0 denotes identity). We further assume d(·, ·) to be symmetric,
i.e., d(t0, t1) = d(t1, t0) for t0, t1 ∈ T. In the following, we therefore only consider d(t0, t1) for t0 < t1

(in the identity case of t0 = t1, d(t0, t1) = 0). As a basis for numerous analysis applications, in this
work we are interested in obtaining all pair-wise similarities d(t0, t1) between time steps t0, t1 ∈ T
with t0 < t1. This means that for |T| time steps there are |d(T)| (also denoted as |D|) time steps:

|d(T)| = (|T| − 1) · |T|
2

(1)

For the real-world data sets in Figure 1, the results are shown in Figure 2 in the form of similarity
plots. We compute similarity information from the real-world data using the metric by Frey and
Ertl [24,25] (cf. discussion later in Section 5.2). Essentially, it constitutes a fast computation method of
the Earth Mover’s Distance ([16], also known as the Wasserstein metric) that makes it computationally
feasible to apply it directly to high-resolution data. While the computation of similarities between
all pairs of time steps is very expensive, for training and testing purposes, we generated reference
similarity information for the time series data introduced above over the course of several weeks on
different machines (using both CPUs and GPUs). Most notably, due the symmetric property of the
distance quantification function d as discussed above (i.e., d(t0, t1) = d(t1, t0) for t0, t1 ∈ T), not a full
pair-wise matrix is shown but a only the cases for t0 < t1. In the end, this forms a triangle-shaped plot.
Different similarity structures can be seen, with the Kármán and most notably the Supernova data set
featuring processes at distant points in time that are very similar (in the Kármán, this can be observed
in the bottom right where line structures with a small offset to the diagonal can be seen).
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(a) Bottle (resolution 900× 430, 160 time steps considered): laser pulse shooting through a bottle, captured
via Femto Photography (Velten et al. [39]).

(b) von Kármán (resolution 301× 101, 418 time steps): 2D time-dependent CFD simulation of a von Kármán
vortex street.

(c) Hot Room (resolution 101× 101, 265 time steps): air flow within a closed container, driven by buoyant
forces imposed by a heated bottom plate and a cooled top plate. To provoke transient aperiodic flow, the
container exhibits two barriers (one on the top, one on the bottom).

(d) Droplet (2563, 155 time steps): two drops colliding asymmetrically (courtesy of C. Meister, Institute of
Aerospace Thermodynamics, University of Stuttgart).

(e) Supernova (4323, 60 time steps): result of a supernova simulation. The data set is made available by Dr.
John Blondin at the North Carolina State University through US Department of Energy’s SciDAC Institute for
Ultrascale Visualization.

Figure 1. All data sets include scalar values, that are mapped to a representation that is shown here,
and also used for the distance computation via a user-defined transfer function (respective distances of
each time series are plotted in Figure 1).
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(a) Bottle. (b) Droplet. (c) Hot Room. (d) von Kármán. (e) Supernova.
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Figure 2. Input similarity information from different data sets presented in the form of similarity
matrices (with t0 along the x-axis and t1 along the y-axis, cf. (a)). Only one half of the matrix is visualized
due the symmetry property of our distance metric (i.e., d(t0, t1) = d(t1, t0)). Values are mapped to
colors using the viridis color map (low distances =̂ purple, medium =̂ green/blue, large =̂ yellow).

3.2. Neural Networks Basics (for Time Series Similarity Estimation)

In this work, we make use of so-called feedforward neural networks (aka multi- layer perceptrons
(MLPs)) [32]. The goal of a feedforward network is to approximate some function f ∗. In our case,
we aim to estimate the result distance function d(t0, t1) that determines the similarity between any
two time steps in a time series t0, t1 ∈ T. In general, a feedforward network defines a mapping
y = f (x; θ) and learns the value of the parameters θ that result in the best function approximation.
In our application scenario, both input and out of the neural network is pair-wise similarity information
in a time series.

These kind of models are called feedforward because information flows through the function
being evaluated from x, through the intermediate operations used to define f , and eventually to the
output f . There are no feedback connections in which outputs of the model are fed back into itself (as
in recurrent neural networks, e.g., [32]).

