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Abstract: In wireless sensor networks (WSNs), efficient energy conservation is required to prolong
the lifetime of the network. In this work, we have given emphasis on balanced energy consumption
and energy holes avoidance. This paper proposes a multi-gateway-based approach to reduce the
transmission distance between the sender and the sink node. The area to be monitored is divided
into regions and gateway nodes are deployed at optimal positions. We have designed a transmission
scheme, in which sensors in the sink region communicate directly to the sink, sensors in the gateway
region communicate directly to the gateway, and sensors in the cluster region transmit their data
directly to their respective cluster head which transmits data to the gateway in its region. If the
distance between a cluster head and the sink is less than the distance between the cluster head
and the gateway node, the cluster head transmits data to the sink instead of the gateway node.
We have compared the proposed protocol with Low-Energy Adaptive Clustering Hierarchy (LEACH),
Gateway Based Energy Aware Multi-Hop Routing (M-GEAR), and Gateway Based Stable Election
Protocol (GSEP) protocols. The protocol performs better than other protocols in terms of throughput,
stability period, lifetime, residual energy, and the packet transmitted to the sink.

Keywords: wireless sensor network; energy holes; multiple gateway nodes; balanced energy
consumption; routing protocol

1. Introduction

A wireless sensor network (WSN) contains a large number of densely-deployed sensor nodes that
have limited energy and data processing capability. Sensor nodes monitor regions, gather data and
transfer data towards the sink [1]. Sensors are being used in many applications, e.g., military area,
habitat, and smart home monitoring [2].

Energy efficiency is one of the main concerns in designing of a routing protocol for a WSN.
The sensory data is forwarded to the sink node, by using one-hop or multi-hop routing. In the case
of multi-hop communication, some nodes transmit only their data while others transmit their own
data plus data of other nodes. Therefore, energy depletion of one node varies from another, i.e., nodes
nearby the sink node have more energy depletion than other nodes. This gives rise to the creation of
energy holes near the sink [3,4]. Due to the energy holes problem further data transmission towards
the sink is not possible. If nodes use direct communication or single-hop routing, nodes which are
at a far distance from the sink will deplete energy faster than other nodes in the network. It will
create energy holes in the outer area of the network and the area will remain uncovered at this place.
Therefore, the network lifespan ends shortly and energy of the nodes would be unexploited [5,6].

There are several existing techniques which can improve network lifetime by balancing energy
consumption, like clustering [7], data fusion [8], an optimal node deployment [9], and using the
assistance of the gateway nodes [10].
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We propose a multi-gateway-based energy holes avoidance (MGBEHA) routing protocol for
a WSN. In this work we have achieved balanced energy depletion by reducing the transmission
distance between the transmitter and the receiver. The network is divided into multiple regions.
One gateway node is placed between two regions. Nodes in different regions use different types
of communication. Nodes near the sink communicate directly with the sink, nodes near gateways
communicate directly with the gateway, and in other regions communicate with cluster heads (CHs).
We have compared our protocol with the LEACH [7], the M-GEAR [11], and the gateway-based stable
election multi-hop routing protocol for wireless sensor networks (GSEP) [12] protocols.

The MGBEHA protocol is novel, as it provides the solution of the energy holes problem by using
gateway nodes. The existing research mainly uses the gateway nodes to improve lifetime of the
network, but the use of gateway nodes for energy holes problem is not available until now. Moreover,
the MGBEHA protocol deploys the gateway nodes in an optimal way with respect to the size of the
area. If the size of the area is large, an additional number of gateways can be deployed in the network.
There is no constraint on the number of gateways which can be deployed in the area. The MGBEHA
protocol supports scalable networks, whereas the existing related research has fixed the number of
gateways and does not provide scalability. We have also computed the throughput improvement ratio
per round for all protocols, and it was never provided in the existing related literature.

Nadeem et al., in [11] have proposed a gateway-based model to improve the lifetime of the
network. They have deployed sensor nodes in the logical regions on the basis of their location in the
sensing field. They have placed the gateway node at the middle of the sensing field. The gateway node
collects data from the other nodes in the field and transmits it to the base station (BS). This approach
improves the network’s lifetime, but fails when the size of the area increases as there is a single
centralized gateway node to assist entire nodes in the area. While, in our approach, the number of
gateway nodes increases as the size of the area increases. Moreover, there is no constraint on the
number of gateway nodes, which can be deployed in the network area.

Authors in [12] have proposed a gateway-based model in heterogeneous sensor networks (nodes
with unequal initial energy). In this method some gateway nodes are placed at the border of the
area. Cluster heads, which are inside the network, calculate distance between itself and all gateway
nodes and then select the gateway node which is nearest to it. Then cluster heads transmit data to the
gateway node. This approach also improves the network’s lifetime, but there are some issues with this
protocol. Its major requirement is heterogeneous network which is always not possible; it takes an
approximate number of gateway nodes. The number of gateway nodes deployed is not determined
in a logical way. A small number of gateway nodes can be inefficient for a larger area and the large
number of gateways is unnecessary in a small area. Gateway nodes are positioned at the border of
an area; as a result nodes in this area consume less power in transmission but nodes in remote area
consume more power. As the size of area increases this situation gets worst.

The rest of the paper is organized as follows: Section 2 presents the related work. A node
deployment model has been presented in Section 3. Section 4 describes the energy consumption model.
Section 5 explains the proposed protocol. Section 6 provides the proposed algorithm. Section 7 gives
the usefulness of the protocol in real life. Section 8 provides an energy consumption analysis of the
MGBEHA protocol. Section 9 provides simulation and results analysis. Section 10 gives the details of
future work and Section 11 concludes the paper.

2. Related Work

There are various methods available in the literature to maximize the lifetime of the sensor
networks [13–18], but the lifetime of WSNs is most affected by the energy holes problem. The fewer the
number of energy holes present in the network, the longer the lifetime of the network. Therefore, the
energy holes should be avoided to the greatest level possible. To facilitate the discussion, we categorize
the existing research as follows.
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2.1. Node Distribution Strategies

Authors in [5] have given detailed guidelines to avoid energy holes in a uniform node distribution.
They have analyzed that the energy holes problem cannot be completely removed from the network.
Therefore, efficient mechanisms must be used to minimize the holes problem. Authors in [6] have used
a non-uniform distribution of nodes near the sink to avoid energy holes near the sink. They assumed
that if the node density is higher in the sink area than the outer part of the network, more nodes
will be available to relay data of other nodes. When some nodes die, other nodes are still available
for communication. This will increase the network lifetime as the number of data forwarding nodes
increases near the sink area. Authors in [19] have used a transmission range-based energy consumption
to establish uniform energy consumption among nodes. Node density in different regions of the area
varies according to distance of nodes from the sink. Authors have computed the traffic load on sensor
nodes and found that load is at a maximum in the innermost corona. As the distance increases from the
outermost corona area to the inner area which is nearby the sink, node density also increases. In other
words, the authors have used a non-uniform node distribution strategy. Our model follows a uniform
node distribution strategy.

