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Abstract: Artificial intelligence (AI) chatbots are next-word predictors built on large language mod-
els (LLMs). There is great interest within the educational field for this new technology because AI 
chatbots can be used to generate information. In this theoretical article, we provide educational in-
sights into the possibilities and challenges of using AI chatbots. These insights were produced by 
designing chemical information-seeking activities for chemistry teacher education which were ana-
lyzed via the SWOT approach. The analysis revealed several internal and external possibilities and 
challenges. The key insight is that AI chatbots will change the way learners interact with infor-
mation. For example, they enable the building of personal learning environments with ubiquitous 
access to information and AI tutors. Their ability to support chemistry learning is impressive. How-
ever, the processing of chemical information reveals the limitations of current AI chatbots not being 
able to process multimodal chemical information. There are also ethical issues to address. Despite 
the benefits, wider educational adoption will take time. The diffusion can be supported by integrat-
ing LLMs into curricula, relying on open-source solutions, and training teachers with modern in-
formation literacy skills. This research presents theory-grounded examples of how to support the 
development of modern information literacy skills in the context of chemistry teacher education. 
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teacher education; TPACK; SWOT 
 

1. Introduction 
Artificial intelligence (AI) chatbots are generative chat tools built on large language 

models (LLMs), such as GPT-3.5, GPT-4, PALM, and LLaMA. In the past year, AI chatbots 
(e.g., Bard, Bing Chat, and ChatGPT) have received great interest from the media, public, 
policymakers, and researchers from various fields [1,2]. Educational researchers have also 
found generative chat engines an interesting research topic. In particular, higher educa-
tion institutions (HEIs) have been at the frontier of the educational use of AI chatbots long 
before the recent public awareness of LLM-based software. This is clearly seen in several 
recent review articles [3–5]. A current trend is that major companies and research institu-
tions around the world are investing in the development of LLMs, promoting their rapid 
evolution. New use cases and applications are invented constantly, and AI chat technol-
ogy will soon become ubiquitous [1]. In this regard, the educational field must adopt this 
new technology and develop pedagogically meaningful use cases for it [6]. This is also 
relevant to chemistry teacher education [7–9], which is the educational context of this 
study. 

Technically, LLMs are statistical next-word predictors. However, from a human per-
spective, LLMs seem to have highly intelligent creative abilities. Bowman [1] reviewed 
multiple studies where the ability of LLMs to learn and predict seems to produce novel 
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text and representations that are valuable for users. According to Bowman, the reason for 
this is that LLMs are trained in a representationally rich environment through a massive 
amount of data using versatile training methods, including interaction with various types 
of software. They are also capable of conducting searches within databases in response to 
user information requests [10]. This is interesting from an educational perspective. For 
example, LLMs can pass visual tests that measure reasoning [11], deduce what the author 
knows about the topic, produce reasonable text suggestions to support writing [12], and 
generate novel images and guide users on how to draw them [13]. The current challenge 
is that, even though LLMs seem to provide meaningful output in many cases, there are no 
reliable techniques to control content generation. There is also a learning curve to consider 
in terms of, e.g., prompt crafting, as a short interaction with LLMs does not seem to pro-
duce good results [1]. To maximize success with LLMs, users need to learn how to think 
step-by-step and formulate prompts using an iterative process [14]. 

As mentioned, scholars working in higher-education studies have been active in AI 
chatbot research, providing knowledge on, e.g., potential use cases, risks, and students’ 
perceptions towards its usage. For example, Strzelecki [15] found that the three strongest 
reasons for higher education students to use ChatGPT in learning were habit of usage, 
expectations for improving performance, and hedonic motivation. These results were 
based on a data sample of 543 students’ self-reports, thus providing a trustworthy per-
spective on the motivational factors of early adopters. Cooper [16] highlights potential 
risks of LLMs, such as fake citations, generation of biases found from training data, the 
need for content moderation, copyright issues, and environmental impacts such as carbon 
dioxide emissions and high energy consumption. From a positive perspective, Jauhiainen 
and Guerra [17] argue that generative AI can revolutionize digital education and offer 
major possibilities to support sustainable development goals, especially sustainable edu-
cation SDG4. This could be achieved, for example, by using AI to provide access to high-
quality learning environments and up-to-date information for all. Note that currently, this 
is not the case, and AI chatbots do not generate valid trustworthy information in all cases. 

In addition, the adoption of new technology increases the complexity of the infor-
mation environment. This sets new requirements for teaching information literacy that 
must be considered in teacher education [18]. In summary, scholars are cautious of new 
technology and of identifying potential risks. However, these scholars also see several ed-
ucational possibilities, such as a tool to create new exercises and to support writing [19,20]. 

Indeed, the implementation of AI chatbots is a very current topic in educational re-
search. New articles are published constantly. Although it seems that much research has 
been done, according to many authors (e.g., [4,15,17]) there is a need to develop research-
based models on how to use these tools to support learning and teaching in practice. We 
agree with this need and use it to justify the following rationale: the purpose of this article 
is to offer novel theory-based insights about the usefulness of AI chatbots in supporting 
learning. However, the challenge with this kind of broad purpose statement is that the 
educational usage of AI chatbots is a highly multidisciplinary topic, offering endless per-
spectives to address. Therefore, to make a valuable contribution to the scientific discus-
sion, this article needs a clear focus that positions AI chatbots in an educational context. A 
well-defined focus requires several contextual limitations, which we describe and justify 
next. 