Feedforward neural networks are typically represented by composing together different functions.
The model is associated with a directed acyclic graph describing how the functions are composed
together. For example, there might be three functions f (1), f (2), and f (3) connected in a chain, to form
f (x) = f (3)( f (2)( f (1))). These chain structures are the most commonly used structures of neural
networks. In this case, f (1) is called the first layer of the network, f (2) is called the second layer, and so
on. While the first layer is denote as the input layer, the final layer of a feedforward network is called
the output layer. During neural network training, we adjust f (x) to match f ∗(x). Each example x is
accompanied by reference result values y = f ∗(x). The training examples specify directly what the
output layer must do at each point x; it must produce a value that is close to y. As the training data
does not show the desired output for the layers between the input and the output layer, these layers
are called hidden layers.

3.3. Approach Outline

A conceptual overview on our approach is given in Figure 3. Essentially, there are two distinct
phases, that are indicated by the wide gray arrows: (1) select and (2) optimize. First, in selection,
we evaluate different sampling strategies to sample similarity information. Sampling strategies define
different techniques to approach the adaptive sampling of similarity information (cf. Section 4). We then
use the full similarity information along with the sparse set generated by the adaptive sampling for
training a neural network to reconstruct the full information. We then validate the generated model,
which essentially results in an error value (subsequently denoted as cost). Using this information,
we compare the obtained cost values of all sampling strategies, and choose the strategy yielding the
lowest cost as our best strategy. With this, we enter our second phase in which we optimize the
network belonging to the best strategy. While the selection just carries out one training and validation
run for each strategy, the subsequent optimization step iteratively improves the network belonging to
the best sampling strategy via continuous training.
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Strategies for  
Similarity Sampling  

(Section 4)

Neural Networks for 
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(Section 5)
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strategy 0

strategy n-1

…
training validation
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continuous training with best strategy

one training run for each strategy

Figure 3. Overview of our approach for the adaptive sampling and estimation of similarities with
neural networks (cf. Algorithm 2 for a more detailed description). The selection phase (Select) chooses
the best strategy by carrying out one training and validation run for each strategy. Afterwards,
the optimization phase (Opt) iteratively improves the network belonging to the best sampling strategy
via continuous training with repeatedly updated training data.

4. Strategies for Similarity Sampling

As previously discussed in Section 3.1, we utilize and evaluate progressive approaches to
compute similarity information between individual time steps t ∈ T of a time series T. Here,
progressive means that we iteratively add new similarity information (i.e., distances between pairs
of time steps). The strategy basically for which time step pair its similarity is computed next.
The strategies for determining the next time step pair to compute—subsequently denoted as similarity
sampling—considered in this paper are now discussed in the following. Depending on their procedure,
they belong to two time types of categories: similarity pair-based and time step-based.

Similarity pair-based denotes the concept that pairs of time steps can be selected in an arbitrary
fashion, and therefore also completely independently from the samples taken so far (naturally, a pair
of time steps only needs to be computed once). More formally, this means that the next time step pair
(t0, t1) to compute the similarity for using metric d(t0, t1) is chosen arbitrarily from the full set of time
steps T (i.e., t0 ∈ T and t1 ∈ T). Here, the only restriction is that we limit ourselves to t0 < t1 due the
symmetry property of d (cf. discussion in Section 3.1).

In contrast, time step-based means that not individual pairs but time steps are progressively
added into consideration, and the similarity between all pairwise combinations of considered time
steps is computed before selecting new time steps. This means that only a subset T∗ ⊂ T is currently
considered. Before adding a new time step t ∈ T, t /∈ T∗, we first compute all combinations
t0 ∈ T∗ × t1 ∈ T∗ (with t0 < t1). Only when all pairwise combinations are computed, we add a new
time step to T∗.

The different sampling strategies (creating a set of similarity pairs P) we employ and evaluate in
this paper on the basis of these different approaches outlined above are as follows ((1) and (2) follow
similarity pair-based, (3)–(7) follow time step-based).

(1) uniform pair. In this strategy, the goal is to distribute samples in the temporal space T × T as
evenly as possible (in a progressive fashion). Doing this, we start out with a random sample pair
P = {(t0, t1)} (t0 ∈ T and t1 ∈ T). Subsequently, we then iteratively compute the new similarity
pair (t0, t1) that has the maximum distance to any of the pairs (t0, t1) ∈ P (i.e., to any of the pairs
that have been computed so far).
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(2) random pair. A time step pair—that has not been computed yet (/∈ P)—is chosen randomly and
processed next.

(3) random time. A random time step is selected that has not yet been considered (/∈ T∗). As described
above, before adding a new time step, first all pairwise combinations of time steps ∈ T∗ are
computed before proceeding further.