2.2. Data Aggregation Based Approaches

Jia et al. [20] have used a transmission based scheme to avoid energy holes. They have restricted
the transmission of duplicate messages for any pixel in the area. Reduction in the number of packets
transmitted improves network lifetime. An entropy (a measure of the degree of randomness or
disorder)-based model to preserve sensor energy has been proposed by Sinha et al. [8]. Sensors
periodically sample the data and transmit to the sink; however, the sampling produces useful
data as well as useless raw data. The entropy-based model is used to perform data aggregation
by extracting high-precision data from the sensors. The entropy is determined by different probability
models. They have also proposed an energy efficient clustering process of the sensor nodes in the
network. At the beginning, sensors sensing the different type of data were placed within separate
clusters. Then, remaining un-clustered sensors assess their deviation with respect to the clustered
neighbors and eventually joins the least-deviated cluster in the network. We have also used data
aggregation techniques in our model. Data aggregation is performed by cluster heads as well as by the
gateway nodes.

2.3. Uneven Clustering Approaches

Ma et al., in [21] have used unequal clustering with non-uniform node distribution to mitigate
the energy holes problem. Authors have calculated the energy consumption rate of each node
in inter-cluster communication and intra-cluster communication. They concluded that energy
consumption rates can be minimized by resizing the cluster size. The energy consumption rate
(ECR) per node of each corona is determined. If the ECR is large, then the size of the clusters near
the sink is less than the size of the cluster far away from the sink, otherwise not. Soro et al. [22] have
studied the hotspot problem in wireless sensor networks. The hot spots are the certain section of the
area where the energy of the nodes drains faster as compared to energy of nodes in other areas. If the
network follows a single-hop communication, nodes farthest from the sink die soon; on the other hand,
if the network follows multi-hop routing, nodes near the sink die soon. Authors have exploited the
uneven clustering approach to solve the hotspot problem.

2.4. Other Clustering-Based Approaches

Authors in [23] have done an analysis of different cluster-based protocols for the energy holes
problem. They have computed the energy consumption of nodes in different regions at different
times and found out that the node density has a small influence on power utilization of cluster-based
networks. Bencan et al. [24] have considered heterogeneous clustering schemes where different rings
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contain sensor nodes with dissimilar initial energy. The cluster heads in inner rings can transmit data
directly towards the sink, while cluster heads (CHs) in outer ring forward data to the cluster heads of
inner rings.

Singh et al. [25] have proposed an energy-efficient clustering algorithm with load balancing to
maximize network lifetime. Initially they have proposed a density-based dynamic clustering (DDC)
algorithm for clustering the sensors in the network area. The DDC algorithm uses the subtractive
clustering to generate the cluster seeds. The subtractive clustering computes the sufficient number
of clusters (seeds) and their position in the network area. The seed node provides a unique cluster
id which is used to identify a cluster among all the clusters in the network. The seed node generates
a packet with its unique id and broadcasts this packet to all the neighboring nodes. A receiving
node examines the packet and accepts it, if it is not already clustered and then broadcasts it to the
neighboring nodes. However, if the receiving node is already clustered, it simply discards the packet.
This process is repeated until all of the nodes in the network are clustered. They have also designed
a distributed independence set discovery (DISD) method for cluster head selection. The independence
set provides a maximum possible coverage of area by the selected nodes. They have vigorously set
up an optimal sensor cover to control maximum sensors inside a cluster and consequently making
an in-dependence set (IDS). In the CH selection, only the members of Cluster Heads are permitted to
take part. A mandatory energy level for becoming a cluster head is defined. A node which satisfies
this energy level becomes the cluster head.

Authors in [26] have divided the network area into circular regions. The density of nodes in the
inner circular region is more than the density of nodes in the outer circular region. Initially CHs are
chosen from inner region. When the total residual energy of inner region becomes lower than the
outer region, CHs are selected from outer region. The energy of both the regions is calculated at every
round. The cluster heads are always selected from the region of higher energy. In this way the energy
of the entire area is consumed uniformly, so the chance of energy holes in the area becomes minimal.
We have used a LEACH-based clustering method in our protocol.

2.5. Gateway Based Approaches

In the clustering techniques, cluster heads are selected from the normal sensors which may
expire rapidly due to fast energy diminution for such an additional workload. Therefore, some
researchers [27–29] have suggested the use of some extraordinary nodes called gateways or relay
nodes, which are equipped with superfluous energy and larger communication range than the normal
sensor nodes.

Authors in [30] have proposed a fault tolerance and gateway-based energy-efficient method.
In their method, gateway nodes perform the work of cluster heads. Hence, they have considered that
the gateways are also energy constrained and can fail during network operation. They have considered
the problem of failure of cluster head (CH)/gateway. In clustering-based methods, if a CH node fails,
all member nodes will not be able to transmit data. Authors have used a heterogeneous network in
which a CH is equipped with more battery power than non-CH nodes and it acts as a gateway node.
They have proposed a distributed algorithm for fault tolerance routing (DFTR) which is based on the
distance and residual energy parameters. The DFTR selects the next hop gateway in such a manner
that energy utilization of the gateways is balanced. It also considers those gateways which have no
next hop gateway towards the sink. In our model, gateway nodes are not energy constrained; therefore,
there is no need to search the availability of next hop gateway node in each round of the algorithm.
There is no possibility of a gateway node’s failure.

Authors in [31] have introduced a gateway node-based load balancing scheme which assigns
the sensor nodes to gateways in such a way that load of all gateways is minimized. However, in
our method, there is no fixed number of nodes assigned to a gateway node. In our model, there is
a region-wise distribution of nodes. A gateway node can handle the data of any number of nodes,
within its region.
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Kannan et al. [32] have proposed the gateway based distributed cluster head scheduling (DCHS)
algorithm. The authors have partitioned the network into primary and secondary tiers by using
the received signal strength indicator (RSSI) of the sensors from the base station. Cluster heads are
present in the primary tier while cluster nodes are present in the secondary tier. This two tier approach
decreases the communication distance between cluster heads and their member nodes. Therefore,
similar to our method, this approach also reduces the consumption of transmission energy by reducing
the transmission distance. The DCHS reduces the distance between the cluster head and cluster node,
while our method reduces the transmission distance between the cluster head and the sink node.
In the DCHS, the base station calculates the aggregate RSSI value of all nodes and decides the tier
of the nodes. Nodes which have higher RSSI values belong to the primary tier while others belong
to the secondary tier. Next, the base station elects three types of nodes in the primary tier, such as
CHs (cluster heads) which communicate with cluster nodes, G1 (gateway nodes) which send the data
between the primary tier and the base station, and G2 (gateway nodes) which operate as the relay
nodes between primary and secondary tiers.

Taruna et al. [33] have proposed a gateway node and multi-hop cluster-based routing protocol.
They have assumed unlimited battery power in the gateway nodes. The cluster heads and the gateway
nodes form a multi-level hierarchy in the network. This hierarchy is used for data transmission
between the sensors and the base station. However, this model restricts the number of cluster heads in
a network. If the size of the area increases, the number of cluster heads cannot cover the entire area.
Moreover, the number of gateway nodes and their position are fixed. It can create unbalanced energy
consumption in the area. In our model, the number of gateway nodes and cluster head are not fixed.