First, as AI chatbots are technological applications of LLMs, we argue that AI chatbot-
related educational research needs to define AI chatbots as a technological invention. This 
enables defining the educational adoption of AI chatbots as an innovation [21], which is a 
central concept for the diffusion of new educational technology [22]. From the research 
literature, one can already find multiple examples of how to implement AI chatbots in 
education (see [3,4]). However, even though there are ready-made solutions available, the 
field will not immediately adopt them on a broad scale. This is due to the nature of inno-
vations. It takes time before innovation is communicated throughout the educational com-
munity, including teachers, students, and other stakeholders [22]. Fortunately, there are 
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ways to expedite the diffusion. Ertmer et al. [23] suggest that the adoption can be sup-
ported by identifying and removing barriers that hinder teachers’ usage of new technol-
ogy. 

Obstacles can be external or internal. External challenges are called first-order barri-
ers, such as hardware, software, training, and support. Second-order barriers are internal 
challenges, such as teachers’ beliefs, a itudes, skills, knowledge, confidence, and experi-
enced value for supporting teaching and learning [24]. First-order barriers are significant 
and can prevent technology usage completely. However, they are often clearly identifiable 
and removed rapidly [23]. For example, when ChatGPT was released for public use on 30 
November 2022, it instantly removed barriers related to software access [25]. Training and 
support can also be arranged rapidly if needs are identified and there are available re-
sources for training. Therefore, the second-order barriers are the real challenge in support-
ing the adoption of educational technology. Teachers will not start using new tools with-
out skills and an understanding of their possibilities and challenges [23]. This is the reason 
why we focus on removing the second-order barriers by providing insights into the edu-
cational possibilities and challenges of AI chatbot usage. 

There are several research-based frameworks that support the modeling of 
knowledge domains required in describing the full innovation environment. In this re-
search, we have selected a technological pedagogical content knowledge (TPACK) frame-
work for the modeling tool [26]. TPACK was selected because it is a widely used frame-
work and there are several successful research cases where it has been used in modeling 
the knowledge domains that affect the adoption of educational technology [27] (an in-
depth overview of the TPACK framework can be found in Section 3.2). First-order barriers 
are mainly related to technological knowledge (TK) and are easily identified in the case of 
AI chatbots. However, the removal of second-order barriers requires pedagogical 
knowledge, which adds complexity to the innovation work. 

Second, to contribute directly to the educational discussion, this article needs a ped-
agogical context. For the pedagogical knowledge (PK) component, we have selected in-
formation seeking. In this article, we define information seeking as purposive interaction 
with information [28] (see Section 2). The context was selected because good information-
seeking skills are essential in academic work [29] and present in all learning and problem-
solving activities to some extent [30]. In addition, the topic is important for the educational 
sector because teachers need new tools to manage the rapidly expanding information en-
vironment. A lack of information skills can lead to inequality between people [31]. With-
out up-to-date information literacy skills, teachers cannot promote lifelong learning skills 
and support the sustainability and equality of education for all (SDG4) [18]. 

There is also a gap in research that combines AI chatbots and information-seeking in 
an educational context. Therefore, the information-seeking context also makes this re-
search interesting for the field of information sciences. There is a shortage of task-specific 
technology-driven information-seeking studies [28,29,32,33], and more research is needed 
whenever new tools and technology are developed [34–36]. For example, the development 
of new information technologies, diversification of media types, and rapidly growing in-
formation load change the information behavior and research questions guiding infor-
mation-seeking activities [37]. 

The third contextual limitation is derived from the content knowledge (CK) compo-
nent of the TPACK framework (see Figure 1). We have included the content knowledge 
perspective into the innovation environment by conducting the research in an authentic 
higher education se ing of chemistry teacher education. This enables us to analyze the 
selected technological and pedagogical contexts through chemical information. 
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Figure 1. A TPACK illustration that describes the three knowledge domains that set the contextual 
limitations of the research: (1) AI chatbots represent technological knowledge (TK), (2) information 
seeking is addressed as pedagogical knowledge (PK), and (3) chemistry is content knowledge (CK). 

With these three contextual limitations and the selected higher educational se ing, 
we can formulate a clear focus. The aim of this theoretical research is to analyze the pos-
sibilities and challenges emerging when AI chatbots (TK) are applied in educational in-
formation seeking (PK) of chemical information (CK) in pre-service chemistry teacher ed-
ucation (HEI). The analysis was conducted by first preparing a narrative literature review 
[38] on information seeking (see Section 2). The insights of the literature review were used 
in designing educational chemical information-seeking activities that were analyzed via a 
SWOT approach [39]. The educational use cases of AI-assisted information seeking were 
specifically designed for future chemistry teacher education courses at the University of 
Helsinki. To ensure pedagogical diversity, we present one example from each core 
knowledge component of TPACK (see Section 3). We analyzed the possibilities and chal-
lenges via SWOT, which was guided by the following research question: what kind of 
strengths, weaknesses, opportunities, and threats does AI chatbot-assisted information-
seeking offer for chemistry teacher education? In Section 4, we report the analysis results 
and reflect them on the presented background literature. Lastly, in Section 5, we present 
a summary and research-based conclusions organized using the SWOT model. 

Through this research design (see Figure 2), we can produce novel insights and ad-
dress the stated broader purpose from a unique interdisciplinary perspective that is espe-
cially relevant for chemistry teacher education. This research contributes to the identified 
research gaps by providing research-based knowledge that is useful for all who design 
educational AI chatbot applications, use cases, and pedagogical models. 
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Figure 2. Overview of the research design that illustrates the relations between research purpose, 
aim, and question. 

