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Abstract

The exponential growth of scientific literature has made it increasingly difficult for re-
searchers to identify relevant and timely publications within vast academic digital libraries.
Although academic search engines, reference management tools, and recommender sys-
tems have evolved, many still rely heavily on metadata and lack mechanisms to incorporate
full-text content or time-awareness. This review systematically examines the landscape of
scholarly publication recommender systems, employing the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) methodology for a comprehensive and
transparent selection of relevant studies. We highlight the limitations of current systems
and explore the potential of integrating fine-grained citation knowledge—such as cita-
tion proximity, context, section, graph, and intention—extracted from full-text documents.
These elements have shown promise in enhancing both the contextual relevance and re-
cency of recommendations. Our findings highlight the importance of moving beyond
accuracy-focused metrics toward user-centric evaluations that emphasise novelty, diversity,
and serendipity. This paper advocates for the development of more holistic and adaptive
recommender systems that better align with the evolving needs of researchers.

Keywords: scholarly publications; recommender systems; survey; academic database

1. Introduction
The need for recommender systems in academia is increasingly evident as new re-

search entities, such as papers, grants, and proposals, are published daily. In the 1960s,
De Solla Price [1] forecasted that the number of journals would reach 1,000,000 by 2000,
while the record was only 60,000 in the 50s. According to a study up to 2010 [2], there
was an annual increase of 8–9%, while [3] reported a 3.7% annual increment. Due to such
information overload, discovering relevant research documents from the huge corpora of
digital libraries is like finding a needle in a haystack. To illustrate the magnitude of the
problem, statistics on publication volumes from major digital libraries are presented. The
Association of Computing Machinery Digital Library (ACM DL) alone holds 1430 period-
icals, 32,228 proceedings, 181,514 books and theses, and 140,477 publishers [4]. Google
Scholar have not disclosed the size of their dataset. However, a study estimated it to include
around 160 million research documents—including patents, citations, theses, books, and
other materials—as of 2014, based on an empirical study [5]. Similarly, a scientometric
study estimated 389 million records as of 2018 [6]. Moreover, the monthly submission
rates of electronic preprint publications from ArXiv, launched in August 1991, reached
2,764,327 as of June 2025, as visualised in Figure 1. Likewise, there are other digital libraries
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such as IEEE Xplore, CiteSeer, and more. The problem is exacerbated for interdisciplinary
research domains, as research publications can be published in a wider variety of venues,
proceedings, and journals. This creates challenges for researchers trying to stay abreast
of relevant articles and governments seeking to identify high-quality research for fund-
ing and innovation. Publishers must satisfy customer needs by recommending relevant
content, while universities face pressure to design and teach up-to-date courses. Preprints
such as ArXiv and Preprints.org have established themselves as alternatives to traditional
peer-reviewed venues due to rapid publication, open access, and strong academic support.
However, these benefits come with a risk of publishing false information, biased views, etc.
In the context of academic Recommender Systems (RecSys), there are more items to sift
through and a danger of recommending false and biased work. Therefore, a system that
can sift through many items from huge corpora of digital libraries and provide relevant
items to its users according to their preferences is needed. The primary goal and real-world
purpose of a RecSys is to assist researchers in discovering relevant items.
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Figure 1. Monthly e-preprint scholarly publication submission rates in ArXiv from July 1991 to June
2025 show the exponential rate at which new resources are being added [7].

The concept of digital recommender systems was introduced in the early 90s by
Goldberg et al. [8], and one of the early academic RecSys was developed in [9] in the late 90s.
Since then, various features, aspects, and algorithms have been researched and added to
improve the academic RecSys. The purpose of this literature review is to examine the trends
and research progress in academic RecSys over the years and to outline future directions
and open research questions in the field. This review provides a comprehensive overview
of key components, including feature representations, baseline algorithms, datasets, and
evaluation metrics, that have been employed in the development and assessment of these
systems. The aim of this survey is to serve as a valuable resource for both novice and
experienced researchers and practitioners, offering insights into the landscape of scholarly
publication recommender systems. The rest of this paper is structured in the following way.
Section 2 explains the methodology of the survey, and Section 3 presents features related
to items and user/target modelling. An overview of different approaches is presented
in Section 4. Reviews of different evaluation methods and metrics, both item-centric and
user-centric, are presented in Section 5. The shortcomings of the current approaches are
discussed in Section 6, and avenues for future lines of research are described in Section 7.

2. Research Methodology
This section presents the methodology used to conduct this survey. Figure 2 shows

how the methodology adheres to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines.

In the identification stage, digital libraries were selected to search for relevant litera-
ture, namely Scopus (https://www.scopus.com/ (accessed on 11 November 2024)) and

https://www.scopus.com/
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Web of Knowledge (www.webofknowledge.com (accessed on 11 November 2024)). Next,
queries related to research publication RecSys were constructed by combining two types of
queries: (1) retrieving documents on recommender systems and (2) retrieving documents
on scholarly publications.

Reports assessed for eligibility

(n = 294)

Records screened

(n = 753)

Reports sought for retrieval

(n = 311)

Records identified from: 856

Databases (n = 2)

Registers (n = 0)
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Duplicate records removed 
(n = 103)

Records excluded
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Reports not retrieved
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Reports excluded:

Proceedings (n = 61)

Not in English (n =13)
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Figure 2. PRISMA flow diagram of the literature search and selection process.

The query containing key phrases on recommender systems included the following:
recommend*, recommendation systems*, recommender system*, recommendation service*,
recommender service*, recommendation approach*, recommender approach*, recommen-
dation model*, recommender model*, recommendation method*, recommender method*,
recommendation algorithm*, recommender algorithm*, recommendation application*, rec-
ommender application*, recommendation engine*, recommender engine*, recommendation
framework*, and recommender framework*.