Koteswararao et al. [34] have also proposed multi-hop cluster routing. The authors have used
normal sensor nodes as the gateway nodes. They have not provided an unconstrained power supply to
the gateway nodes. To avoid quick energy depletion of gateway nodes, each gateway node is associated
with only one cluster head. The main drawback of this protocol is the one-to-one relationship between
the cluster head and the gateway node. If the number of cluster heads is more than the gateway nodes
then the algorithm will fail. Moreover, after some rounds the energy of all gateway nodes will deplete,
but there is no provision of a selection of new gateway nodes. In our model, gateway nodes have
an unlimited power supply and one gateway node can be associated with any number of cluster heads
of its region.

Sheenam et al. [35] have proposed the gateway-based distributed energy efficient clustering
(G-DEEC) protocol in a heterogeneous sensor network. The authors have used rechargeable and
stationary gateway nodes, which are placed at the center, corners, and the middle of the sensor field.
Although the number and position of gateway nodes facilitate the communication between each cluster
head and the gateway nodes, but the algorithm does not specify the process of gateway node selection.
A cluster head can transmit data to any gateway node. If a cluster head selects a distant gateway node,
transmission energy consumption will be high. In our method, a cluster head can only transmit to the
gateway node of its region.

In our method, the number of gateways can increase as the size of area increase. Thus, we use
gateway nodes and clustering techniques to avoid energy holes and improve the network’s lifetime.
Gateway-based sensor networks are also suitable in real-life scenario as shown in [36].

3. Node Deployment Model

We have considered various scenarios of the MGBEHA protocol according to the size of the area;
e.g., one with two gateway nodes and another with four gateway nodes as shown in Figure 1a,b.
Figure 2a–c shows scenarios with 6 GW, 10 GW, and 20 GW. There are four types of nodes in each
scenario; normal sensor nodes, cluster head, cluster members, and the gateway node. In the beginning,
other than gateway nodes, all the nodes are normal, but after the clustering process, some nodes
are selected as the cluster heads and some as the cluster members. If the node is a cluster member,
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it consumes power in transmission only, while if the node is a cluster head, it consumes power in
transmission, receiving, and aggregating the received data. Basic assumptions are as follows:

‚ The Surveillance field is a two dimensional area.
‚ Total N homogeneous sensor nodes equipped with equal initial energy have been deployed

randomly and uniformly in the area. All nodes are assigned with a unique identifier (ID) and these
are capable of information collection. The sink node is at the center of the area and surrounded by
a predefined area.

‚ One gateway node is deployed between every two regions and it is surrounded by
a pre-specified area.

‚ Sensor nodes, sink node, and gateway nodes are stationary after deployment.
‚ Sink node and gateway nodes have an unconstrained power supply.
‚ Location information is accessible to all sensors and gateway nodes either through an embedded

GPS device or through some location-finding algorithm.
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4. Energy Depletion Model

For a first-order radio model, energy consumed in transmission depends on the distance
(d) between the transmitter and receiver [27]. When the distance is comparatively far away, the
multiple-path fading channel model (εtwo-ray-amp; d4 power loss) is used, otherwise the free space
model (εfriss-amp; d2 power loss) is used. For a k bit message and distance d, transmission energy (ETX)
consumption is as follows:
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ETX pk, dq “

#

kˆ Eelec ` kˆ εfriss´amp ˆ d2, d ă d0

kˆ Eelec ` kˆ εtwo´ray´amp ˆ d4, d ě d0

+

(1)

Energy consumed in receiving k bits over distance d is as follows:

ERX pkq “ Eelec ˆ k (2)

where ERX represent the energy consumed in receiving of k data bits and Eelec is the energy used to
activate the transmitter and receiver circuit board. εfriss-amp and εtwo-ray-amp are amplifier energies
used for free space and multipath fading model, respectively. The distance d0 is a threshold value
known as a crossover point [27]. The energy consumed in the aggregation (EDA) of m messages is
given by:

Em pm, kq “ mˆ kˆ EDA (3)

where the size of each message is k bits.

5. Multi-Gateway-Based Protocol

The LEACH [5] protocol consumes energy quite efficiently, but there are several drawbacks
associated with it that may lead to the energy holes problem in the network. e.g., the size of a cluster
is not predetermined in the LEACH protocol. The size of the cluster can be large or small. If the
cluster size is large, the distance between the CH and a member node becomes large and the energy
consumption for intra-cluster communication will increase. If the large size clusters are formed near
the sink, the energy of nodes near the sink area will deplete quickly. After some rounds the energy of
these nodes will be completely exhausted and energy holes will emerge in this area. In our protocol,
the clustering process is well-organized within the region and clusters are not oversized.

In the LEACH protocol, CHs use direct (single-hop) communication towards the sink; if the
distance between CH and sink is larger, more energy will be consumed in transmission. Energy holes
will develop in remote areas of the network. We have reduced the transmission distance between
CH and the sink by deploying a gateway between them. As the transmission distance is reduced,
energy consumption in transmission is also reduced and there is an improvement in network lifetime.
In LEACH, the number and position of cluster heads (CHs) are not predetermined, and it is possible
that CHs are not uniformly formed over the area and some nodes do not have a nearby CH. We have
solved this issue by division of the area into regions and a separate clustering process in each region.

5.1. Division of Area into Regions and Gateway Nodes Deployment

In order to provide uniform distribution of CHs throughout the area, the protocol divides the
area into multiple regions. If the area is large, it can be further divided into a larger number of regions.
In our protocol number of regions is not fixed as in M-GEAR protocol [6]. Instead, in our protocol, the
number of regions more or less depends on the size of the area.

The entire area is divided into three types of regions: sink region (SR), gateway region (GR), and
cluster region (CR). Each cluster region has a separate clustering process and has its own CHs; every
node in the CR is a member of some nearby cluster. The formation of cluster regions also minimizes the
distance from CHs to sensors. This results in a lower communication cost and lower energy depletion.
To avoid the formation of energy holes near a receiver node, the clustering process is not performed in
the sink and gateway regions. We have taken two scenarios to show how the area can be divided into
multiple regions. As shown in Figure 1a, the 100 ˆ 100 m2 area is divided into four cluster regions,
two gateway regions, and one sink region. In Figure 1b, the same area has been divided into eight
cluster regions, four gateway regions, and one sink region. When the area is divided into eight regions,
two additional gateways are deployed in the region. In both types of division, one gateway node is
deployed between every two regions.
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If the number of regions increases, the number of gateway nodes also increases. There should be
an appropriate division of area into regions. If the area is small then it is useless to divide the area
into a large number of regions. If the area is large, it can be divided into a greater number of regions.
For a 100 ˆ 100 m2 area, deployment of four gateways produces better results than the deployment
of two gateways. Therefore, for a 100 ˆ 100 m2 area, an appropriate value of the gateway node
is four. Figure 1a shows a multi-gateway-based energy holes avoidance routing protocol with two
gateway nodes (MGBEHA 2 GW) and Figure 1b shows a multi-gateway-based energy holes avoidance
routing protocol with four gateway nodes (MGBEHA 4 GW). Sizes of all gateway regions are the same.
Similarly, sizes of all cluster regions are the same. Gateway regions are at equal distance from the sink.
The location information of sink and gateways are used to create regions around the sink and gateway
nodes, respectively.