2. Narrative Literature Review 
2.1. Review Procedure 

The narrative review part of the article can be classified as a narrative overview [38]. 
Through the narrative approach, we craft a theoretical background for the usage of AI 
chatbots in educational chemical information seeking. The reviewed literature was re-
trieved from large commonly used databases including Google Scholar, EBSCO, and 
ERIC. The databases were chosen because they contain literature from fields relevant to 
this study, such as chemistry education, general education, and information sciences. In 
addition, direct information retrieval from chemistry education research journals was con-
ducted. The used databases, search phrases, results (total/relevant), links to search results, 
and meta-level notes are presented in Table 1. 

Table 1. A detailed overview of the narrative review literature retrieval process. 

Date Database Search Phrase Results 
(Total) 

Results 
(Relevant) 

Notes Link 

17 Octo-
ber 2023 

Google 
Scholar 

“information behavior” 
and chemistry 

2670 Not available 
Not very useful because too 
many hits.  
Iteration needed. 

www 

23 Octo-
ber 2023 EBSCO 

“information behavior” 
and chemistry 65 2 

First three were relevant, 
but one of them was a meth-
odological paper. 

Not available, 
payment wall 

23 Octo-
ber 2023 

ERIC “information behavior” 333 4 

At least four, but the num-
ber of hits was too large. 
Not a chemistry specific 
search. 

www 

25 Octo-
ber 2023 

Google 
Scholar 

“information seeking” 
and chatbots 

4190 12 
Many preprints. A lot of 
noise such as books and 
conference papers. 

www 
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29 March 
2024 

Chemistry 
Education 
Journals (JCE, 
CERP; CTI) 

chatbot 19 15 
Preprints had been pro-
cessed to publications dur-
ing the first review round. 

For example:  
www 

30 March 
2024 

Google 
Scholar 

“Technology” from the 
articles citing [32] 

273 10 

Following the citation trace 
of [32] to present up-to-date 
references for information 
seeking rationale. 

www 

2.2. Information Scientific Framework 
To understand AI-assisted information seeking as a theoretical concept in a pedagog-

ical context, we start by defining broader concepts such as information, information be-
havior, and information seeking. Then, we proceed to the contextual level and review the 
AI chatbot-assisted information-seeking literature (see Section 2.3). Last, we shift the focus 
to chemistry and explore earlier research related to chemical information seeking (see Sec-
tion 2.4). For defining the central concepts, we have used core literature in the field of 
information science with hundreds or even thousands of citations. With this approach, we 
aim to use widely accepted definitions so that as many readers as possible can recognize 
and agree upon them. 

In information sciences, there are two common models of how to describe and define 
the concept of information. The models partly overlap because both describe information 
as dynamic by nature. The first model is derived from Popper’s epistemology. According 
to this, information can be internal or external and has many locations, such as a person’s 
mind, electronic storage, or physical documents. However, the key idea is that the purpose 
of information is to communicate knowledge between various stakeholders and systems 
(i.e., Popper’s three worlds) [40]. The second model illustrates the structures of infor-
mation space and emphasizes its dynamic nature through a refinement process. Refine-
ment is usually described as a linear progression where data are first refined to infor-
mation and knowledge is understood as refined information. The last stage is to develop 
knowledge of wisdom, expertise, or actions [40,41]. 

Refinement requires interaction between people, information, and information chan-
nels, which is called information behavior. It can be active or passive, but it is always con-
text-dependent, reflecting parameters set by real-life situations [42]. For example, infor-
mation context can be related to work tasks or holiday planning. Different contexts require 
different accuracy, and the available information channels are slightly different. In this 
regard, context affects the tasks that ignite and shape the need for information. Infor-
mation needs are fulfilled through information seeking. Purposive information behavior 
consists of cognitive processes such as remembering, creating, or acquiring knowledge 
that aims to fulfill the information need [28,32]. 

In Figure 3, we combine the widely used information behavior model [43] and the 
information-seeking model [28,32] to illustrate the relation between context, information 
behavior, and information-seeking strategies. Through this renewed hybrid model, we 
highlight the importance of context that affects tasks that formulate the actual information 
need. Tasks are concrete units of information behavior that allow us to design educational 
information-seeking activities that apply AI chatbots (see Section 3.2). 
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Figure 3. A renewed information-seeking model built by merging the augmented information-seek-
ing model [28,32] and the nested model of information behavior [43]. 

2.3. AI Chatbots and Information Seeking 
From an information-seeking perspective, chatbots offer a conversational interface 

for information search [44]. Their usage has been studied for several years before the re-
cent public awareness of AI chatbots. Brand aeg and Følstad [45] conducted one of the 
first empirical studies that mapped out the motivational factors behind chatbot use. Ac-
cording to their quantitative study (N = 146), the most frequent reason for use was to in-
crease productivity. The second most observed reason was entertainment; the third was 
to use chatbots for social purposes. Many respondents felt that chatbots have social value 
by providing the possibility to have human-like interaction. These early results differ 
slightly from Strzelecki’s study [15], which highlighted the habit of usage in addition to 
production and enjoyment. However, it is noteworthy that Brand aeg and Følstad al-
ready predicted in 2017 that conversational chatbots will create a new paradigm in how 
people interact with data, information, and services. 