The key phrases for the research paper query included the following: “research
paper*”, “research publication*”, “research article*”, “research document*”, “research lit-
erature*”, “scientific paper*”, “scientific publication*”, “scientific document*”, “scientific
article*”, “scientific literature*”, “scholarly publication*”, “scholarly paper*”, “scholarly
document*”, “scholarly literature*”, “scholarly article*”, “academic publication*”, “aca-
demic paper*”, “academic document*”, “academic article*”, “academic literature*”, “re-
lated publication*”, “related paper*”, “related document*”, “related literature*”, “related
article*”, “digital librar*”, “citation recommend*”, and “citation-based*”.

The search queries resulted in 856 records up to March 2024. The queries were
checked on Google Scholar, and it was confirmed that no additional records were found.
In the second phase, the papers were screened manually. During the screening process,
103 duplicates were removed. In the next phase, additional records were excluded based
on eligibility. Two academics independently reviewed the titles and abstracts, followed

www.webofknowledge.com
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by a thorough discussion. They manually reviewed the titles and abstracts, identifying
442 unrelated works, 13 non-English records, and 17 without full-text access.

In the end, 220 papers remained. Additionally, we included relevant backwards
citations from the reviewed papers, along with supplementary literature such as survey
articles and general resources on Machine Learning (ML) methods, recommender systems,
and evaluation metrics, to deepen our understanding of the field. This step yielded
30 additional records. A total of 252 papers were analysed in this work.

Throughout the remainder of this paper, the terms scholarly publication recommender
system and research paper recommender system are used interchangeably.

3. User-Item Modelling
Recommender systems comprise two main components: items and users, where items

are suggested to users based on their preferences [10,11]. In academic RecSys, research
publications are considered items and researchers are the users. These tasks may go be-
yond recommending research articles; for instance, suggesting potential collaborators or
suitable publication venues. However, this work specifically focuses on the recommen-
dation of research publications to researchers. The following sections review various
features involved in modelling both items and users or targets in the context of research
paper recommendations.

3.1. Item Modeling and Features

A research paper is a content-rich entity comprising various sections and types of
information. The contents refer to the textual components of scholarly publications and
play a vital role in academic RecSys. Typically, a research paper consists of various elements,
such as the title, abstract, keywords, and various other sections, including the Introduction,
Methodology, and Bibliography. We present a list of item features that are used to model an
item for recommendation in Table 1.

It has been observed that item features are commonly represented using vector and
graph representation schemes in the literature. Vector Space Model (VSM), Term Frequency
(TF), Term Frequency-Inverse Document Frequency (TF-IDF) [12], BM25 [13], bag-of-words,
Word2Vec [14], and Glove [15] are also commonly used methods for term representations.
Bollacker and Lawrence [9,16] developed the Co-Citation Inverse Document Frequency
(CCIDF) method, which is similar to TF-IDF but uses citation frequencies instead of term
frequencies. West et al. [17] constructed citation network graphs, where nodes represent cit-
ing papers and edges represent citations, generating recommendations based on centrality
measures. Other examples, including PaperRank [18], Katz distance-based methods [19],
and direction-aware random walks [20], were also used for the graphical representations.

Table 1. List of reviewed papers utilising different item features for modelling item profiles. Abbrevi-
ations: Ti—Title, Ab—Abstract, Ke—Keywords, Au—Author, Af—Affiliation, Pd—Publication Date,
Ve—Venue, Tx—Taxonomy, Rl—Reference List, Ck—Citation Knowledge.

References Ti Ab Ke Au Af PD V Tx Rl Ck
[21] x x x x x x x
[22] x x x x x x
[23] x x x x x
[24] x x x x x x
[25,26] x x x x x x
[27] x x x x x
[28] x x x x
[29] x x x x x
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Table 1. Cont.

References Ti Ab Ke Au Af PD V Tx Rl Ck
[30] x x x x x x
[31] x x x x
[32] x x x x
[9] x x x x x
[33] x x x x x
[34–46] x x x
[47] x x x x x x
[48] x x x x x x
[49] x x x x x x
[50] x x x x x
[51] x x x x
[52,53] x x x x x
[54] x x x
[55] x x x x
[56] x x x
[57,58] x x x x
[59–66] x x
[67] x x x x x
[68] x x x x x
[69] x x x x
[70] x x x x x
[71] x x x
[72,73] x x
[74] x x x
[75] x x
[76] x x
[77] x x x
[78] x x
[79] x x x x
[80] x x
[81] x x
[82] x x x
[83] x x
[84–88] x
[89] x x x x x
[90] x x x x x
[91] x x x x
[92] x x x x
[93,94] x x x
[95–97] x x
[98–104] x
[105] x x x
[106] x x x
[107,108] x x
[109,110] x x x x
[111] x x x
[112,113] x x
[114,115] x
[115] x
[116] x x x
[117] x x
[118] x
[119] x
[120] x
[121] x
[122] x
[123–127] x x
[17,20,128–160] x x
[161] x
[19] x
[18,162–167] x
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3.2. User Modelling and Features

A user is a target who receives recommendations based on their needs or preferences.
Therefore, building a user profile is a crucial task in any recommender system. This
section explores the different types of targets that receive research paper recommendations.
There are two types of recommendation tasks: (1) recommending for a piece of work
and (2) recommending for a user. A piece of work can be (i) a paper, (ii) a set of papers,
(iii) a snapshot of text (titles, abstracts, etc.), or (iv) an ongoing (yet-to-be-published)
manuscript [168]. The reviewed work is presented based on the different tasks in Table 2,
and further details are available in [168].

Table 2. Different recommendation tasks adopted by the reviewed literature.