If the area is large (e.g., 500 ˆ 500 m2), it can be divided into 12 cluster regions, 6 gateway regions
and one sink region as shown in Figure 2a. A very large area (e.g., 1000 ˆ 1000 m2) can be further
divided into 20 cluster regions, 10 gateway regions and one sink region as shown in Figure 2b. The
number of sink region is always one and it does not change according to the size of the area. However,
the number of gateway regions depends upon the number of cluster regions, and it is half of the
number of cluster regions. The computation of number of cluster regions depends upon the size of the
area. If the area is big, it will be divided into large number of cluster regions otherwise not. Figure 2c
explains the partition of the 2000 ˆ 2000 m2 area.

Moreover, our algorithm has no restriction on the number of regions in an area. It is based upon
the user’s choice. If the user has cost constraint than he can use less number of gateways, on the
other hand, if the user has no cost constraint and his main goal is extended lifetime, he may use large
number of gateways in the area. The area is always divided into equal sized cluster regions. There can
be any number of ways to divide a square area into equal parts. However, we have divided the area
into equal parts as shown in Figures 1a,b and 2a,b.

5.2. Sensor Node Distribution Phase

Sensors are distributed randomly over the surveillance area to accumulate some interesting
phenomenon, like frequency of trembles in an earthquake-prone area or a change in the temperature of
the area during the night. A gateway node acts as a central control system within two cluster regions.
It initiates a request for accumulating the information. The gateway node broadcasts a control HELLO
packet, and in reply, sensor nodes transmit their location information to the gateway. The gateway
node calculates the distance of each sensor from itself and from the sink. If the sensor node is within
the cluster region which is covered by the gateway node, it is in the range of the gateway node. The
gateway node informs the sensor nodes about their region number by using their location information.
It saves the resulting information into every sensor data table. The data table includes the sensor’s
residual energy, identification number (ID), its distance to the sink and gateway, and its location
information. In a hierarchical sensor network CHs are responsible for data retrieving, aggregation, and
transmission. All sensors and the gateway node have information about the location of CHs; they send
data or a query packet to CH directly instead of flooding the entire network with HELLO packets.

5.3. Cluster Setup and Schedule Creation Phase

According to LEACH [6], nodes choose themselves as CHs in different rounds with a specified
probability Pi, which determines the expected number of CHs in current round r. Let k be the number
of CHs in a round and N be the total number of nodes in the monitored area.

N
ÿ

i“1

Pi “ k (4)

The probability of a node Ni to be elected as a cluster head at round r is given by:
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P pNiq “

#

k
N´kˆprmodN{kq : 1 if Ni P S

0 : otherwise
(5)

where S is the set of non-cluster heads in recent (r mod N/k) rounds. P(Ni) is 1 if node Ni is not selected
as a CH in recent rounds otherwise P (Ni) is zero. Value of (r mod N/k) determines the number of
nodes selected as the CHs in the latest rounds. The total number of sensors which are eligible to be
a CH at current round r is given by:

T prq “ N ´ kˆ pr mod N{kq (6)

This confirms that energy consumption in all sensors is nearly the same after each round.
The cluster heads are chosen in every region independently. CHs broadcast an ADV (advertisement)
control packet to neighboring nodes in its region. Neighboring nodes reply with ACK
(acknowledgement) to the nearest CH and become members of a cluster. To avoid collision, the
cluster head of this cluster sets a time division multiple access mechanism [6] among its member nodes
for data transmission. Member nodes of the cluster start transmitting data to the cluster head.

5.4. Data Collection and Transmission Phase

After the CH setup phase, the CH receives data from member nodes, aggregates it, and forwards
to the gateway node in its region. Now the gateway aggregates data received from different CHs and
from the nodes in the gateway region and forwards it to the sink. If the distance between a cluster head
and sink is less than the distance between the cluster head and the gateway, the CH transmits data
directly to the sink. Figure 3 illustrates the complete process of the MGBEHA protocol. The complete
area division has been divided into eight cluster regions, four gateway regions, and one sink region.
There is direct data transmission from nodes to sink in sink region and from nodes to gateways in
gateway regions. Nodes in cluster regions transmit data to the cluster heads which, in turn, transmits
it to the gateway node which again transmits it to the sink. Thus, there is multi-hop transmission of
data for nodes in the cluster region. Nodes which use direct communication (like nodes in SR and GR)
deplete less energy because of the smaller number of control packets and reduced distance. To deplete
the energy of all nodes in a uniform way, gateway nodes help in reducing the transmission distance
between senders (cluster head) and receivers (sink).

Informatics 2016, 3, 5 10 of 25 

 

where S is the set of non-cluster heads in recent (r mod N/k) rounds. P(Ni) is 1 if node Ni is not 
selected as a CH in recent rounds otherwise P (Ni) is zero. Value of (r mod N/k) determines the 
number of nodes selected as the CHs in the latest rounds. The total number of sensors which are 
eligible to be a CH at current round r is given by: ( ) = − × ( / ) (6) 

This confirms that energy consumption in all sensors is nearly the same after each round. The 
cluster heads are chosen in every region independently. CHs broadcast an ADV (advertisement) 
control packet to neighboring nodes in its region. Neighboring nodes reply with ACK 
(acknowledgement) to the nearest CH and become members of a cluster. To avoid collision, the 
cluster head of this cluster sets a time division multiple access mechanism [6] among its member 
nodes for data transmission. Member nodes of the cluster start transmitting data to the cluster head. 

5.4. Data Collection and Transmission Phase 

After the CH setup phase, the CH receives data from member nodes, aggregates it, and 
forwards to the gateway node in its region. Now the gateway aggregates data received from 
different CHs and from the nodes in the gateway region and forwards it to the sink. If the distance 
between a cluster head and sink is less than the distance between the cluster head and the gateway, 
the CH transmits data directly to the sink. Figure 3 illustrates the complete process of the MGBEHA 
protocol. The complete area division has been divided into eight cluster regions, four gateway 
regions, and one sink region. There is direct data transmission from nodes to sink in sink region and 
from nodes to gateways in gateway regions. Nodes in cluster regions transmit data to the cluster 
heads which, in turn, transmits it to the gateway node which again transmits it to the sink. Thus, 
there is multi-hop transmission of data for nodes in the cluster region. Nodes which use direct 
communication (like nodes in SR and GR) deplete less energy because of the smaller number of 
control packets and reduced distance. To deplete the energy of all nodes in a uniform way, gateway 
nodes help in reducing the transmission distance between senders (cluster head) and receivers 
(sink). 

 
Figure 3. Schematic diagram showing the complete process of the MGBEHA protocol. Figure 3. Schematic diagram showing the complete process of the MGBEHA protocol.



Informatics 2016, 3, 5 11 of 26

6. Proposed Algorithm

The Algorithm 1 describes the MGBEHA protocol .The notations used in the Algorithm 1 are
as follows:

(a) Let N be the number of sensor nodes and R the number of cluster regions.
(b) Einit is the initial energy. Ech is the energy of cluster head. Emem is the energy of a cluster member

node. Enorm is the energy of a normal sensor node.
(c) Area is a monitored network area. Area 1 is the area around the sink and Area 2 is the area around

the gateway.
(d) ETX, ERX, and EDA are the energies consumed in transmission, receiving, and aggregating,

respectively. The size of each message is k bits.
(e) DCG is the distance between a CH and the gateway node of its region. DCS is the distance between

the cluster head and the sink node.