(4) uniform time. Select the time step in between the largest interval range ti+1 − ti in T∗ (with ti and
ti+1 denoting subsequent time steps ∈ T). In case there are multiple intervals with the same size,
we choose one randomly.

(5) distance-weighted time. Choose a time step randomly (similar to (3)), but the probability of
selecting an interval is weighted by ti+1 − ti − 1 (akin to the selection criterion in (4)).

(6) similarity time. Consider the distance between two subsequent time steps in T: d(ti, ti+1).
Add a time step in the interval with the largest distance.

(7) similarity-weighted time. Select an interval randomly to add a new time step to T∗, with the
probability being weighted by d(ti, ti+1).

The different sampling patterns arising from these seven different strategies are exemplified in
Figure 4 (distances which have not been computed yet are indicated in red). We achieve a large variety
of strategies, following completely random, uniform, and similarity-adaptive approaches.

uniform
pair

random
pair

random
time

uniform
time

distance
-weighted
time

similarity
time

similarity
-weighted
time

Figure 4. Different sampling strategies by example. Horizontally, we provide the results of a certain
sampling strategy, while vertically these strategies are demonstrate by means of different input data
sets. Similarity pairs that have not yet been computed by the sampling strategy are indicated in red.

5. Neural Networks for Similarity Estimation

In this section, we first discuss the basic model setup of our neural network (Section 5.1). We then
outline how we obtain and generate the data used for its training and validation (Section 5.2). On this
basis, we finally discuss our approach to train neural networks and to select the most appropriate
respective sampling strategy (Section 5.3).

5.1. Model Setup

Our model is designed to estimate one missing similarity pair (t0, t1) on the basis of other
available similarity information. The design choices described below are based on empirical tests,
informally evaluating different model designs and neural network setups against each other. Note that
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while our resulting design is the best we found in our tests, we cannot consider it optimal due to the
large search space (there is large variety of different ways to configure a neural network alone).

requested time step pair (t0*, t1*)

cubical region around (t0*, t1*)

subsets around t0* and t1*

both contained in cubical region and subsets

similarity information that is not considered

(a) t∗0 = 8, t∗1 = 25 (b) t∗0 = 11, t∗1 = 20 (c) t∗0 = 33, t∗1 = 34

Figure 5. Illustration of the different time step pairs that are considered for training at the example of
different time step pairs (t∗0 , t∗1) of interest (cf. Section 5.1, Considered Input Data).

Considered Input Data. For estimating the similarity information, we utilize a subset of
the available similarity information from different regions. In more detail, we jointly consider
two types of information in a (temporal) region of extent δ around the requested element (t∗0 , t∗1)
(individually, for each component of the pair, this results in a region of T0 = {t0 − δ, . . . , t0 + δ}
and T1 = {t1 − δ, . . . , t1 + δ}, respectively). An illustration of the considered time steps at different
examples is shown in Figure 5.

1. The cubical region around (t∗0 , t∗1), except for (t∗0 , t∗1) itself (blue in Figure 5):

Tδ(t∗0 , t∗1) = T0 × T1 \ (t∗0 , t∗1). (2)

This results in |T0||T1| − 1 elements. This gives the similarity of close pairs in temporal space.
2. Two subsets of the similarity matrix, one around t0 and one around t1 (i.e., containing all pairwise

combinations of time steps T0 and T1, respectively) (green in Figure 5). This results in a total of
|d(T0)|+ |d(T1)| (according to Equation (1)), and gives the similarity to close time steps for each
component of the pair.

In total, this accordingly results in I input elements (cf. Figure 5):

|Iδ| = (2δ + 1)2 − 1︸ ︷︷ ︸
cubical region (1.)

+ 2|d(Tδ)|︸ ︷︷ ︸
similarity context per component (2.,based on Equation(1))

. (3)

In cases where no similarity information is available (because it has not been sampled yet or it
is out of the temporal range), the respective element gets a dedicated (missing) value of m (in our
implementation we set m = −1, which clearly indicates a special value as similarity information is
generally quantified by positive values). Similarity pair information from the two different types of
information may also overlap (e.g., Figure 5b,c), in which case the respective similarity information is
considered redundantly as input for the neural network.