Avula et al. [46] studied chatbot usage in collaborative information seeking. Techni-
cally, chatbot tools can be integrated directly inside the workflow software or they can be 
used as separate software. Avula and co-authors found that task difficulty and users’ prior 
knowledge influenced their motivation to use chatbots. A combination of difficult tasks 
and li le prior knowledge increased usage. Note that the chatbots used over 5 years ago 
were not based on LLMs. The GPT-1 model was published in 2018 [47]. Regardless of the 
technology, the main reason to use chatbots in information seeking is to find relevant in-
formation efficiently [48]. 

According to our previous research, fulfilling an information need is an often-men-
tioned rationale for chemical information software development [49]. The same justifica-
tion is also used in developing AI chatbot solutions. For example, Androutsopoulou et al. 
[50] developed an AI chatbot that assists people in using public services. The objective was 
to support communication between citizens and government, which would increase well-
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being and decrease administrative costs. Another mentioned design objective for AI chat-
bots is to develop more personalized services [10]. Personalization has both economic and 
social value. Matching consumer and chatbot personalities increases consumer engage-
ment, which positively affects purchasing behavior [51]. 

Conversational tools also offer possibilities for educational information seeking. Ac-
cording to Adarkwah et al. [52], AI chatbots provide instant feedback, similar to face-to-
face human tutors. They can be used in generating summaries and new insights that can 
enhance the interaction with information and support learning. AI chatbots are also excel-
lent at translating text, thus fostering multilingual collaboration. However, all LLMs and 
software have limitations, such as biases and fake citations [16]. Adarkwah et al. [52] em-
phasize that learners must be aware of the possibilities of the new technology and under-
stand the challenges. They suggest that it is essential to seek a balance between the new 
tools and traditional information resources, such as libraries, databases, teachers, and 
other professionals. 

2.4. Information Seeking in Chemistry 
There are few previous studies on chemistry-specific information seeking. Chemis-

try, similar to many other research fields, is very broad. New findings are published daily, 
and keeping up with the latest information is overwhelming for many chemists [29,53]. 
The amount of chemical information is massive and can be in various formats, such as 
text, diagrams, numbers, chemical symbols, line notations, molecule files, photographs, 
videos, 2D representations, and 3D models. It is often delivered in a multimodal format 
[54], which can be communicated at three different levels of chemical information (see 
Figure 4). The macro level communicates concepts that can be seen. The symbolic level 
expresses chemistry through chemical symbols. The submicroscopic level illustrates the 
unseen atom, and the particle level describes dynamic chemical interactions [55]. The tri-
plet model of chemical information is one of the key models in chemical education re-
search and is used to illustrate the complexity of chemical information [56]. The complex-
ity of information may cause cognitive overload, which is often used to explain why chem-
istry is a difficult subject to learn [57–59]. 

 
Figure 4. Example of the diversity of representations in chemical information. All information for-
mats describe the characteristics of acetylsalicylic acid from different perspectives. 
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Due to the amount of chemical information and its complexity, many chemists feel 
that “there is too much information and not enough time” [29]. According to Gordon et 
al. [29], from a data sample of 245 chemists, only 13.9% of chemists felt that they were 
successful in following the latest advances in the field. About 50% of the respondents felt 
that they were somewhat successful, and the rest felt the need for improvement. On the 
other hand, in Flaxbart’s [53] qualitative data sample (N = 6), almost all chemists consid-
ered their information-seeking skills as good or expert level. This research result might be 
because all respondents were at least PhD-level academics, and it was conducted years 
before the massive growth of digital chemical information [60]. According to Parissi et al. 
[31], good content knowledge is the foundation of efficient information-seeking. Overall, 
a major challenge is that one needs several information strategies to be successful, which 
should be addressed in chemistry university studies [29,53]. 

According to Shul  and Li [30], there is a great need to improve the information-
seeking skills of chemistry undergraduate students. They found that students were unable 
to recognize the information needs or to evaluate the quality of information resources. 
This led to the novice-level work process of trying to find direct answers to problems, 
often using non-scholarly literature. Shul  and Li [30] suggested that the information-
seeking skills of chemistry students may be scaffolded via information literature training 
and carefully designed information-seeking exercises. The research results of Parissi and 
co-workers [31] support this proposition. They found that educational information-seek-
ing tasks and improved content knowledge increase the variety of information-seeking 
actions. 

AI chatbot-assisted information-seeking has also arrived in the field of chemistry. 
There are already some peer-reviewed articles and preprints that offer preliminary bench-
marks of the possibilities and limitations of AI chatbots for chemistry research [61,62] and 
learning [9,63–66]. Preliminary results indicate that AI chatbots can scaffold learning by 
enhancing chemical information seeking significantly. They offer an interface to dynamic 
personalized learning discussions that support the development of conceptual knowledge 
and foster critical thinking [63], such as analyzing and evaluating, which are higher-order 
cognitive skills (HOCSs) [67]. For example, the user can prompt answers for basic-level 
questions, acquire new chemical insights through learning discussions, or obtain support 
to plan chemical experiments [62,68]. This enables the building of personal learning envi-
ronments and provides equal possibilities for all to expand their zone of proximal devel-
opment (ZPD) [69–72], which supports sustainable education goals (SDG4) [73]. To use 
AI chatbot technology efficiently, it is important to learn prompt crafting [63]. In addition, 
users must be aware of how statistical word processors work and not use them as a sole 
information source [74]. 