Algorithm 1

1. Initialize R, N, ETX, ERX, EDA, k, Einit, Area, Area 1, Area 2.
2. Ech Ð Einit, Emem Ð Einit and Enorm Ð Einit

3. Divide the Area into R regions.
4. Deploy sink at mid-point of Area.
5. Set Area 1 around the sink.
6. while (a gateway node not set) do

6.1 for i = 1 to R

6.1.1 Deploy a gateway node at mid-point of two cluster regions.
6.1.2 Set Area 2 around the gateway.

6.2 End-for.
6.3 End-while.

7. for i = 1 to R

7.1 Start cluster set up phase in Cluster regions.
7.2 End-for

8. Nodes in Area 1 send data to sink and nodes in Area 2 send data to gateway.
9. Enorm Ð Enorm ´ ETX

10. Member nodes in cluster regions send data to their cluster head.
11. Emem ÐEmem ´ ETX

12. Ech Ð Ech ´ ERX

13. for i = 1 to R

13.1 Calculate distance (DCG) between cluster head and gateway.
13.2 Calculate distance (DCS) between cluster head and sink.
13.3 if (DCG > DCS)

13.1.1 Cluster head transmits aggregated data to the sink.

13.4 else cluster head transmits aggregated data to the gateway.

13.4.1 Ech Ð Ech ´ (EDA + ETX)

13.5 End-if
13.6 All gateway nodes aggregate and send data to the sink.
13.7 End for
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7. Usefulness of Protocol in Real Life Scenario

The proposed protocol can be used in the building automation scenario. To measure the level of
carbon monoxide (CO), CO sensors are deployed in the building. The sensors alert a security service
if the level of CO exceeds the dangerous level. Let the sensors be deployed in different buildings of
a society. A different setup is required for each building to transmit the data to the sink. However,
if our proposed protocol is used, there is no need of a separate transmission mechanism for each
building, one gateway is sufficient between two buildings. Sensors in two buildings can send data to
the common gateway which transmits it to the sink. By reducing the transmission distance, sensors
will consume less energy and a larger area can be covered by additional gateways.

8. Energy Consumption Analysis

In order to validate the simulations, we theoretically analyzed the energy consumption in the
network and compared the theoretical and simulation results. Let us revisit the first-order radio energy
model. The notations used in the analysis are as follows:

(i) The energy (ETX) consumed in the transmission of a packet along a route of s intermediate sensor
nodes, is given by:

Et p| |q “ kpEelec ` εamp ˆ dλ
| |
q (7)

where, dλ| | is the distance between a transmitting and receiving node and value of the λ lies
between 2 and 4. Here λ is a path loss component and its value depends on the power loss model.
If the value of d < d0, value of λ is 2 (free space: εfs) otherwise value of λ is 4 (εtwo-ray-amp) and k is
the number of bits in a packet.

(ii) The sensor network is denoted as an undirected graph G(V, E), such that V represents the set of
all nodes and E represents the set of edges as follows:

Ek “
!

`

vi, vj˘
ˇ

ˇ

ˇ

`

vi, vj P V
˘

^

´

Lmin
xy ď rLxy

`

vi˘ , Lxy
`

vj˘
ı

ď Lmax
xy q ^

`

Emin
t ď Et

`

vi, vj˘˘
)

(8)

where Lxy is the location information of the sensor node and Lmin
xy and Lmax

xy are the minimum and the
maximum boundary value of the area. The minimum transmission energy threshold is given by Emin

t .
If node transmission energy falls below the threshold value, it can’t transmit.

(iii) After the division of area into multiple regions, the network graph is also partitioned into the R
sub graphs. The mth region of the area is represented by Gm pVm, Emq and the complete area can
be represented as the union of all the regions as follows:

G “ YR
m“1Gm And XR

m“1 Gm “ ∅ (9)

(iv) The vertex set Vm of the region is given by:

Vm “
!

vi
m

ˇ

ˇ

ˇ

´

vi
m P V

¯

^ pLmin
mxy ď

´

Lmxy

´

vi
m

¯¯

ď Lmax
mxy

)

(10)

where, vi
m is the ith node of the mth region and the edge set is given by:

Em “
!´

vi
m, vj

m

¯
ˇ

ˇ

ˇ

´

vi
m, vj

m P Vm

¯

^

´

Emin
t ď Et

´

vi
m, vj

m

¯¯)

(11)

where, Lmin
mxy and Lmax

mxy are the minimum and maximum location values of the mth region excluding the
sink and gateway regions.
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(v) After the clustering process, few nodes of the mth region, work as the cluster head node of
different clusters in the region. The vertex set Vm

k , represents the set of nodes of the kth cluster of
the mth region as follows:

Vm
k “

!

vi
k

ˇ

ˇ

ˇ

´

vi
k P Vm

¯

^

´

1 ď pvi
k.c_ID

¯

q

)

(12)

where, the node vi
k is a node of the kth cluster and there should be at least one cluster in the mth region.

However, if the node vi
k is a cluster head node, then:

vi
k.c_ID “ vch

k .c_ID (13)

where, vch
k is the cluster head of the kth cluster.

(vi) The cluster head node of the kth cluster is the destination node for all the cluster members and
the members are considered as the source nodes within the cluster. The set of source nodes is
given by:

Sk “ Vm
k ´

!

vch
k

)

(14)

(vii) The cluster members and the head form a spanning tree like structure where the CH is a root and
members are leaf nodes.

(viii) If the mth region has total C clusters than it can be represented as:

Gm “ Y
C
k“1Gk (15)

where Gk represents the kth cluster. The energy consumed in transmission of k bits between ith node
and the cluster head of the kth cluster is given by using the Equation (7) as follows:

Et

´

|vi
k, vch

k |
¯

“ kpEelec ` εamp ˆ dλ
| vi

k , vch
k |
q (16)

(ix) As there is direct communication between CH and its member nodes, the energy consumed by
a single cluster member node in the cluster is given by:

E
´

vi
k

¯

“ Et

´
ˇ

ˇ

ˇ
vi

k, vch
k

ˇ

ˇ

ˇ

¯

(17)

If there are c member nodes in the kth cluster, the total energy consumed in the cluster is given by
using the Equations (2), (3), (7) and (17) as follows:

E pGkq “

c
ÿ

i“1

E
´

vi
k

¯

` ERX

´

vch
k

¯

` Em

´

vch
k

¯

` Et

´
ˇ

ˇ

ˇ
vch

k , GWm
ˇ

ˇ

ˇ

¯

(18)

where, Etp
ˇ

ˇvch
k , GWm

ˇ

ˇ) is the energy consumed in transmission from the CH of the kth cluster to the
gateway node of mth region.