Neural Network Structure. Neural networks have three types of layers: input, hidden,
and output. There is exactly one input layer, with the number of neurons being determined by the
size of the input data. Based on the previous discussion regarding considered input data, this means
that we have a total number of |Iδ| input neurons (Equation (3)). The output layer also consists of
exactly one layer. However, here, we just use single neuron as only one specific similarity pair is
predicted at a time by our neural network. Regarding the hidden layers, there is much larger degree of
freedom : how many hidden layers to actually have in the neural network and how many neurons
(and which type) will be in each of these layers. Typically, these decisions have a significant impact on
the results that can be achieved, but respective decisions come down to experience and trial-and-error
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to a certain extent. In this work, we use one hidden layer, with the number neurons equalling the
number of neurons in the input layer. According to our experiments, this provides a good trade-off
between underfitting and overfitting. For each neuron, we use the sigmoid as an activation function.
Note that this is the design that worked best according to our experiments, but we do not consider it
to be optimal or any kind of definite solution to the problem (but rather a step toward it).

5.2. Training and Validation Data Preparation

Real-World
2D/3D Data

(Figure 1)

Compute
Similarity
(Figure 2)

Artificial
Similarity

Data
(↓Figure 7)

Modify
→ temporal

offset
→ temporal

scaling

Sample
(Figure 4)

→ sampling
strategy
(Section 4)

→ # samples

Training /
Validation

Data
(↓Figure 9a,b)

(a) preparation prior to run

(b) online generation during run (Algorithm 1)

Figure 6. Pipeline for preparing training and validation data.

Algorithm 1 Generation of similarity data sets (for training, validation, and testing)

1: . in: pool of similarity information P (composed of data sets Pi, featuring P# time steps
i time steps)

2: . in: number of sets nX
3: . in: number of time steps nT
4: . in: sampling strategy λ
5: . out: sets of data X
6: function DATA_SET_GENERATION(P, λ, nX , nT)
7: X ← ∅
8: while |X| < nX do
9: . choose data set

10: i← random_ randint(0 . . . |P| − 1)
11: . choose random step size s (i.e., scaling of the time series)
12: s← random_ randint(1 . . . P# time steps

i /nT)
13: . choose random offset o
14: o ← random_ randint(0 . . . · s · P# time steps

i − nT − 1)
15: . generate variant of Pi
16: P∗i ← ∅
17: for all e ∈ [0 . . . nT) do
18: P∗i ← P∗i ∪ Pi[o + se]
19: end for
20: . determine number of samples to take, maximum number computed via Equation (1)
21: nS ← random_ randint(0 . . . |d(nT)|)
22: X ← X ∪ {P∗i , nS}
23: end while
24: return X
25: end function

A large number of adequate training and validation data is crucial for the success when training
neural networks. However, the computation of real-world distances is very expensive and can only
be done for a few data sets. To overcome this issue, we generate additional artificial data and further
modify the similarity information. In detail, we use the following multi-stage approach to generate
a large variety of training and validation data (cf. Figure 6).
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Real-World 2D/3D Data. As input, we use a set of typical real-world 2D/3D + time data sets (Figure 1).
Compute Similarity. To compute the pairwise distances between different time steps within each

series, we use the approach proposed by Frey and Ertl [24,25]. It is used to make it
computationally feasible to directly compute the similarity between high-resolution field data
sets. Conceptually, it starts with an initial random assignment of so-called source elements from
one data set to so-called target elements of the other data set (each element refers to a (scalar) mass
unit given at a certain cell/position in the data). Then, this assignment is improved iteratively in
the following. In each iteration, source elements exchange respectively assigned target elements
under the condition that this improves the assignment. For this, the quality of an assignment
is quantified by d, that essentially computes the sum of weighted distances of the assignments.
Here, assignments are weighted by the scalar quantity that is transported. We use this value
d directly (on the basis of Euclidean distances) to quantify the distance between the respective
time steps. The respective results are shown in Figure 2. Please refer to Frey and Ertl [24,25] for
a more detailed discussion.

Artificial Similarity Data. Only using a small number of data sets is not sufficient to cover the large
variety of typical patterns of similarity information in general, and might also be dangerous
in terms of training the network regarding the concrete data rather than generalizing for
similarity estimation. Therefore, we added further, synthetically-generated time series data
to supplement this. Here, the idea is to mimic the typical patterns that we have seen occurring in
the similarity data, yet providing a larger variety to yield better generalization characteristics
after learning. For this, we used the following equation ψ for t̄ ∈ [0, 1), and three random values
ρ0, ρ1, ρ2 ∈ [0, 1):

ψ(t̄) = (t̄ρ0 + 0.5(1− t̄)) sin(t̄ρ1 + ρ2(1− t̄)) (4)

We then compute similarity information from these, and use it during training and
validation (Figure 7).