3. SWOT Analysis 
In this section, we describe the developed chemical information-seeking activities 

and the SWOT analysis approach that was used in analyzing the developed activities. 
SWOT is a descriptive method that enables analysis of possibilities and challenges by cat-
egorizing features into internal strengths and weaknesses and external opportunities and 
threats [39,75]. Therefore, SWOT offers more analytical accuracy than just focusing on 
possibilities and challenges, which is why we have chosen this as the analysis approach. 
Although SWOT was originally developed in the 1960s to support strategic business plan-
ning [76], due to its practical nature, there are several research examples where SWOT has 
been applied in analyzing educational technology contexts, such as 360° virtual reality 
[77,78], educational cheminformatics [79], and sports technology [80]. 

In addition, because our research context is highly interdisciplinary, combining 
learning, information seeking, and educational technology, we decided to add an extra 
layer to SWOT to improve the accuracy even further. To ensure that the analysis was fo-
cused strictly on educational possibilities and challenges, we used the TPACK framework 
to guide the analysis inside the SWOT sections [81]. 
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3.1. TPACK Framework 
TPACK is a widely adopted model that facilitates the understanding of different 

knowledge types needed for the successful use of educational technology. The TPACK 
framework consists of several overlapping knowledge domains, often visualized through 
a Venn diagram (see Figure 5) [26]. The three core components already introduced are PK 
(how to learn or write), CK (concepts, theories, and research techniques), and TK 
(knowledge of devices, software, communication tools). The interaction of the core com-
ponents forms three hybrid knowledge categories. Pedagogical content knowledge (PCK) 
is, for example, knowledge of challenges in learning some specific concept. In this re-
search, PCK refers to the interaction of chemical information and information seeking. 
Technological content knowledge (TCK) enables the use of technology to support the 
learning of some specific concepts. In this research, the usage of AI chatbots for interacting 
with chemical information is considered TCK. Technological pedagogical knowledge 
(TPK) is understanding the possibilities that technology offers for learning. In this re-
search, prompting technological advice is considered TPK [26,81,82]. Note that TPK is not 
subject-specific and does not overlap directly with CK (see Figure 5). 

 
Figure 5. A model of the TPACK framework with TPK, TCK, and PCK examples from this research. 

The TPACK model has been criticized for being rather unclear or unpractical [83]. 
One problem is the diversity and inaccuracy of definitions for different knowledge com-
ponents [84]. For example, Cox [85] analyzed TPACK research literature and found 13 
definitions for TCK, 10 definitions for TPK, and 89 definitions for TPACK. Such variance 
makes it difficult for researchers to understand and use the framework systematically to 
support the diffusion of innovations and to measure different TPACK domains in consen-
sus. For example, TK includes all modern (e.g., smartphones, internet, and AI chatbots) 
and traditional technologies (e.g., pencils and chalkboards) under the same knowledge 
domain [84]. Because of this broad categorization, some researchers have developed more 
accurate definitions. For example, Angeli and Valanides [86] have conceptualized a 
knowledge domain called ICT-TPCK to represent the information and communication 
technological aspects of TPACK. Some criticism has also been directed toward the actual 
TPACK visualization (see Figure 5). Graham [84] argues that, according to the TPACK 
model visualization, PK is not needed in TCK (no overlap between PK and TCK). Never-
theless, there are still many TCK definitions that include the aspect of learning. Graham 
emphasizes that there is a lot of work to be done in defining TPACK and its knowledge 
components, because “precise definitions are essential to a coherent theory” [84]. 
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We agree with the inaccuracy claims of the TPACK model. Every model has its 
strengths and limitations. The authors cited have provided constructive criticism that has 
supported the development of the TPACK concept. Despite the criticism, TPACK has been 
used successfully in hundreds of research cases in modeling the knowledge components 
needed to use educational technology. Therefore, we are confident in using TPACK to 
increase the analysis accuracy of our SWOT analysis. 

3.2. Designed AI Chatbot-Assisted Information-Seeking Activities 
Next, we present the three designed AI chatbot-assisted information-seeking activi-

ties that will be analyzed using SWOT. Activities 1 and 2 are included in the course “ICT 
in Chemistry Education”, which is a 4 ECTS mandatory course for bachelor studies of 
chemistry education at the University of Helsinki. Activity 3 was designed for an ad-
vanced master’s level chemistry education course called “Inquiry and integration in chem-
istry education”. 

3.2.1. Activity 1: Write a Summary (PK to TPACK) 
In the first activity, chemistry student teachers were assigned to read an article about 

microcomputer-based laboratories  [87] and write a 250-word summary in Finnish. The 
designed information needed was to become orientated with the topic before laboratory 
work. The information behavior needed to complete this assignment leaned strongly to-
wards creating knowledge (see Figure 2) [28]. 

We supported the work process via the following instructions: 
Generate a summary from the article via AI-PDF software (for example, pdf2gpt soft-

ware [h ps://pdf2gpt.com (accessed on 30 March 2024)]). 
1. Ask an AI chatbot tool (e.g., ChatGPT, Bard, or Bing Chat) to refine it to 250-word 

length. 
2. Translate the text to Finnish via the same tool. 
3. Examine the text, correct language, and readability, and add the required infographic 

or table mentioned in the evaluation criteria. 
4. Describe the entire working process (prompts included) below the summary suffi-

ciently precisely such that it can be repeated if desired. 
5. Reflect on the possibilities and challenges of the work process in 250 words. 