(x) The total energy consumed by all the clusters in the mth region is given by:

E pGmq “

C
ÿ

k“1

E pGkq (19)

(xi) The total energy consumption of the area depends upon the energy consumption in cluster
regions, sink region, and the gateway regions. The nodes in the gateway region (GR) and sink
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region (SR) consume energy only in the transmission of their packets. The energy consumed by
a node in the gth gateway region is given by:

E1 pGRq “ Etp
ˇ

ˇ

ˇ
vi

g, GWg

ˇ

ˇ

ˇ
q (20)

where, vi
g and GWg are the ith normal node and gateway node of the of the gth gateway region,

respectively. The total energy consumed by all the normal nodes in the gateway region is given by:

E pGRq “
R{2
ÿ

g“1

E1 pGRq (21)

If there are ns (normal sensor) nodes nodes in the sink region, then the energy consumed in
transmission by a normal sensor nodes to the sink region is given by:

E1 pSRq “ Et

´
ˇ

ˇ

ˇ
vi

SR, sink
ˇ

ˇ

ˇ

¯

(22)

where vi
SR is the ith normal sensor node within the SR and the sink node is the destination sink. The

total energy consumption of all the normal sensor nodes in SR is given by:

E pSRq “
ns
ÿ

i“1

E1 pSRq (23)

The total energy consumed in the network area is as follows:

E pGq “
R
ÿ

m“1

E pGmq ` E pGRq ` E pSRq (24)

The energy consumption in GR and SR is much less, as there is much less transmission power
consumption because of a very short distance and there is no power consumption in receiving any data.
We can consider E(GR) and E(SR) « Eelec. From Equation (24), it is concluded that energy consumption
in the network can be reduced by reducing the power consumption of the nodes in the cluster regions.
As the transmission is the main reason of power consumption, and we have reduced the transmission
distance by installing a gateway between the cluster heads and the sink. Therefore, the proposed
method can alleviate the energy holes problem and improve the lifetime of the network.

9. Simulation and Results Analysis

In order to measure the performance of the proposed protocol, we have designed many scenarios
with an optimal number of gateways. We have run simulations approximately 25 times and take the
95% confidence interval of values to validate the efficiency of the MGBEHA. Large area sizes have been
taken to test the scalability of the protocol. The performance of the protocol is measured in terms of
throughput, network lifetime, stability period, residual energy, and the number of packets transmitted
to the sink. Parameters and their values used in the simulation have been shown in Table 1. In order to
prove the efficiency of the protocol, the LEACH [4], the MGEAR [5] and the GSEP [6] protocols are
used for comparison.

An area can be divided into multiple equal cluster regions and gateways can be deployed as
shown in Table 2. According to the Table 2, when the size of an area increases, the size of Areas 1 and
2 also increases. However, if the number of gateways increases in the area, the size of Areas 1 and
2 decreases. Through extensive simulations, we have concluded the appropriate domain values for
different area sizes, as shown in Table 3.
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Table 1. Network simulation setup parameters.

Parameters Value

Einit 0.5 J
Eelec 5 nJ/bit
Efs 10 pJ/bit/m2

Emp 0.0013 pJ/bit/m4

EDA 5 pJ/bit

Table 2. Area division parameters.

Area 2 Gateways
Area 1 = Area 2

4 Gateways
Area 1 = Area 2

6 Gateways
Area 1 = Area 2

8 Gateways
Area 1 = Area 2

100 ˆ 100 m2 20 ˆ 20 m2 20 ˆ 20 m2 15 ˆ 15 m2 10 ˆ 10m2

200 ˆ 200 m2 40 ˆ 40 m2 40 ˆ 40 m2 30 ˆ 30 m2 20 ˆ 20 m2

300 ˆ 300 m2 60 ˆ 60 m2 60 ˆ 60 m2 45 ˆ 45 m2 30 ˆ 30 m2

400 ˆ 400 m2 80 ˆ 80 m2 80 ˆ 80 m2 60 ˆ 60 m2 40 ˆ 40 m2

500 ˆ 500 m2 100 ˆ100 m2 100 ˆ100 m2 75 ˆ 75 m2 50 ˆ 50 m2

Table 3. Appropriate domain solution parameters.

Area Number of Gateways Area 1 = Area 2 Sink Position

100 ˆ 100 m2 4 20 ˆ 20 m2 (50,50)
200 ˆ 200 m2 4 40 ˆ 40 m2 (100,100)
300 ˆ 300 m2 4 60 ˆ 60 m2 (150,150)
500 ˆ 500 m2 6 75 ˆ 75 m2 (250,250)

1000 ˆ 1000 m2 10 100 ˆ 100 m2 (500,500)
2000 ˆ 2000 m2 20 150 ˆ 150 m2 (1000,1000)

In the proposed algorithm, if the initial value of the area is 100 ˆ 100 m2, the initial value of
Area 1 = Area 2 is 20 ˆ 20 m2 and the initial value of R is 4, take the midpoint of the x-axis and y-axis
and divide the area into R regions by joining the midpoints. Deploy one gateway node at the midpoint
of the line which separates two regions. Set Area 1 around the sink and Area 2 around the gateway
nodes by using coordinates points (x ˘ 10, y ˘ 10) of the sink and gateways, respectively. However, if
the initial value of the R is 8, take the midpoint of the x-axis and y-axis and divide the area into four
regions by joining the mid points. Next, take the min and max coordinates of the x-axis and y-axis and
intersect the area into R regions through the diagonals.

In the proposed algorithm, if the initial value of the area is 500 ˆ 500 m2, the initial value of
Area 1 = Area 2 is 100 ˆ 100 m2 and the initial value of R is 4 or R is 8, the area is divided in a similar
manner as for Area = 100 ˆ 100 m2. However, if the Area 1 = Area 2 is 75 ˆ 75 m2 and number of
regions R is 12, take the min and max values of the x-axis coordinates and divide the area into four
equal parts and using the min and max values of the y-axis coordinates again divided the area into
12 regions. Set the Area 1 around the sink and Area 2 around the gateway nodes by using coordinates
points (x ˘ (Area 1 = Area 2)/2, y ˘ (Area 1 = Area 2)/2) of the sink and gateways, respectively.

Similarly, if the area is 1000 ˆ 1000 m2 and R = 20, divide the area into R regions by using the
min and max values of the x-axis and y-axis coordinates. If the area is 2000 ˆ 2000 m2 and R = 42,
divide the area into R regions by using the min and max values of the x-axis and y-axis coordinates.
In general, as the size of the area and number of regions (R) increase, divided the area into equal sized
regions by using the min and max values of the x-axis and y-axis coordinates, respectively.

At each round, every normal sensor node sends data to its respective cluster head. The cluster
heads perform data aggregation and send data to the gateway node which, again, aggregates data
received from CHs and nodes in the gateway region (GR). After completing the data aggregation
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process, the gateway node transmits the data to the sink. The data aggregation is performed twice,
which reduces the energy consumption to a great extent. Moreover, if some CH is nearer to the sink
than a gateway node, it transmits data directly to the sink instead of the gateway node. This reduces
the delay and increases the throughput in the network. Therefore, total data packets received by the
sink from all gateway nodes and from nearby CHs are known as the throughput of the WSN.

The stability period of the network is defined by the round number when the first node in the
network exhausts its energy and dies (FND). The network lifetime is defined by the round number
when all nodes of the network die (AND). HND denotes the round number when 50% of the nodes
in the network die. Packets transmitted to the sink are the total number of packets sent by all sensor
nodes to CHs, from CHs to gateway nodes, and from the gateways to the sink. Residual energy is the
total remaining energy in the network per round.

Figure 4a,b describe and compare all protocols’ throughput for 100 sensor nodes in 100 ˆ 100 m2

area and 500ˆ 500 m2 areas, respectively. By using the optimal number of gateways at proper positions,
network throughput can be increased and a larger area can be monitored very well. The MGBEHA
protocol outperforms other protocols in small areas as well as large areas. It is capable of producing
throughput for a large number of rounds. When the number of gateways increases from 6 to 8, there
is no difference in the throughput of the area. Other than LEACH, all protocols are gateway-based
protocols. The results show that a gateway between the sink and the sensor nodes reduces transmission
distance and, hence, increases the performance of the system.