Figure 7. Input similarity information from synthetic data (Equation (4)).

Modify. We do not use the obtained similarity information directly, but randomly offset and scale
the time series to get numerous variations on the basis of the available data. We outline our
approach to prepare the training data X by means of Algorithm 1 (validation data is generated
accordingly). We randomly pick data sets from our collection of real-world and artificial data
(Line 10). To modify the data, we randomly choose a scaling factor s, that basically defines
the step size with which time steps are considered (Line 12). Then, we use a random offset,
which basically determines the first time step that is considered in a time series (Line 14). Finally,
we employ this information to generate a new training element P∗i (Lines 16–19), each one
consisting of nT time steps (we use nT = 35 throughout this work).

Sample. We then take a random number of samples s from the modified similarity data using the
respective sampling strategy (cf. discussion in Figure 4, Line 21).

Training / Validation Data. Finally, this yields the data that can be used for training and validation
of the neural network. In more detail, each training / validation data element consists of
a pair: (1) the original similarity data after Modify, and (2) the respective data after Sample.
Each (1) and (2) contains pairwise similarity information between nT time steps (a portion of this
information has been removed from (2)).
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5.3. Similarity Estimation

Algorithm 2 Our approach to estimate missing similarity information based on neural networks (see
Figure 3 for a conceptual overview).

1: . in: pool of similarity information P
2: . in: number of sets nX
3: . in: number of time steps nt
4: . out: model for similarity estimation Θ
5: function TRAIN_SIMILARITY_ESTIMATION(P)
6: Ytrain ← DATA_SET_GENERATION(P, ntrain, nT)
7: Yvalidate ← DATA_SET_GENERATION(P, nvalidate, nT)
8: . Select Sampling Model Λ
9: č← ∞

10: . Loop over all sampling strategies Λ (as discussed in Section 4)
11: for all λ ∈ Λ do
12: . obtain nλ samples using sampling strategy λ
13: Xλ

train ← λ(Ytrain)
14: . we use the Adam optimizer [40] for training the neural network
15: Θλ ← TRAIN(Xλ

train, Ytrain)
16: . do validation
17: Xλ

validate ← λ(Yvalidate)
18: c← evaluate(Xvalidate, Yvalidate)
19: if c < č then
20: č← c; λ̌← λ
21: end if
22: end for
23: . continue training with best selected model
24: loop
25: Ytrain ← DATA_SET_GENERATION(P, ntrain, nT)
26: Xλ̌

validate ← λ̌(Yvalidate)
27: Θλ̌ ← TRAIN(Xλ̌

train, Ytrain)
28: end loop
29: return Θ
30: end function

Our overall approach to use neural networks to estimate missing similarity information and to
select sampling strategies has been conceptually outlined already in Figure 3. In the following, we now
aim to describe it in more detail by means of Algorithm 2.

First of all, we generate separate sets for training and validation using the procedure described
above (Lines 6 and 7). On this basis, we then aim to determine the sampling strategy with the lowest
cost č (Lines 9–22). For each sampling strategy λ ∈ Λ (Line 11), we then obtain a sampled (i.e.,
sparse) variant of the similarity information (Line 13). We then use this as input for training (Line 15).
During validation (Lines 17–18), we determine a cost c that we then compare against the cost obtained
by other strategies. If it is smaller than the smallest cost č determined so far (Line 19), we save the
respective model λ of the respective strategy as the best one so far (Line 20). After testing all models,
we continue refining the model that corresponds to the sampling strategy that led to smallest validation
cost č (Line 27).

6. Results

In this section, we first discuss our evaluation setup (Section 6.1). We then evaluate the results
with different sampling strategies (Section 6.2) as well as similarity estimation with neural networks
for the selected strategy (Section 6.3). Finally, we discuss properties and limitations of our approach
(Section 6.4).
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6.1. Evaluation Setup