Recommendation Task References

A piece of work

A paper
[17,20,49,59,60,69–72,76,78,80,82–
85,90,93,109,116,123,124,128–151,162–
165,169,170]

A set of papers [20,70,71,78,80,85,90,116,149–151,164,165,170]
A manuscript [18,19,24,27,50,52,61,152]

A snapshot of text [9,21,25,47,51,53,55,56,68,74,77,79,81,86,92,95–
98,110–112,114,153,154,161,166,167,171]

A user
[22,23,26,28–46,48,54,57,58,62–67,73,75,87–
89,91,94,99–108,113,115,117–122,125–127,155–
160,172–192]

Based on the two categories of the target, (i) a piece of work and (ii) a user, different
modelling strategies are used. As mentioned earlier, features and preferences are two critical
factors of modelling. To model a piece of work, preferences can be information derived
from metadata or full text, such as the title [59,114], abstract [68,80], keywords [24,27,90],
authors [93,98], publication date [47,92], publication venue [24,90], bibliography (i.e., the
list of publications that are referenced in a paper) [19,125,128,149], and various types of
citation knowledge [52,134,168,193,194]. Citation knowledge comprises a citation graph,
citation section, citation proximity, citation intention, and citation context [168]. Table 3
provides a brief description of each component of citation knowledge. Citation graphs are
the most popular citation knowledge, and others are slowly being adopted by the field. A
summary of the works that have used citation knowledge to capture the preferences of
a recommendation target when the recommendation target is a given piece of work can
be seen in Table 4. The distribution of all other features to model targets across reviewed
works is summarised in Figure 3. For paper-based details, see Table A1. Note that the
citation knowledge in Table A1 comprises all the categorisations of the citation knowledge,
and Table 4 presents the finer granularity of the usage of citation knowledge.

Table 3. Brief description of citation knowledge.

Citation Knowledge Description

Citation Graph

Captures citation relations between papers as a graph, where nodes represent
citing papers and edges represent the relations based on citations. Relations
can be directed [128,148] or undirected [159]. Although this method is com-
monly used due to the availability of metadata, it may not always accurately
reflect preferences, as citations can serve different purposes, including criti-
cism [168,193,194].
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Table 3. Cont.

Citation Knowledge Description

Citation Proximity

Refers to the distance between co-cited papers in a publication [130]; for
example, shorter distances imply stronger relevance. It was conceptualised
in 2009 by [130,195] applied it for web page recommendations, and [141]
utilised it for the research paper recommendation task.

Citation Context

The text surrounding a citation, indicating the semantics of the
citation [52,58,147]. It has been used to enrich the profiles of target
manuscripts [52] or user preferences [58,193,194] in recommending scientific
publications.

Citation Intention

Captures the purpose of a citation, such as providing background or compar-
ing work. Different intentions may reflect varying levels of relevance. While
extensively used in scientometrics, it has been less explored in recommenda-
tion systems [134,166,193].

Citation Section

Refers to the section of a paper where the citation appears (e.g., the introduc-
tion or related work) [139,168]. Different sections imply different relevance.
Ref. [168] explored this notion in combination with citation graphs, finding
improved performance, especially for citations in the introduction, back-
ground, and method sections.

0 5 10 15 20 25 30 35 40
Number of Papers

Taxonomy

Publication Year

Venue

Keywords

Author

Abstract

Title

Terms from Free Text

Citing

Citation Knowledge

Figure 3. Distribution of feature types used in scholarly recommendation tasks targeting a piece of
work. Each bar represents the number of reviewed papers utilising a specific feature (e.g., citation
data, title, or abstract).

Table 4. Reviewed papers utilising different notions of citation knowledge for modelling as a target
(a piece of work). Abbreviations: CG—Citation Graph, CC—Citation Context, CS—Citation Section,
CP—Citation Proximity, CI—Citation Intention.

References CG CC CS CP CI
[146] x x x
[9,21,52,74,110,129,152,164] x x
[139] x x
[17–20,24,25,49,53,68,70,71,77–79,82,83,85,93,109,
111,116,123,124,128,133,135–138,140,142–145,148–
151,153,162,163,165]

x

[47,50,114,147,154,167] x
[166] x x
[134] x x x

In contrast, a user is a researcher whose preferences can be captured using their implicit and
explicit feedback. Explicit feedback may consist of ratings [40,88,104,174,179], scoring [37,158],
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or user accounts, with the topic of interest stated by the user [75,108]. Implicit feedback
captures user interactions, such as browsing sessions [89,172,173,191], clicks [73,100,175],
bookmarks [38,181,182], and tags [174,179], to name a few. Figure 4 details which target
preferences were used by the reviewed papers when the target is the user and whether they
were explicit or implicit in nature. For details on individual papers, see Table A2.

0 2 4 6 8 10
Number of Studies

Reading

Tagging

Saving

Bookmarking

Authoring

Browsing

Clicking

Downloading

Viewing

Searching

Commenting

Citing

Accessing

Sharing

Annotating

Scoring

Rating

Profile Availability

Voting

Feedback Mode
Implicit
Explicit

Figure 4. Taxonomy of user feedback types used in scholarly recommender systems, grouped by
feedback mode. Each bar represents the number of reviewed studies that incorporate the correspond-
ing signal. Implicit feedback types (e.g., reading and bookmarking) dominate the literature, while
explicit signals (e.g., rating, scoring, and voting) are less frequently used. A dashed line visually
separates implicit and explicit categories.

These features are fundamental in constructing a target profile that accurately reflects
the user’s current research needs and preferences. For example, the seed paper indicates
immediate interests, while authorship and co-authorship reveal broader collaborative
contexts. Several works have considered users’ authored publications to extract research
interests [66,155,157]. Understanding and effectively modelling these features is crucial for
developing an academic RecSys that can deliver personalised and contextually relevant
recommendations to users. Each of these features contributes to building a comprehensive
user profile that can significantly enhance the user experience by aligning recommendations
closely with the user’s needs.