In the LEACH protocol, data packets are directly transmitted from a CH to the sink. If the distance
between the CH and the sink is large, after some time the CH node starts depleting its energy and
cannot transmit more data. In a large area some CHs will be distant from the sink node and will
exhaust their energy very soon. Cluster members will not be able to transmit their data to sink via the
CH. Hence, there is a major decrease in throughput of the network for the LEACH protocol.

The M-GEAR protocol consists of a single gateway at the center of the area; it helps in efficient
energy consumption, but it fails as the size of the area increases. The cluster heads, which are far
away from the gateway node, consume large amounts of energy in transmission. Therefore, most of
the nodes in the remote area die soon. Thus, these nodes are not able to sense any event and cannot
transmit any data. A similar problem exists in the GSEP protocol.

It is evident from Figure 4a that the M-GEAR and the GSEP is able to produce throughput until
round number 2400, but the amount of throughput is very low as compared to the MGBEHA protocol.
GSEP is able to produce more throughput than the M-GEAR, because nodes near the gateway nodes
have residual energy until the end of network operation. These nodes can directly communicate with
gateway nodes and do not carry the extra load, but nodes which are far away have to use a CH for
data transmission towards the gateway node. Furthermore, there is no need of so many gateways
at such a small distance from one another. Gateways are not deployed at the required place in the
area. All of the gateways are at the same height in an area. For one part of an area many gateways are
available and for another part of the area no gateway is available. This kind of gateway placement
just increases network cost and reduces its efficiency. The throughput of MGBEHA (2GW and 4 GW)
remains stable for a large number of rounds and after that it drops gradually.

We performed an indepth analysis of the throughput improvement ratio per round for all protocols.
The throughput improvement ratio is calculated for different scenarios. It is defined as follows:

Throughput Improvement Ratio per round “ Average Throughput of MGBEHApg GWqprotocol
Average throughput of X ˚ protocol (25)

where X * = {MGBEHA (2 GW/4 GW/6 GW/8 GW)/M-GEAR/GSEP/LEACH} and g is the number of
gateways. Results of the throughput improvement ratio per round (TIRPR) are shown in Tables 3 and 4.
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(a) CASE 1: Results analysis of 100 nodes in 100 ˆ 100 m2 area (Table 3)

The MGBEHA protocol with 4 GW has 1.9 TIRPR over the MGBEHA with 2 GW because it has
two additional gateways and the area is further divided into a greater number of regions. An additional
support of two gateways reduces energy consumption and the nodes can work longer, can transmit
packets for a longer time, and produce good throughput. The TIRPR of the MGBEHA protocol over
LEACH is 26.7, as LEACH does not use the gateway node to reduce power consumption. The TIRPR
of the MGBEHA over M-GEAR is the greatest as compared to other protocols because, for the M-GEAR
protocol, the first node dies very soon in the network and connectivity of the network start declining.
Although AND for M-GEAR are 2500 rounds, the value of throughput becomes low when connectivity
of the region gets lost. Nodes are not able to forward other nodes’ data and most of the packets
transmitted with nodes get lost. Only nodes near the gateway nodes remain alive and keep producing
throughput up to the 2500th round.

In the case of the GSEP protocol FND at round 983, its stability period is more than M-GEAR and
LEACH protocols and, hence, the network remains connected for 983 rounds and produces throughput,
but after 50% nodes of the network die, throughput keeps on decreasing, although AND at round
2500, but very few nodes remain alive in the network after round 1300 as shown in Figure 5. Large
numbers of rounds and lesser throughput in the last rounds reduce TIRPR of GSEP as compared to
MGBEHA protocol.

(b) CASE 2: Results analysis of 100 nodes in 200 ˆ 200 m2 area/300 ˆ300 m2 area/500 ˆ500 m2 area
(Table 4)

As the size of the area increases, the first node dies very soon in all protocols. However, the value
of AND drops slowly for MGBEHA protocol and rapidly for other protocols. In case of LEACH, for
a small area (100 ˆ 100 m2), value of AND is round 1800, but for large area (500 ˆ 500 m2) it drops
below round 1300. For the M-GEAR protocol value of AND drops up to 1838 and for the GSEP, it drops
up to 1972. The TIRPR of the MGBEHA protocol increases as compared to other protocols for large
areas. Optimal number and correct position of gateways also improves network lifetime as shown in
Figure 5a and Table 4.
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Table 4. Protocols performance of 100 nodes for 100 m ˆ 100 m area.

Protocols
100 Nodes in 100 ˆ 100 m2 Area

Lifetime (Rounds) (Throughput Improvement Ratio
per Round) MGBEHA (4GW)/X *FND + HND # AND $

MGBEHA (4 GW) 1083 1560 2700 1
MGBEHA (2 GW) 984 1495 2500 1.9

LEACH 775 1100 1800 26.7
M-GEAR 515 1420 2500 36.4

GSEP 983 1145 2500 26

X * =Protocols (MGBEHA (4 GW), MGBEHA (2 GW), LEACH, M-GEAR, GSEP), FND + = First node dies,
HND # = Half nodes die, AND $ = All nodes die.

In a large area the MGBEHA protocol has a lifetime more than other protocols as shown in Table 5
and Figure 5b. By increasing the number of gateways in a large area, the stability period and the
lifetime of the network improves, as shown in Table 5. When the number of gateways increased from 4
to 6 in the 500 ˆ 500 m2 area, its stability period increased from 87 to 102 and its lifetime improved
from 2490 to 2525, and the TIRP also improved from the previous value. However, when the number
of gateways was further increased from 6 to 8, there was no improvement in the performance metrics,
which implies that there are an appropriate number of gateways for each area size, after which there is
no improvement in the network lifetime.

The M-GEAR protocol has a single gateway in the center of the area; if the area increases, the
distance between CH and the gateway node also increases, so it is not capable of handling distant
node communication. Moreover, if there is any CH near the sink area, it does not consider the distance
between itself and the sink, CH will always transmit to the gateway node. This results in doubling
the communication power consumption. As a result, residual energy in the network will be very low,
as shown in Figure 6a,b. More energy can be saved if the distance between CH and the sink node is
also considered.
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Table 5. Protocol performance of 100 nodes for different area sizes.