Parameters, Software and Hardware Setup. For our implementation, we use Python and
TensorFlow [41] (r0.11). For training, we used the GPU implementation on the basis of CUDA
using a GTX1070 on an Ubuntu 16.04 system with 32GB of RAM and an Intel Core i7-4770 CPU.
Furthermore, we employ a batch size of 4096 and 1024 training iterations. In total, this means that there
are four million training cases in each epoch. For validation, we use 16384 cases. As discussed above,
each individual case consists of a reference (i.e., a modified version of a real-world or a synthetic data
set) as well as a sampled version of it. In our evaluation, we randomly vary the number of samples
such that they cover between 10% and 50% of all pairwise similarity information. We use squared
distances to assess the difference of the estimated similarity to the reference. In this work, as mentioned
above, we evaluate our approach by considering time windows of size nT = 35. In total, the generation
of training sets, training, and validation takes around six hours for testing each sampling strategy using
our setup described above. Note that overall the goal here is to train a network that is able to predict
similarity for a wide range of temporal data, which is why we train and validate considering a large
variety of generated training data. This means that the training process only needs to be done once,
and the resulting neural network can then be applied to estimating similarity data as-is. Evaluating
the trained network can be done very quickly and yields comparable performance to other types of
estimation considering a similar amount of data for estimation (e.g., via inverse distance weighting as
discussed below).

Comparison against Inverse Distance Weighting for Similarity Estimation. We compare our
approach for estimating missing similarities with neural networks against a standard approach for
scattered data interpolation, namely inverse distance weighting. Here, the similarity information
corresponding to time step pairs d′(t0, t1) is calculated with a weighted average of the values available
for the known pairs. The neighborhood considered here is the same as is used by the neural
network (i.e., as specified in Equation (2)). With this, the value estimation d′(t0, t1) for a missing
(i.e., not yet sampled) value is computed as follows (D denotes a map of previously computed
similarity information, with m being returned for unknown pairs):

d′δ(t0, t1) =
∑(t̄0,t̄1)∈Tδ(t0,t1)

ω(t̄0, t̄1)D(t̄0, t̄1)

∑(t̄0,t̄1)∈Tδ(t0,t1)
ω(t̄0, t̄1)

, (5)

with

ω(t0, t1) =


(

1√
(t0−t∗0)

2+(t1−t∗1)
2

)p
, if D(t0, t1) 6= m

0 , else.
(6)

Here, p is a positive real number that specifies the power parameter. Weight decreases as distance
increases from the interpolated points. Larger values for p assign greater influence to values closest
to the interpolated point, with the result converging toward nearest neighbor interpolation for large
values of p.

6.2. Sampling Strategies

For evaluating the different sampling strategies (cf. Section 4) regarding their performance in the
context of a neural networks for similarity estimation, we train a neural network over 2048 epochs
with respectively sampled data.

For each sampling strategy, we further compare the validation results of the neural network to
the results achieved with inverse distance weighting for different power parameters. The respective
results are shown in Figure 8. Most prominently, it can be seen that the sampling strategies relatively
perform similarly across all estimation approaches: uniform pair and uniform time yield the best
results (lowest validation cost), while random time and similarity time yield the worst results here.
On the basis of the different sampling patterns in Figure 4, we assume that the main reason behind this
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are the resulting larger temporal regions in which no similarity information is available. For these,
it is much more difficult across all similarity estimation approaches to yield reasonably good results.
Note that we consider a number of samples that is randomly chosen to be between 10% and 50%
of the full sampling. In preliminary tests with a larger number of samples, adaptive approaches
performed much better relatively. This indicates that a more complex combination of strategies (or
more advanced sampling strategies overall) could be worthwhile to consider in this context. However,
a closer investigation and evaluation of this remains for future work.

The best result overall in our evaluation setting is achieved by our neural network-based similarity
estimation with the uniform time sampling strategy. Not only in this case but within each sampling
strategy, it can be seen that our neural network-based approach consistently yields better results (i.e.,
lower validation cost) than any inverse distance weighting variant. Please refer to the upcoming
section for a closer discussion of the different reasons behind this at the example of the uniform time
sampling strategy.
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IDW (p = 8)
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Figure 8. Results of different adaptive sampling strategies and interpolation schemes after the initial
phase of sampling strategy selection (Select in Figure 3). Respective costs are given for the estimation
with the trained neural network as well as inverse distance interpolation (IDW) for different power
parameters p. For the neural network, not only the results for training with all data sets (Neural Network
(all)) are presented, but also the validation costs are provided for neural networks that have only be
trained with either the von Kármán data set (Neural Network (von Kármán) on the basis of Figure 2d) or
the Supernova data set (Neural Network (Supernova) on the basis of Figure 2e).