4. Recommendation Approaches
Recommender systems can broadly be classified into Content-Based Filtering (CBF),

Collaborative Filtering (CF), and hybrid-based approaches. These approaches are based on
how they use user features and represent them. Among them, the hybrid approach is the
most widely adopted and uses both CBF and CF to generate recommendations. About 45%
of the reviewed papers adopted this approach. Table 5 categorises the papers based on their
adopted approaches. Note that a few papers used and/or compared different approaches.
For example, [82] proposed the use of both CBF and CF. In the following sections, these
methods are explained to describe how they have been applied for the recommendation of
scientific publications.

4.1. Content-Based Filtering (CBF) Approach

CBF is a widely researched technique in recommender systems [196]. It analyses the
contents, for example, a set of items previously interacted by a user, and then extracts the
features from the items to design the user profile [196,197]. CBF approaches then match
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items’ features with user profiles and generate recommendations based on similarity score.
Following this approach, the CiteSeer system, developed in [9,198], was one of the earliest
content-based scholarly recommender systems, which recommended relevant scientific
literature to its users based on their needs. It uses textual information from metadata
and analyses common citations between documents. The idea of using citations and
creating a comprehensive citation network, where nodes are scientific papers and edges are
their citations, proposed in [9,198], has been used and followed by numerous researchers,
including [18,20,82,117,128]. Examples include TheAdvisor [20,117], PaperRank [18], and
Human Recommender Interaction (HRI) [82].

Table 5. List of reviewed papers on different recommendation approaches.

Recommendation
Approach References

Content-Based Filtering

[19,23,24,31,33,36,37,42–45,47,49,51,54–56,59,60,65,72,73,
81–86,88,89,91,95–98,100–103,105,108,114,118,120,121,124,
126,127,142,154,163,166,167,169,170,175,177,181,187,191,
199]

Collaborative Filtering
[17,18,20,28,35,41,67,79,82,93,109,112,113,115,117,128,
130,131,136–138,140,141,143–145,148,148–151,153,159–
161,165,179,180,182,200]

Hybrid Filtering

[9,21,22,25–27,29,30,32,34,38–40,46,48,50,52,53,57,58,61–
64,66,68–71,74–78,80,87,90,92,94,99,104,106,107,110,111,
116,119,122,123,125,129,132–135,139,146,147,152,155–
158,162,164,168,171–174,176,178,183–186,188–190,192–
194,201–203]

4.2. Collaborative Filtering (CF) Approach

CF is a popular technique in recommender systems, known for recommending items that
are preferred by users with similar preferences [8,204]. Many researchers have adopted CF to
develop a research paper RecSys [28,60,108,113,115,128,137,149,153,160,186,205–210]. In these
systems, user feedback is frequently gathered through citations, as authors acknowledge other
researchers’ work by citing it. This citation-based feedback helps construct a user-item matrix
by treating research papers as users and their references as items [58,126,128,155,157,160,211].
While CF is a popular technique in e-commerce, it is less commonly adopted in academic
recommendations compared to CBF.

4.3. Hybrid-Based Filtering Approach

The hybrid-based approach combines CBF and CF to leverage the strengths of each
method while overcoming individual limitations. Burke [212] pioneered hybrid systems
and demonstrated that combining multiple techniques improves recommendation accuracy
and flexibility. Examples include the Entree restaurant recommender and FindMe systems,
where users can update features and receive relevant recommendations [189,212–214].
These systems highlight the flexibility and adaptability of hybrid approaches in providing
personalised and effective recommendations. Burke [215] applied a hybrid approach to
a restaurant recommender system, the Entree System, while [125,149] explored hybrid
methods for recommending research publications [125,149,215].

Further advancements include West et al. [17], who developed a state-of-the-art hybrid
system using citation data [17]. Their work builds on the taxonomy of hybrid systems
proposed by Burke [212], emphasising that no single technique can address all recom-
mendation challenges. Several hybrid systems have been created, for example, ref. [62]
combined traditional CF with probabilistic topic modelling, specifically Latent Dirichlet
Analysis (LDA) as in CBF, to provide an interpretable latent structure for users and items,
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allowing recommendations for both existing and newly published articles. This method
demonstrates how hybrid systems can alleviate the cold-start issue. Likewise, ref. [189]
proposed a hybrid system that utilised research disciplines and key terms from papers’
titles, abstracts, keywords, and body sections to link publications within a graph network.
Similarly, Hristakeva [66] combined CF with implicit feedback from user interactions to de-
velop a hybrid scholarly recommender system. This system incorporated various features,
such as users’ personal library information. The works are categorised based on their use
of approaches for the research paper recommendation tasks in Table 5.

Recent advances in Natural Language Processing (NLP) have led to a shift from sparse
or topic-based representations (e.g., TF-IDF, LDA, or Doc2Vec) to contextual embeddings
that capture richer semantic and syntactic information. Transformer-based architectures,
notably Bidirectional Encoder Representations from Transformers (BERT), have played
a pivotal role in this transition by introducing deep bidirectional encoding of text se-
quences. SciBERT is a domain-specific BERT model trained on 1.14M full-text papers from
Semantic Scholar [216]. Unlike the general-purpose BERT, SciBERT captures technical and
domain-specific terminology common in academic writing. When used in recommenda-
tion pipelines, SciBERT consistently yields better representations for downstream tasks
such as clustering, linking, and classification compared to vanilla BERT or word2vec-style
embeddings. SPECTRE [200] is another example, which leverages SciBERT as the base
transformer and fine-tunes the model using citation triples. These resulting embeddings
of citing and cited papers are closer in the vector space. SPECTER outperforms TF-IDF,
Doc2Vec, and unsupervised BERT-based baselines across multiple benchmark tasks, in-
cluding citation prediction and related paper retrieval. On the Microsoft Academic Graph
(MAG) and OpenCitations benchmarks, SPECTER has shown up to +10% NDCG@10 gains
over TF-IDF and Doc2Vec. Likewise, BERT-GCN [217] combines contextual embeddings
with graph convolutional networks by integrating text and citation graph features. This
hybrid design enables joint learning from paper content and citation structures. On public
citation networks like Cora, PubMed, and MAG, BERT-GCN improves micro-F1 scores for
paper classification and link prediction over both GCN-only and BERT-only setups.