We categorized this activity under PK, as academic writing is not always CK-depend-
ent. Software tools represent the TK domain, making the driving factor of the assignment 
TPK. However, the context of the activity is a microcomputer-based laboratory (CK), 
which is why it ultimately activates the entire TPACK framework [26,81]. 

3.2.2. Activity 2: Create a Concept Map (CK to TCK) 
The second activity was a concept-mapping exercise. In this exercise, chemistry stu-

dent teachers chose a chemical concept found in the Finnish curriculum, such as energy 
or a chemical reaction. The students then made a Novakian concept map including about 
20 concepts, 3–4 hierarchy levels, links, and images (see [88]). 

This exercise activates all three major information-seeking strategies [28]. Our design 
conjecture was that students would remember some concepts but not all 20. Therefore, 
they must acquire conceptual knowledge and create relations between them. In this re-
gard, the information needed was to remember basic-level chemistry knowledge and 
model a larger conceptual system. To acquire chemical information and to create relations 
between concepts, they were encouraged to use AI chatbots and textbooks. The role of AI 
chatbots was to strengthen the internal work process by offering a tool for triangulating 
ideas, supporting the design of conceptual limitations, and verifying memory-based def-
initions. 
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This exercise was categorized under CK because it focused on chemistry. However, 
because the concepts were prepared using software, and the overall aim was to learn how 
to visualize chemical concept structures, the exercise also had a TCK emphasis [26]. 

3.2.3. Activity 3: Build a Chemistry Measurement Instrument (TK to TPACK) 
In the third exercise, students designed and built a chemistry measurement instru-

ment using a single-board computer platform. In addition, they created a project-based 
learning module that used the device. This exercise was very challenging for chemistry 
student teachers because it required programming skills and electronics construction ex-
perience in addition to chemistry and pedagogical knowledge. These skills are not in-
cluded in their study program by default but are developed through optional studies or 
hobbies [89]. 

The basis of this exercise is TK, due to the electronics and programming demands. 
However, this exercise also required CK for the chemistry context and PK for the peda-
gogical planning. Therefore, we argue that it can be used in developing the whole TPACK 
[82]. This exercise was the most challenging from the information-seeking perspective. 
Building a chemistry device with a pedagogical purpose requires remembering, creating, 
and acquiring knowledge through diverse resources. The task likely activated all the in-
formation behavior components presented in Figure 3 [28,32]. 

4. Results and Discussion 
4.1. Supporting Writing Assignments 

As discussed in the introduction, several scholars have studied the possibilities and 
challenges of using AI chatbots for writing. Some are concerned about how chatbots affect 
the development of writing skills, others focus on their benefits [20]. Although students 
already use chatbots widely, it is hard to detect, which is an internal weakness [90]. 

To adopt AI chatbots meaningfully in higher education, the University of Helsinki 
has taken a constructive approach and is not focused on controlling but rather on teaching 
how to use new technology. The Faculty of Science offers support to faculty personnel on 
how to guide students in using AI chatbots in courses (see Appendix A). Some use cases 
may be allowed, others forbidden, but the key is to make course-dependent decisions 
based on the learning objectives. This is an external opportunity to teach students about 
ethical considerations in academic writing [19,91]. Faculty-level actions are essential in 
coordinated systematic innovation work. This kind of instructive communication towards 
faculty personnel especially supports the removal of second-order internal barriers, such 
as beliefs and a itudes [23]. 

Our design conjecture was that the use of AI chatbots offers many internal strengths, 
such as increasing productivity by expediting the preparation of a summary [15,20,45]. 
From a course-planning perspective, this is an opportunity that allows allocating fewer 
hours to CK orientating and more time to laboratory work. From a writing perspective, 
AI chatbots change the focus of skills that will be developed. Previously, the emphasis 
was on writing text; with chatbots, the emphasis is now on analyzing and evaluating text 
and editing it to ensure fluency. Therefore, chatbot-assisted writing fosters critical think-
ing and can be used in developing academic writing skills [63]. It is important to notice 
that chatbots support the development of some writing skills be er than others. Some 
might see this as an external threat to academic skills in general. However, we argue that 
this is neither an internal strength nor a weakness depending on the perspective. 

The translation abilities of AI chatbots are not limited to English [52]. This offers an 
external opportunity to expand the language pool of the selected course literature. For 
example, there is considerable chemistry education research literature published in Ger-
man, French, and Spanish that is not commonly used in Finnish academia. In addition, 
language-processing capabilities enable foreign students with modest English skills to in-
teract with the course literature more seamlessly than before. When chatbots develop 
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further, they could even contribute to writing exercises in a multilingual group assign-
ment. This offers an external opportunity to support the inclusion and equity of education 
(SDG4) [73]. However, the selected software should be open source and sustainable, such 
that every learner has an equal opportunity to use it. For example, in our activity 1 we 
recommended pdf2gtp software, which has subsequently announced that the free version 
will have restrictions in the future and a pro version with a small fee will be published. 
This is an example of an external threat derived from the TK domain. 

4.2. Triangulating Basic Level Conceptual Knowledge 
The second activity introduced students to concept mapping. A concept map is a 

meta-level knowledge tool especially useful for making internal conceptual structures vis-
ible, which facilitates communication between stakeholders and enables refining infor-
mation from data to expertise [40,43,88]. While designing the activity, we saw the possi-
bilities that AI chatbots offer for learning discussions. Users can have meaningful chemis-
try-related conversations with chatbots, but, as highlighted in the literature, good prompt-
crafting skills are essential for successful workflows [63]. In addition, we realized how 
important it is to critically analyze the answers that AI chatbots return. For example, some 
of the Finnish names for concepts and their definitions were nonsensical. This sets require-
ments for the user’s CK. The user must have at least a basic level of understanding of the 
topic to evaluate the quality of the output. This is an internal weakness derived from AI 
chatbot technology. On the other hand, this offers an opportunity to activate HOCS to, for 
example, analyze and evaluate [67]. 