For analyzing the utility of using a variety of different data sets for training, we also include
the results of networks that have just been trained on the basis of one data set. For this evaluation,
we use the von Kármán data set (Neural Network (von Kármán) in Figure 8, employing similarity
information from Figure 2d) as well as the Supernova data set (Neural Network (Supernova), on the
basis of Figure 2e). In both cases, still the same total number of training data sets is generated via
modification and sampling. This means that the only difference is that just a single real-world data
set (and no artificial similarity data) is employed for training, but the same validation process is used
as for Neural Network (all) (i.e., all data sets are always considered for validation). It can be seen
in Figure 8 that the respective neural networks trained with a single data set deliver worse results
than the neural network that has been trained more diversely with all data sets (Neural Network (all)).
However, they still produce reasonable results that are comparable to the quality generated by inverse
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distance weighting. Comparing Neural Network (von Kármán) and Neural Network (Supernova) against
each other, it can be seen that their relative performance depends significantly on the sampling strategy
as well. Essentially, this indicates that how successful different sampling strategies are also depends
on the type of properties and characteristics of the similarity information that is employed for training.
Among others, this supports the approach—as discussed in Section 3.3—of taking a variety of strategies
into account and using an automatic approach to select the best one for a provided collection of data
sets of interest. A more exhaustive evaluation of respective properties remains for future work.

6.3. Similarity Estimation

Next, we discuss the results of similarity estimation with the uniform time sampling strategy that
has been determined to deliver the best results in our setup. Reference similarity information, samples,
and the reconstructed information with the estimated similarities for our neural network as well as
for inverse distance interpolation are shown in Figure 9 (at the example of a subset of the validation
set). Overall, as reflected by the small cost/error value, it can be seen that even in cases where a large
portion of the data is missing, the trained network performs well in filling in the missing information.

Good results can be achieved with our neural network-based approach over a large variety of
cases. Despite potentially only a fraction of the similarity information being available and/or temporal
changes occurring at a high rate, we are still able to yield a good approximation of the actual values.

In comparison, inverse distance weighting struggles particularly in the case of a higher rate of
changes (e.g., case 5 and case 10). As we consider a fairly large neighborhood (δ = 6), the lower
power variants for inverse distance interpolation that also give further away samples a significant
weight yield insufficient results, in particular for the cases with a large variation (i.e., p = 1 and p = 2).
In turn, a large power parameter (p = 16) effectively only considers the closest points, which yields
blocky (non-smooth) results which is particularly noticeable in some smoother cases (e.g., cases 7 and
8). The best performance of inverse distance weighting overall is achieved in-between with p = 4 and
p = 8, that shares both issues of a high and a low power parameter, yet to a lesser extent. However,
generally inferior results are achieved in comparison to the similarity estimation by the neural network.
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case 0 case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8 case 9 case 10

(a) Reference.

(b) Sampling (missing colors indicated in red).

0.00064 0.00042 0.00050 0.00092 0.00064 0.00142 0.00034 0.00072 0.00021 0.00014 0.00325

(c) Neural Network (all).

0.03727 0.01514 0.00362 0.01534 0.01293 0.06094 0.00347 0.00546 0.00457 0.01209 0.01596

(d) Inverse Distance Weighting (p = 1).

0.01575 0.00573 0.00138 0.00842 0.00760 0.05185 0.00124 0.00328 0.00227 0.00448 0.01319

(e) Inverse Distance Weighting (p = 2).

0.00512 0.00102 0.00025 0.00562 0.00493 0.04255 0.00019 0.00269 0.00123 0.00086 0.00987

(f) Inverse Distance Weighting (p = 4).

0.00434 0.00066 0.00014 0.00570 0.00440 0.04080 0.00011 0.00280 0.00114 0.00055 0.00910

(g) Inverse Distance Weighting (p = 8).

0.00435 0.00066 0.00014 0.00588 0.00433 0.04075 0.00011 0.00284 0.00115 0.00054 0.00909

(h) Inverse Distance Weighting (p = 16).

Figure 9. Reference, sampling, and estimation of similarities for different interpolation strategies.
The numbers below the plots with estimated similarity give the respective validation cost ((c)–(h)).



Informatics 2017, 4, 27 17 of 20

6.4. Discussion

While the approach presented in this paper delivers promising results, there are also a variety of
limitations and shortcomings that we aim to briefly discuss in the following. On this basis, we also
indicate plans and directions for future work to overcome some of these limitations.