In contrast to earlier methods such as TF-IDF, which rely on sparse vector spaces
with limited semantic understanding, or topic models like LDA, which assume a fixed
vocabulary and topic space, transformer-based models dynamically learn context-aware
representations. These models can disambiguate polysemous terms, model long-range
dependencies, and generalise better across disciplines, making them particularly well
suited to scholarly recommendation tasks where nuanced textual signals are critical.

5. Evaluation
This section discusses the evaluation of recommender systems and related components,

including evaluation methods and metrics, used for the academic RecSys.

5.1. Dataset

A dataset is crucial to assess the relevance of recommendations generated by a recom-
mender system. During this review, it was observed that the availability of ground-truth
datasets specifically for research paper recommendations was limited and often unsatisfac-
tory. Not all research publications, especially peer-reviewed ones, are publicly available,
and there is a lack of availability of datasets that contain all published (i.e., peer-reviewed
and preprint) research publications. Many researchers have created datasets containing
research publications by downloading or crawling from various sources, such as digital
libraries. Researchers have used different numbers of publications in their experimental
datasets, ranging from 15 articles to 2 million articles. Given this irregularity, we chose not
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to include the quantity of the datasets. Table 6 presents a curated list of publicly available
datasets, including AMiner, OpenCitations, Open Academic Graph, ArXiv, CORE, and
CiteULike. While these datasets offer valuable resources, they often lack full-text access,
user interaction histories, or citation contexts, which are critical for advanced recommenda-
tion tasks. The scarcity of datasets that combine full-text content with user behaviour and
citation metadata remains a major bottleneck in the field.

Table 6. Publicly available datasets for academic RecSys. Here, PDFav stands for Portable Document
Format (PDF) document available and UPHav represents the availability of authors’ publication
history; A/P = Accessed/Published, R = Ratings and NS = Not Specified.

Dataset Description A/P Users Items R PDFav UPHav

AMiner 1

AMiner contains a series of datasets capturing
relations among citations, academic social
networks, topics, etc. The data on the citations
dataset V11 is reported here

2019 NS 4 M No No No

Open Citations 2 Open repository of scholarly citation data 2019 NS 7.5 M No No No
Open Academic
Graph 3

Large knowledge graph combining Microsoft
Academic Graph and AMiner 2019 253 M 381 M No No No

ArXiv 4 Open-access e-prints of publications in different
fields such as physics, mathematics, etc. 2019 NS 1.5 M No Yes 5 No

CORE 6 Dataset of open-access research publications
published up to 2018 2019 No 9.8 M No Yes 7 No

CiteULike [67] Dataset of users’ selected bookmarks to
academic papers 2019 5551 16,980 No No No

Mendeley [218] Dataset shared by Mendeley for a recommender
system challenge 2010 8 50,000 4.8 M Yes 9 No No

SPD 1 [126] ACL anthology-based papers published
between 2000 and 2006 2019 28 597 Yes Yes No

SPD 2 [67] ACM proceedings-based papers published
between 2000 and 2010 2019 50 100,531 Yes 10 No No

[193] 35,473 articles collected after selecting authors
from DBLP 2020 547 15,174 17,637 No No

[194] 35,473 articles collected after selecting authors
from DBLP 2020 446 9399 11,381 No No

1: https://www.aminer.cn/aminer_data (accessed on 14 July 2024); 2: https://download.opencitations.net/
(accessed on 14 July 2024); 3: https://www.microsoft.com/en-us/research/project/open-academic-graph/
(accessed on 14 July 2024); 4: https://arxiv.org/help/bulk_data (accessed on 14 July 2024); 5: Download requester
pays Amazon S3 bucket https://arxiv.org/help/bulk_data_s3 (accessed on 14 July 2024); 6: https://core.ac.uk/
services/dataset/ (accessed on 14 July 2024); 7: Data need to be requested; 8: published date; 9: Anonymised data
that need to be requested; 10: Anonymised data.

5.2. Evaluation Methods

Evaluation methods in scholarly RecSys can be broadly categorised into three types:
offline evaluations, online evaluations, and user studies. User studies typically involve
a small group of participants who either complete questionnaires or use a controlled
application for a set period. Other online evaluations involve live systems, often without
users being aware that they are part of an evaluation process [219,220]. More than 70% of
the reviewed papers predominantly employed offline evaluation methods, followed by
user studies, with only a few utilising online live evaluation systems. Surprisingly, several
papers did not specify or conduct any evaluation [65,76,180,189,191,192,207,221–227]. The
lack of evaluation raises questions about the validity of the work and its quality.

https://www.aminer.cn/aminer_data
https://download.opencitations.net/
https://www.microsoft.com/en-us/research/project/open-academic-graph/
https://arxiv.org/help/bulk_data
https://arxiv.org/help/bulk_data_s3
https://core.ac.uk/services/dataset/
https://core.ac.uk/services/dataset/
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5.2.1. Offline Evaluation Method

The offline evaluation method does not require active user participation and typically
measures the accuracy of a system using pre-collected, static datasets. The most common
approach is to split the dataset into training and testing sets, where the system is trained
on the former and predictions are made on the latter. The “leave-one-out” method, where
a reference from a paper’s bibliography is removed and the system’s ability to predict
the missing reference is tested, is widely used [149,186]. However, offline methods have
limitations. They rely on static datasets that may not include recent or novel items, leading
to potential biases in the evaluation. Assessing user-centric judgement is also challenging
through offline evaluation [82,228,229]. Nevertheless, offline evaluation remains popu-
lar due to its cost-effectiveness and convenience, allowing for rapid testing of multiple
algorithms [219,230]. The most common metrics for offline evaluation include Precision,
Recall, F-measure, Normalised Discounted Cumulative Gain (nDCG), Mean Reciprocal
Rank (MRR), and Mean Average Precision (MAP).