In this research, we mainly used the free version of ChatGPT based on GPT 3.5 in 
developing the exercises [25]. From a chemical information perspective, the free version 
of ChatGPT can enhance understanding at all three levels [55,56], although outputs are 
delivered in text format. This is an internal weakness. Users can make a submicroscopic 
level prompt and the chatbot will describe the dynamic nature of chemistry through a 
textual description (see Figure 4). However, these outputs can be used in clarifying some 
specific illustrations and could decrease the potential cognitive overload [58,59]. In this 
sense, a triangulation of knowledge through a combination of traditional information re-
sources (such as textbooks) and modern tools (such as chatbots) can be a good workflow 
before more integrated solutions are developed [52]. 

4.3. Scaffolding Usage of Unfamiliar Technical Knowledge 
During the development of activity 3, we observed that AI chatbots can produce func-

tional well-commented source code and circuit planning. This was the case at least with 
the educational Arduino platform. As our earlier research indicated, we have a major chal-
lenge in introducing coding and SBC-based chemical instrument development for chem-
istry student teachers because the diverse knowledge requirements cannot be addressed 
in a single 5 ECTS university course [89]. Through AI chatbots, we can significantly de-
crease the workload related to programming and electronic device planning. For the out-
put analysis need, the software development platforms offer internal quality tools by de-
fault. Users can test and debug whether the wri en code works as intended. This is an 
external opportunity to teach software development and an internal strength raised from 
the ability of AI chatbots to generate working source code. However, prompt crafting is, 
again, the central skill that should be taught to students [14]. 

From the information-seeking perspective, this is the most challenging activity. It in-
cludes many unfamiliar knowledge domains that require considerable independent prob-
lem-solving. Of course, students can ask for help from teachers. Unfortunately, in reality, 
teachers do not have enough resources to assist every student with every single support 
request [89]. To develop good problem-solving abilities and persistence, students must 
learn how to cope by themselves using their personal networks as support. This is also 
important from the work-life requirements perspective. As a solution, we see that AI chat-
bots offer an external opportunity to build a personal learning environment and expand 
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their ZPD [70,72]. For example, if the learner does not understand some parts of the code, 
they could make clarifying prompts. However, to develop good information literacy 
skills, we claim that it is important to learn how to use versatile information resources, 
such as libraries, document retrieval, and contact with experts [30]. This would ensure the 
development of diverse information behavior [18,28]. 

5. Summary and Conclusions 
The conducted TPACK-guided SWOT analysis revealed several possibilities and 

challenges, both from internal and external perspectives (see Table 2). This research is use-
ful for the field, as the applied TPACK modeling framework worked as planned and of-
fered more analysis accuracy for categorizing the insights inside the SWOT model [26]. 
This enables focusing the innovation work on a specific knowledge domain. 

Table 2. Summary of the synthesized possibilities and challenges categorized via a SWOT model 
and reflected in the TPACK framework [26]. 

 Possibilities Challenges 

Internal 

Strengths 
- Teach modern AI-assisted infor-
mation-seeking processes (TPACK) 
- Diversifies information behavior 
(TPAC) 
- Increases productivity (TCK/TPK) 
- Can be used in activating HOCS 
skills (PK) 

Weaknesses 
- If not allowed, usage is hard to detect 
(TPK) 
- The need for critical thinking and con-
tent knowledge to detect biases (CK) 
- The output needs to be verified via trian-
gulation (CK) 
- Not able to produce multimodal chemi-
cal visualizations, produces textual out-
puts (TCK) 
 

External 

Opportunities 
- Can be used to include embedded 
knowledge, such as ethics of aca-
demic writing (TPK) 
- New opportunities for course plan-
ning, such as work time allocation 
and multilingual literature (TPK) 
- Supports inclusion and equity 
(SDG4), e.g., via translation features 
(TPACK) 
- Can be used to expand ZPD (PK) 

Threats 
- Adoption requires innovation work 
(TPACK) 
- Selected software solutions might not be 
sustainable (TK) 
- Successful workflow requires prompt 
crafting knowledge that might not be in-
cluded in earlier information literature 
studies (TPACK) 
- Changes the skillsets that different exer-
cises develop (TPACK) 