First of all, there is a large parameter space in setting up, configuring, training, etc. of neural
networks. Typically, these decisions have a significant impact on the results that can be achieved,
but respective decisions come down to experience and trial-and-error to a certain extent. The paper at
hand presents the best design of a network for spatio-temporal similarity estimation we determined
so far according to our experiments. However, we do not consider it to be optimal or any kind of
definite solution to the problem. To find a better solution, we aim to systematically try different types
of neurons, different numbers of layers and numbers of neurons in each layer, different batch sizes
and learning rates, etc. As discussed above, we also found that more advanced sampling similarity
strategies beyond the rather basic ones considered in this paper could be worthwhile to pursue and
potentially yield better results with the same number of samples. Likewise, although the formulation
of the synthetic data is comparably simple (Equation (4)), it can create a variety of different structures
we see in practice (in combination with the additional modifications applied to the data). However,
a more elaborate method could be able to more comprehensively represent a wider variety of time
series characteristics. To develop such a more advanced artificial representation of similarity data in
future work, we aim to systematically consider a large and diverse set of similarity information in
different kinds of time series data.

Conceptually, the task that we solve with our neural network can be seen to be the generation of the
full set of pairwise similarity information from a given set of samples. This problem can be described as
a general reconstruction or interpolation problem from sparse samples, and essentially a wide variety
of methods can be applied to that problem. Naturally, this includes inverse distance weighting that
we use for the sake of comparison above, but also more complex techniques from signal processing
like compressed sensing. However, note that there are special properties that differentiate time series
similarity data from standard signals or images. These properties depend on the specific metric that is
used for assessing the difference between two time steps. For instance, for the distance operator used
in this paper, there is the symmetry property (cf. Section 3.1), and d(ta, tb) + d(tb, tc) ≈ d(ta, tc) holds
for linear behavior in between ta and tc. We consider our basic approach described in this paper to
be generally applicable for the training and estimation of different types of data and metrics, as we
do not explicitly encode these properties, but rather aim to let the network adapt to this through
training. The only exception to this is the symmetry property that we explicitly exploit for the sake of
efficiency (resulting in the triangle-shaped similarity plots), but the extension to non-symmetric metrics
is straight-forward. In general, we assume that the more cross-relations there are in the data, the more
do we benefit from using a learning-based approach that is able to capture these respective properties.
However, a closer evaluation of these aspects is subject to future work. Also, while in this paper
we limit ourselves to comparing our neural network-based approach to inverse distance weighting
methods (that are the most popular approach in the field of computer graphics and visualization
for scattered data interpolation), advanced approaches from different domains (particularly signal
processing) could also yield good results in our considered scenario. A thorough comparison against
(different implementations of) these methods also remains for future work.

Furthermore, we aim to evaluate the utility of our approach in real-world visualization scenarios.
As discussed above, there is a variety of visual analysis applications that can directly use the estimated
similarity information for automatic selection and aggregation of data, and we would like to evaluate
the impact of the quality of the distance estimation on the final visualization result. While we believe
that our approach is generally applicable in terms of methodology, we particularly aim to more
thoroughly evaluate the generality of a trained network. In our evaluation (cf. Figure 8 and respective
discussion in Section 6.2), we already consider the extreme example of a network that has just been
trained on the basis of one data set (that has however been modified as discussed in Section 5.2). Here,
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it can be seen that, while delivering significantly worse results than our comprehensively trained
network, it still yields decent results that are comparable in quality to the reference inverse distance
weighting techniques. While this can be interpreted as a small indicator that we are able to achieve
good results for general similarity information from a small set of data sets, a more extensive evaluation
is required to thoroughly analyze respective properties.

7. Conclusions

In this work, we presented different strategies for the progressive computation of similarity
information in spatio-temporal data, along with an approach for estimating missing distance
information. For similarity estimation, we proposed to use a neural network design that directly
takes the already available similarity information of a time series into account. We then automatically
determined the sampling strategy that yields the best result in combination with respectively trained
networks for estimation. For training and validation, we used a variety of time-dependent 2D and 3D
data from simulations and measurements as well as artificially generated data.

We could demonstrate that we achieve good results already with our proposed approach,
with further improvements being subject to future work. In particular, we further aim to further explore
the huge parameter space inherent to the setup and training of neural networks by systematically
testing different types of neurons, different numbers of layers and numbers of neurons in each layer,
different batch sizes and learning rates, etc. to further improve our results. We also plan to to evaluate
the impact of the quality of estimated distance estimation on the final result of different types of
visualization applications. Finally, we aim to compare our approach to a larger variety of alternative
approaches for similarity estimation, develop more advanced techniques for artificial data generation,
and conduct a more comprehensive evaluation regarding generalization properties.
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