5.2.2. Online Evaluation Method

Online evaluations assess the interaction between users and recommendations in live
systems. They provide a more accurate reflection of user satisfaction, as they capture real
user behaviour [11,82,231]. Despite their importance, online evaluations are less common,
with only a few studies utilising this method [17,48,187,220]. Usage logs are a valuable tool
in online evaluations, offering insights into how users interact with recommendations and
allowing for retrospective analysis of system performance.

A/B testing is a key online evaluation method, enabling comparisons between dif-
ferent system versions by measuring variations in user interactions, such as clicks and
downloads [230]. However, relying solely on implicit feedback from these interactions
may not fully capture user satisfaction, as clicks might be accidental or not indicative of
actual interest [220,232]. Therefore, combining implicit feedback with explicit user input,
like reviews or comments, is recommended for a more comprehensive evaluation.

5.2.3. User Studies

User studies focus on user feedback to evaluate recommendations. Participants are
typically asked to evaluate recommendations based on aspects such as novelty, usefulness,
and serendipity [70,125,128,149,233]. This method is valuable for simulating user behaviour
and can be particularly useful before deploying a system to ensure that it meets user
expectations [230]. However, user studies can be expensive and time-consuming, especially
when recruiting knowledgeable participants [219,220].

In summary, offline methods are suitable for initial algorithm comparison due
to their efficiency and cost-effectiveness. However, user-centric evaluations, such as
user studies or online testing, are essential for ensuring that systems meet the ultimate
goal of satisfying user needs. Some researchers have effectively combined these meth-
ods, conducting both offline evaluations for accuracy and user studies for user-centric
assessment [28,125,128,134,149]. Table 7 lists the popularity of different evaluation meth-
ods in academic recommender systems.
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Table 7. Evaluation methods used by the reviewed papers.

Paper Evaluation Methods
Offline Online User Study Participants

[98] x 16
[75] x 123
[136] x -
[145] x 31
[50] x 4
[141] x 10
[147] x 14
[187] x 938
[206,233,234] x 24
[178] x 12
[235] x 25
[236,237] x 119
[28] x x 3
[181,238] x 15
[73] x 5
[44] x 200
[163,239] x 2
[31,43] x 40
[100] x 7
[240] x 30
[134] x x 5
[149] x 19
[125] x x 111
[82] x 138
[128] x x -
[129] x -
[17,173,241] x
[17,18,21,28,36–38,42,45,47,49,52,53,55,57–
62,66,67,74,76,83,92,93,110–113,115,118,120,
126,137,140,143,144,146,155,160,161,170,171,
174,176,177,205,242–261]

x

5.3. Evaluation Metrics

Evaluation metrics are quantifiable measures used to assess the performance of a
RecSys. These metrics are crucial for understanding how well a system meets its intended
goals. In the domain of recommender systems, metrics are generally categorised into two
types: item-centric and user-centric. Item-centric metrics primarily focus on the accuracy
of recommendations. The most common method in this category is the “leave-one-out”
approach, where a portion of the dataset is withheld and used as test data to evaluate
the system’s ability to predict accurate results [230]. Accuracy is typically measured by
the precision and correctness of the recommended items [262,263]. While accuracy is
important, it alone may not be sufficient to meet the diverse and subjective needs of users.
Researchers have argued for a broader focus that includes user-centric evaluations such
as serendipity, novelty, and diversity [82,264–266]. These user-centric metrics address the
qualitative aspects of user experience, which are crucial for building trust and satisfaction
with the system.

Serendipity refers to the discovery of unexpected yet useful items. It captures
the element of surprise in recommendations, where users find something valuable
that they did not actively seek [264,267–269]. Although only a few studies focus on
serendipity, it is key to increasing user engagement by providing novel and surprising
recommendations [57,126,155]. Different techniques were explored, for example, ref. [268]
used long-tail, while [269] utilised time rareness and the dissimilarity concept to achieve
serendipity. Diversity measures how dissimilar the recommended items are from one an-
other. It helps prevent overspecialisation, where the system repeatedly recommends similar
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items, reducing the overall effectiveness of the recommendation [117,210]. Strategies to
increase diversity include re-ranking recommendations and introducing long-tail items
to the top of the list [270]. Novelty focuses on recommending items that are unknown or
new to the user [271]. This metric is particularly useful for experienced researchers who are
already familiar with much of the existing literature in their field. Novel recommendations
can keep users informed about recent developments and emerging trends [118,251].

The shift from accuracy-focused metrics to user-centric evaluations is gaining inter-
est within the research community. While accuracy remains important, it is increasingly
recognised that a sole focus on precision can fail to meet user expectations and reduce
engagement with the system [82,265,266]. Therefore, the ongoing debate about the best eval-
uation methods is critical; user-centric approaches like user studies and online evaluations
become essential for systems aiming to provide more than just accuracy.