First, we agree with Brand aeg’s and Følstad’s [45] prediction that AI chatbots will 
create a new paradigm for how people interact with information. AI chatbots represent 
cu ing-edge information technology that will soon be applied throughout society in all 
kinds of tasks to increase productivity [1,15]. AI chatbots offer opportunities for infor-
mation-seeking by providing a conversational interface and access to a limitless infor-
mation resource for all [17,44]. Their translation capabilities and ability to have learning 
discussions enable the building of high-quality personal learning environments and ex-
panded ZPDs that will offer personalized learning experiences for everyone, regardless of 
language or cultural background [52,63,70,72]. For maximizing ZPD, we predict that in 
the future there will be more integrated software solutions built to support collaborative 
information seeking [46]. The possibilities to support sustainable education are endless. 
We claim that AI chatbots will be a major change agent towards inclusive and equitable 
quality lifelong learning for all (SDG4) [73]. 
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However, it is important to understand that AI chatbots are an invention and their 
educational adoption will take time [21,22]. This can be supported through innovation 
work aiming to remove first- and second-order barriers [21,23]. For example, HEIs must 
offer licenses, support, training, and easily adopted use cases and frameworks for teachers 
(see Appendix A). For the removal of first-order barriers, and to minimize the external 
threats related to the sustainability of selected software, we recommend that HEIs favor 
LLMs and software that is based on open source. In addition, as Ertmer et al. [23] empha-
size, second-order barriers are the true challenge. We agree with this claim, and we high-
light the role of teacher education as a solution. Schools may have recommendations for 
AI usage in teaching, but, in many countries, teachers have great autonomy in making 
pedagogical decisions, such as whether they include AI chatbots in teaching or not. Dur-
ing their higher education studies, chemistry student teachers build a professional iden-
tity, including perceptions and beliefs towards the new technology. Negative a itudes can 
be persistent, and it is more difficult to change them later in working life. This research 
shows an example of how to support the removal of second-order barriers through edu-
cationally meaningful learning activities. The development process of such activities can 
be improved further by implementing a co-design approach, which enables the inclusion 
of expertise from several different stakeholders in the process [92]. This is crucial in a mul-
tidisciplinary innovation environment, such as the case of using AI chatbots to seek chem-
ical information. 

This research is the first study building a theoretical grounding that can be used in 
designing educational AI chatbot activities for information seeking. Note that the ground-
ing was crafted in the contexts of chemical information seeking and chemistry teacher 
education. However, the contexts do not limit the usefulness of the study, because the 
generated narrative insights help us to understand how AI chatbots can change infor-
mation behavior, especially at the higher education level. For future research, it would be 
important to analyze the mapped possibilities and challenges empirically with a large 
sample size. Without quantitative triangulation, these insights cannot be generalized. 

Chemistry education and teacher education will benefit from AI chatbots similarly to 
any other domain. Learners can refine information to knowledge via learning discussions, 
check facts, and prompt definitions for concepts [40,62]. However, one must be aware of 
the limitations of LLMs and analyze or triangulate the generated information before using 
it. This is an important information literacy skill related to the usage of AI chatbots that 
should be included in chemistry education programs. In addition, from the chemical in-
formation perspective, AI chatbots are currently limited in processing multimodal repre-
sentations at three different levels [54,59]. In the future, AI tools will surely expand their 
ability to work in a multimodal information environment with visual inputs and outputs. 
In addition, they will likely be able to guide users to original information sources used in 
the training data. These kinds of features would definitely help the information-seeking 
of chemists [29]. 

Based on our theoretical insights, we believe that AI chatbots will change the way 
people interact with information-processing tasks and what is considered expertise. In the 
future, everyone will have access to endless information through their high-quality per-
sonal learning environment with an embedded AI tutor. Teachers must be trained on new 
information literacy requirements. For future research directions, we suggest that it would 
be important to conceptualize what is considered knowledge and expertise in the modern 
information age. Educational practices and evaluation culture throughout the educational 
field should then be renewed to support the development of a new understanding of 
learning. 

Finally, to achieve a wider change, the use of AI chatbots must be included in infor-
mation literacy skills and integrated into every educational level, from primary to higher 
education, including lifelong learning. This integration must be performed at the curricu-
lum level, which will slowly resonate as a change in school practices. This is especially 
important for teacher education. Without modern information literacy skills, teachers will 
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not be able to support sustainable education and lifelong learning. Therefore, we chal-
lenge teacher-education programs around the world to include AI-assisted chatbot infor-
mation seeking into their curricula and to show leadership at the frontier of education by 
changing the future of education, one teacher at a time. 
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Appendix A. Use of Large Language Models in This Course 
Large language models (LLMs) are recently developed, versatile tools. Although LLMs have 

useful use cases, they can also conflict with learning objectives. Permi ed uses are always course-
dependent. Permi ed and prohibited uses are listed below. Some uses may not be listed because 
they are not relevant to this course. Common language models can produce false, misleading, or 
irrelevant information. Because of this, it is the student’s responsibility to ensure the correctness and 
relevance of the information. It is also worth remembering that specialized tools usually produce 
be er results than language models. Presenting the generated text as your own can be interpreted 
as plagiarism. More information can be found at h ps://studies.helsinki.fi/instructions/article/what-
cheating-and-plagiarism (accessed on 30 March 2024). 

The course can specify that if a language model is used, its use must be reported. In such a 
case, more detailed instructions are presented in the listing below. 

The use of language models in this course is: (REMOVE UNNECESSARY SECTIONS FROM 
THE FOLLOWING) 
‐ Fully allowed/forbidden. 
‐ Allowed/forbidden to generate text for, e.g., report, thesis, or certificates. 
‐ Allowed/forbidden to finish or rewrite the text. 
‐ Allowed/forbidden to check grammar mistakes. 
‐ Allowed/forbidden as a typese ing aid (e.g., generating Latex code when making tables or 

graphs). 
‐ Allowed/forbidden in searching for information or explaining or summarizing topics. 
‐ Allowed/forbidden in code generation. 

This instruction was wri en by Kjell Lemström, Senior University Lecturer and Director of the 
bachelor’s program in computer science, Department of Computer Science, Faculty of Science, Uni-
versity of Helsinki, Finland. 
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