Protocols
200 ˆ 200 m2 Area 300 ˆ 300 m2 Area 500 ˆ 500 m2 Area

Lifetime (Rounds) MGBEHA @

(8 GW)/X *
Lifetime (Rounds) MGBEHA @

(8GW)/X *
Lifetime (Rounds) MGBEHA @

(8 GW)/X *FND + HND # AND $ FND + HND # AND $ FND + HND # AND $

MGBEHA
(8 GW) 827 1540 2650 1 467 1157 2540 1 102 768 2525 1

MGBEHA
(6 GW) 826 1540 2650 1 463 1149 2539 1.002 102 760 2525 1.003

MGBEHA
(4 GW) 823 1525 2600 1.004 441 1138 2525 1.11 87 745 2490 1.57

MGBEHA
(2 GW) 759 1094 2489 1.71 235 1011 2462 2.06 53 731 2367 3.28

LEACH 135 740 1385 20.15 34 237 1305 26.07 15 100 1285 55.60
M-GEAR 507 1074 2479 11.56 191 762 2429 28.08 24 125 1838 67.12

GSEP 306 902 2271 9.17 71 333 2076 12.24 13 107 1972 14.77
@ = Throughput Improvement ratio per round, X * = Protocols (MGBEHA (8GW), MGBEHA (6 GW), MGBEHA (4 GW), MGBEHA (2 GW), LEACH, M-GEAR, GSEP), FND + = First
node dies, HND # = Half nodes die, AND $ = All nodes die.
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In the GSEP protocol, before initiating the transmission, a node always computes the distance
between itself and all gateways and then chooses the gateway with the minimum distance. This
method increases the lifetime in a small area, but in a large area most of the nodes have a large distance
from all gateways. Although the total number of gateways in the GSEP protocol is much higher than
the MGBEHA protocol, but the residual energy (shown in Figure 6a,b) of GSEP is much lower than the
MGBEHA because all of the gateways are at the edge of the network. Nodes which are distant will
deplete their energy faster. The number of live nodes becomes less in the network and they have to
find alternative paths for data transmission. Further, in each round a node has to compute the distance
between itself and all gateways, increasing the computation overhead. In our experiment, we have
tested the GSEP protocol in a homogeneous (all nodes with equal initial energy) environment.
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In case of the MGBEHA protocol, gateways are not concentrated in an area; a separate gateway
node is present to cover a part of the area, so the distance between CH and gateway nodes is always
less, as a result less energy is consumed in communication and sufficient live nodes are present in the
network. The number of live nodes in the network affects the number of packets transmitted to the
sink. With more live nodes present in the network, more packets will be transmitted to the sink. The
MGBEHA protocol has a higher number of live nodes for a higher number of rounds; therefore, the
number of packets transmitted to the sink by the MGBEHA protocol is greater than other protocols, as
shown in Figure 7a,b. However, there is a very small difference in the number of packets transmitted
to the sink for 4 GW, 6 GW, and 8 GW in 500 ˆ 500 m2 area.

A variation in simulation results is represented by the 95% confidence interval and is shown in
Figure 8a. In LEACH, energy holes can be created around the sink if large size clusters are formed near
the sink. The energy of cluster members and CH will deplete with prolonged communication. Holes
can also be created in remote areas if CHs are formed there, as CHs in remote area need more power to
transmit data. The MGBEHA protocol avoids the energy holes problem as follows: holes cannot be
created in the sink area, as nodes near the sink node do not transmit other node’s data and these are
not involved in cluster setup phase, which further saves their energy. Similarly, holes cannot be created
in a gateway region, as nodes here transmit only their data to the gateway and do not act as a relay
node. Instead a gateway node acts as a relay node for CHs and reduces power depletion of the CHs.
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(b) 500 m ˆ 500 m area.

This well-adjusted energy consumption maintains an energy level in the network per round as
shown in Figure 8b. All nodes exhaust their energy in a uniform way. Figure 8b shows an energy
map of whole topology at different rounds. The initial energy of all nodes is 0.5 J. After 500 rounds,
the energy of all nodes lies between 0.46 J and 0.38 J, after 1000 rounds, the energy lies between 0.33
and 0.18 J. This concludes that none of the nodes die in the network, up to 1000 rounds. The network
remains stable until the first node dies and energy holes are not created until the 1083 round.
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In order to test the efficiency of the protocol in very large areas, we have designed two scenarios,
one with a 1000 ˆ 1000 m2 area and another with a 2000 ˆ 2000 m2 area. We have also analyzed the
performance metrics for different node densities (λ = Number of nodes/area) in the area. Figure 9a
shows the number of alive nodes in a 1000 m ˆ 1000 m area. The maximum lifetime and the stability
period of the network are approximately 1700 rounds and 10 rounds, respectively. A high node density
does not affect the performance of the network. Figure 9b illustrates the effect of different node
densities on the MGBEHA protocol in the 2000 ˆ 2000 m2 area. The maximum lifetime in this area is
600 rounds. Node density does not have a significant impact on the lifetime of the network. Although
the number of gateways has been increased in the network, the lifetime is reduced with an increase in
the size of the area.

Figure 10a,b illustrates the residual energy of the network in a 1000 ˆ 1000 m2 area and in
a 2000 ˆ 2000 m2 area, respectively. In a large area, energy is available in the network, but the lifetime
of the network is reached very early.
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Figure 11a,b illustrates the total throughput of the network in a 1000 ˆ 1000 m2 area and in
a 2000 ˆ 2000 m2 area, respectively. For a high node density, throughput of the network is very high,
but it falls sharply in later rounds. Total throughput in a large area is much less than the throughput of
the MGBEHA protocol in small areas.
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Figure 12a,b illustrate the total number of packets transmitted towards the sink in 1000 ˆ 1000 m2

area and in 2000 ˆ 2000 m2 area, respectively. The number of packets transmitted for high density is
much more than the number of packets for the low density. However, transmission of packets halts
after the 17,000 rounds in 1000 m2 area, and after approximately 500 rounds in the 2000 m2 area.
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Figure 13a,b give the validation of simulation results against the theoretical analysis of energy
consumption of the network for the MGBEHA protocol. According to the figure, our simulation results
are very close to the theoretical results. It proves that average energy consumption of the network in
the presence of different number of gateways. The number of alive nodes is directly related to the
available energy in the network. The total number of packets transmitted to the sink and received
throughput of the network depends on the number of alive nodes in the network.
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10. Future Work

A deterministic algorithm for mathematical computation of the number of regions in an area will
be provided in the future work.

11. Conclusions

In order to avoid energy holes and improve energy efficiency of a sensor network, we have
proposed an energy-balanced MGBEHA protocol. The division of the area into regions and use of
gateway nodes at optimal positions have a considerable effect on the lifetime of the network. Nodes are
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able to transmit their packets over long distance. Distance-based selection of destination (gateway or
sink) by a cluster head saves transmission energy and it increases network performance as compared
to other protocols (LEACH, M-GEAR, and GSEP). Energy consumption is decreased by reducing the
transmission distance between the transmitter and receiver. Energy holes are avoided near the sink, by
reducing the communication load of the nodes in the sink region. Energy holes are also avoided in
remote areas by using gateway nodes in between CH and the sink node. Cluster heads are formed in
all parts of an area, so member nodes do not choose a remote cluster head. This saves energy of cluster
member nodes. This protocol has a better stability period, lifetime, and throughput as compared
to other protocols. It has good TIRPR over other protocols in different area sizes. It has uniform
energy consumption and, therefore, it has much residual energy available for a large number of rounds.
MGBEHA can cover a large area without lowering the performance of the network. Simulation results
are very close to the theoretical results.
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Abbreviations

The following abbreviations are used in this manuscript:

MGBEHA Multi-Gateway Based Energy Holes Avoidance Routing Protocol
WSN Wireless Sensor Network
GSEP Gateway Based Stable Election Multi Hop Routing Protocol
M-GEAR Gateway-Based Energy-Aware Multi-Hop Routing Protocol
LEACH Low Energy Adaptive Clustering Hierarchy Routing Protocol
CHs Cluster Heads
ACO Ant Colony Optimization
RSSI Received Signal Strength Indicator
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