6. Discussion and Conclusions
Finding relevant publications from huge document libraries is becoming ever more

challenging. Although new tools such as large language models (LLMs) have emerged,
they are still in their infancy and may suffer from hallucination. Therefore, a robust aca-
demic RecSys that can suggest serendipitous, recent, diverse, and relevant materials—not
only similar ones—is essential. This section discusses our investigation of various factors
relating to academic RecSys. This review reveals that CBF is the predominant technique in
academic RecSys, with over 70% of the reviewed papers employing it. The Term Frequency–
Inverse Document Frequency (TF–IDF) algorithm is widely used to identify relationships
between documents and generate recommendations. However, textual similarity-based
recommendations may fail to distinguish between different types of papers or their quality,
potentially leading to recommendations of less relevant or lower-quality materials. For ex-
ample, influential papers and their reproductions by novice researchers might be weighted
equally despite their differing impacts. Citation-based approaches are also common, as
citations are less prone to issues like ambiguity and synonymy compared to text-based
methods. However, citation-based approaches have their own limitations, such as treating
all citations equally, which does not reflect the varying significance of citations. Addition-
ally, these approaches are susceptible to “topic drifting,” where citations may serve different
purposes (e.g., defining concepts, providing background, and supporting methodology)
and thus should not be treated uniformly.

A major gap identified in this review is the underutilisation of rich citation knowledge,
including citation context, intention, and section. These features, though shown to improve
recommendation quality, are rarely implemented due to the lack of standardised datasets
and the computational complexity of extracting them from full-text documents. This
highlights a pressing need for open, annotated corpora and scalable NLP pipelines that can
support fine-grained citation analysis.

Evaluation methods and metrics are another important aspect of academic RecSys
that needs attention. There are significant challenges, particularly when determining
the most promising methods. Offline evaluation is cost-effective and generates results
quickly, making it a popular choice compared to online methods. However, user studies,
which involve human judges to assess user satisfaction, offer deeper insights but are more
expensive in terms of time and cost, and they require subject matter experts, who can
be challenging to find. Online testing, while comprehensive, is also costly due to the
need for sophisticated infrastructure and extended time frames to obtain stable results.
Moreover, online testing can be compromised by noisy data, such as unintentional clicks
or downloads, which may introduce false positives. Researchers, including [3,11,82,231],
have argued that offline evaluation is insufficient, as it fails to reflect real-world scenarios
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accurately. Offline methods struggle to capture users’ preferences, which are the ultimate
goal of recommender systems. Despite these limitations, offline evaluation remains widely
favoured, particularly when access to real-world systems is limited.

Given these challenges, it has been proposed that a combination of evaluation methods,
specifically offline testing followed by user studies or online evaluations, could be a more
effective approach. Initially, offline testing can be used to validate the effectiveness and
efficiency of algorithms. Once these algorithms demonstrate accuracy, they can be subjected
to user studies or extensive online evaluations to assess user satisfaction and subjective
metrics. This mixed-method approach could enhance the reliability and applicability of
recommender systems.

There is significant inconsistency in the size and scope of datasets used for experiments,
ranging from as few as fifteen articles [50] to over two million [272]. This variability, coupled
with the lack of publicly available datasets, contributes to issues of reproducibility. While
a handful of researchers share their datasets and facilitate reproducibility [58,75,193,194],
there are significant difficulties in replicating and validating findings across the field. Many
papers suffer from a lack of clarity in their descriptions of methodologies, making it difficult
to replicate studies. For example, ambiguities in the representation of features, the absence
of comparison with baselines, and insufficiently detailed explanations are common issues
that hinder the reproducibility of research in this field.

Despite rapid advances in modelling capabilities, ethical considerations such as fair-
ness, bias, and privacy remain underexplored in scholarly recommender systems. De-
mographic and institutional biases, for example, overrepresentation of English-language
or Western-affiliated research, can be amplified by algorithmic pipelines, leading to ho-
mogenised or exclusionary outputs [273]. Similarly, filter bubbles may emerge when
recommender systems overfit to narrow domains or citation cliques, reinforcing intellectual
silos and limiting exposure to diverse or interdisciplinary work. Another major concern is
the privacy of usage data, particularly reading logs or download histories, which are often
used for implicit feedback signals but can reveal sensitive user attributes or affiliations if
not handled responsibly [274]. Addressing these issues will require integrating fairness-
aware learning objectives, differential privacy mechanisms, and critical audits of training
data pipelines into future system designs. Finally, there is a pressing need to move beyond
accuracy as the sole metric for evaluating recommendation systems. User satisfaction, trust,
and confidence are equally important, yet they are often overlooked. Higher accuracy does
not necessarily correlate with user satisfaction, and neglecting these subjective factors can
undermine the effectiveness of recommendation systems. Future research should emphasise
user-centric evaluations to ensure that systems meet the diverse needs of their users.

7. Future Research Directions
This survey reviewed over 200 research papers published between 1990 and 2024

that address the task of research paper recommendation and highlighted the evolution of
feature selection and augmentation aimed at improving research paper recommendations.
It was noticed that early studies primarily relied on keyword searches extracted from the
title, abstract, and keyword sections of publications. With advancements in technology,
including full-text accessibility and enhanced software capabilities, feature augmentation
has expanded to include citation position, citation context, and critical information from
sections such as the Introduction, Related Work, and Conclusion. Researchers now leverage
a wide range of ML algorithms, from simple models like K-Nearest Neighbour (KNN) to
deep learning techniques like Long-Short Term Memory (LSTM) networks. As a result,
several new research avenues have emerged, which are outlined below:
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• Interdisciplinary Recommendations: Interdisciplinary recommendations have be-
come increasingly significant, with data indicating that 80% of recent studies are
interdisciplinary in nature. Despite the recognition of its importance, as mentioned by
researchers [126,155], there remains a gap in developing recommender systems that
cater specifically to interdisciplinary studies. It is suggested that future research should
focus on creating systems capable of facilitating interdisciplinary recommendations,
thereby pushing the boundaries of academic exploration.

• Recommendation with Explanation: Recommender systems are designed to help
users navigate vast information spaces. As these systems evolve to address users’
diverse informational needs, incorporating explanations for recommendations be-
comes critical. Providing reasoning for why a particular item is recommended can
significantly enhance user satisfaction and trust. However, achieving this will require
the development of richer datasets, comprehensive evaluation metrics, and possibly
larger volunteer-driven studies to test and refine these systems.

• User Modelling, Satisfaction, and Personalised Recommendations: Our review
indicates that current research tends to prioritise similarity-based matching between
user profiles and item attributes. This approach, while effective, often leads to re-
dundant recommendations, reducing user satisfaction. Future research should focus
on developing more nuanced user models that go beyond content-based matching,
emphasising serendipity and diversity in recommendations that could increase user
engagement. Additionally, as user-centric approaches gain prominence, there is a
growing need for personalised recommendations that respect user privacy, a concern
that must be addressed in the design of future systems.

• Topic Evolution: An intriguing direction for future research involves incorporating
topic evolution into recommender systems. By tracking how research areas evolve
over time, systems could generate “must-read” lists tailored to a user’s previous
reading history. This would be particularly useful for providing recommendations
that reflect the latest developments in a field. Additionally, recommending various
types of content—such as literature reviews or interdisciplinary papers—based on a
user’s expertise could enhance the utility of these systems.

• Situational Awareness: The needs of a new PhD student differ significantly from
those of an established researcher. Current recommender systems do not adequately
account for these different research contexts. Addressing situational awareness in
recommendation systems could lead to more tailored and effective recommendations
for users at different stages of their academic careers.

• Sparsity: The vast discrepancy between the number of publications and user in-
teractions creates a highly sparse user-item matrix, posing a significant challenge
for recommendation systems. Therefore, developing advanced techniques to mit-
igate this sparsity, particularly in collaborative filtering, is crucial for improving
recommendation accuracy.

• Reproducibility: A significant issue in the field is the lack of transparency in the
implementation of recommendation approaches. The absence of shared code, datasets,
and detailed methodological information impedes reproducibility, which is critical for
the advancement of the field. Addressing these issues by promoting openness and
methodological clarity will be essential for fostering robust scientific progress.

• Emerging Role of Generative AI (GenAI) and Large Language Models (LLMs):
Recent advances in GenAI and LLMs, such as GPT-4, LLaMA, and Claude, have started
to influence scholarly paper recommendation systems, as in several other domains.
These models enable novel capabilities such as generative retrieval, conversational
recommendation, and cold-start mitigation by synthesising paper representations from
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minimal metadata. However, they also introduce challenges around hallucination,
bias amplification, reproducibility, and computational cost. While our survey focused
on established and domain-adapted traditional approaches and LLMs (e.g., SciBERT,
SPECTER, and BERT-GCN), exploring the integration of general-purpose GenAI in
RecSys and addressing its unique risks represent promising directions for future
research and warrant dedicated investigation.
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Appendix A. Additional Materials

Table A1. List of reviewed papers categorised based on target preferences when the target is a piece of
work. Abbreviations: Ci—Citing, Ti—Title, Ab—Abstract, Ke—Keywords, Au—Author, Ve—Venue,
Py—Publication Year, Ft—Terms from Free Text, Tx—Taxonomy, Ck—Citation Knowledge.

References Ci Ti Ab Ke Au Ve Py Ft Tx Ck
[24] x x x x x x x
[82] x x x x x x
[136,143] x x
[50] x x x x x x
[52] x x x x
[70] x x x x x
[78] x x x
[90] x x x x x
[83] x x x
[27] 1 x x x x
[109] x x x x
[135,164] x x x
[116] x x x
[19,61,123] 2 x x
[17,18,20,128,129,133,134,137–140,144–
146,148–152,162,163]

x x

[165] x
[69] x x x
[141,147] x
[130–132]
[49] x x x x
[59,60] x x
[71,72] x x
[76] x
[84,85] x
[93] x
[124] x x
[142] 3 x
[169,170] 4

[9,21,25,47,51,53,55,56,68,74,77,79,81,86,
92,95–98,110–112,114,153,154,161,166,
167,171]

x

[76] x
1: No mention of entities to extract terms; 2: NoMT; 3: NoMT; 4: NoMT.
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Table A2. Reviewed papers categorised by target preferences when the target is a user. Abbrevia-
tions: A—Authoring, B—Browsing, T—Tagging, Bm—Bookmarking, Sc—Scoring, Rd—Reading,
Cl—Clicking, R—Rating, V—Viewing, D—Downloading, P—Profile availability, Sr—Searching,
Ac—Accessing, Sh—Sharing, Vo—Voting, Cm—Commenting, An—Annotating, Ci—Citing.

Ref. Implicit Feedback Explicit Feedback
A B T Sv Bm Rd Cl V D Sr Ac Sh Cm An Ci Sc R P Vo

[91,185] x x x
[26] x x
[34,36,43,44,89,
122,172,173,191]

x

[182] x x x x
[37] x x x x x
[41] x x
[38,87,181] x x
[40,88,94,104,174,
177,179]

x x

[175] x x x x
[187] x x x
[66] x x
[62,63,67,115] x
[48] x x x x x x x
[107,186,188] x
[29,156] x x
[184] x x x
[45,176,183] x
[158] x x x x
[113] x x
[101–103,117] x
[39] x x x x
[73,100] x
[42,54,180] x
[65,99,118,178] x
[125] x
[75,108] x
[64] x x
[22] x
[127] x
[28,30,57,58,126,
155,157,159]

x x

[119] x
[23,31–
33,35,46,106,120,
121,160,189,190]

x
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