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Abstract: There are a variety of reasons why smartphones have grown so pervasive in our daily
lives. While their benefits are undeniable, Android users must be vigilant against malicious apps.
The goal of this study was to develop a broad framework for detecting Android malware using
multiple deep learning classifiers; this framework was given the name DroidMDetection. To provide
precise, dynamic, Android malware detection and clustering of different families of malware, the
framework makes use of unique methodologies built based on deep learning and natural language
processing (NLP) techniques. When compared to other similar works, DroidMDetection (1) uses
API calls and intents in addition to the common permissions to accomplish broad malware analysis,
(2) uses digests of features in which a deep auto-encoder generates to cluster the detected malware
samples into malware family groups, and (3) benefits from both methods of feature extraction and
selection. Numerous reference datasets were used to conduct in-depth analyses of the framework.
DroidMDetection’s detection rate was high, and the created clusters were relatively consistent, no
matter the evaluation parameters. DroidMDetection surpasses state-of-the-art solutions MaMaDroid,
DroidMalwareDetector, MalDozer, and DroidAPIMiner across all metrics we used to measure their
effectiveness.

Keywords: malware; deep learning; NLP; android; clustering; static analysis

1. Introduction

Android is a popular smartphone operating system with a 70.97% market share [1].
According to the latest statistics [2], there are 2.56 million apps available in official app
stores, and there are many more elsewhere. Android leads the smartphone app industry
with daily app additions, according to statistics. Android’s best feature is its wide choice of
feature-rich apps. The popularity of the platform has increased as a result of Google’s Play
Store adopting an open-source policy for app distribution and providing extensive latitude
for app vetting at the time of release.

This popularity and accessibility of app distribution have attracted cybercriminals
worldwide. Reports reveal that many mobile malwares target Androids. In the second
quarter of 2021, 1.45 million new Android malware apps were detected [3], indicating that
new malware is being developed every few seconds. Malicious attacks include DDoS,
fuzzing, probing and port scanning [4]. These attacks can endanger transit, application, or
other protocols like internet control message protocol, user datagram protocol, simple mail
transfer protocol, file transfer protocol, etc. Intrusion detection systems can identify such
attacks [5]. Numerous researchers and businesspeople have been thinking about how to
prevent malicious apps from penetrating the mobile ecosystem.

Deep learning and machine learning produce intrusion detection systems. Machine
learning technology cannot handle the flow of data. Similarly, deep learning algorithms
lack optimization, resulting in great generalization mistakes. Fixed Android botnet datasets
allow for high-detection-rate detectors [6], but detailed traffic data limits precise prediction.
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This has led to the creation of Android-malware classification approaches, which provide
the number of neurons and layers during detection [7].

The procedures used to detect malicious Android Application Packages (APKs) often
involve both static and dynamic analysis. The dynamic part of the analysis compares the
behavior of the application at various points throughout its execution to predetermined
test cases. Static analysis, however, involves looking for security flaws in the meta and
auxiliary information of the byte code, source code, or application binaries outside of the
runtime environment [8]. Due to its high computing cost, the dynamic methodology is not
often used for detection due to its reputation for inaccuracy. In addition, unlike the static
method, the analysis is conducted after the APKs have already been run. This is why, in
terms of generating an initial perspective on the APKs based on their projected behaviors,
static analysis is often thought to be faster and more informative.

Before an app is even executed, it can be subjected to a wide variety of methodologies
and methods known together as “static analysis”, all of which aim to identify its expected
behavior under load. For obvious reasons, in a security setting, you would want to identify
and remove any apps that have been repackaged or are known to be dangerous before
they are installed and run. The authority approximation of an app’s likely runtime actions
is what static analysis uses to determine whether or not an app is malicious. In most
cases, these approximations are the result of techniques such as API calls or code analysis,
permissions, app components, intents, native code, file property, etc. [9].

The permission-based security mechanism is used by Android to protect user data and
prevent unauthorized apps from accessing private information. One of the most essential
security evaluation methods on the Android platform is the permissions given to apps.
As a result, without being granted express permission, it is next to impossible to conduct
planned action, making permission scanning a crucial stage for malware identification.
Before an Android app can do anything useful for its customers, it will ask for access to a
variety of systems and data. When combined, several permissions can indicate potentially
malicious actions. When an app requests network authorization in addition to SMS access
permission, for instance, it may collect users’ SMS information and then broadcast it over
the Internet. This means that permissions are one of the most popular and useful permanent
features in Android.

The survey studies reveal that most Android malware detection researchers do not
use feature selection in a comprehensive framework like the proposed one [10,11]. There
are numerous benefits to feature selection [12]. The most significant benefit is that feature
selection facilitates dimension reduction, which in turn shortens the training phase of
classification algorithms. To further improve analytical precision and simplify the model,
minimizing the time spent identifying the optimal attributes is crucial [13]. Because of the
limitation in the hardware of mobile devices and the need for real-time malware detection
systems, feature selection is inevitable. These factors make feature selection-based malware
detection systems imperative.

The current research set out to determine how to best go about extracting static
characteristics from unknown apps and makes use of a feature selection approach to
reduce the most important features. These features reveal if a downloaded app is benign
or malicious. Using these characteristics, the efficiency of a deep learning model called
the deep learning convolutional neural networks long/short-term memory (CNN-LSTM)
technique is evaluated. Malicious apps are then categorized into families through the use
of family clustering.

In this paper, we offer DroidMDetection, an effective method for detecting Android
malware and grouping it into families by utilizing NLP and deep learning using static
analysis features. This study presents the most effective algorithms for keeping an eye on
Android apps for signs of hacking. The following are the contributions of the proposed
framework:

• To improve the efficacy of the proposed neural networks, we present DroidMDetection,
a framework for efficient and accurate malware detection and clustering that makes use
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of natural language processing, code static analysis, and machine learning techniques
like dropout and feature selection.

• Exploration of various deep learning and machine learning methods for use in devel-
oping Android’s intrusion detection system.

• Several industry-standard Android datasets were used to test and evaluate the pro-
posed method.

• The tested algorithms are compared to various state-of-the-art models.
• To determine the efficacy and efficiency of DroidMDetection, we conduct an exhaus-

tive evaluation. We analyze DroidMDetection on an obfuscated dataset produced
with the PRAGuard [14] dataset and the DroidChameleon [15] obfuscation tool to
show the framework’s resistance to popular obfuscation methods. We conduct an
empirical investigation comparing DroidMDetection to state-of-the-art systems like
MaMaDroid [16], DroidMalwareDetector [17] MalDozer [7], and DroidAPIMiner [18],
and find that DroidMDetection performs better.

Here is how the rest of the paper is structured. The related work on Android malware
detection is introduced in Section 2. The outline for this study is presented in Section 3.
In Section 4, the experimental results and performance evaluation are assessed with other
related work. Everything is summed up in Section 5.

2. Related Work

Because of Android’s widespread use and the prevalence of malware, there is a wealth
of published studies on the subject. We have selected recently published publications that
are of relevance, and we review them here.

2.1. Malware Detection

DeepFlow, introduced by Dali Zhu et al. [19], is a malware detection technique built
on data streams within malware apps, which may be fundamentally different from those
within benign apps but may be similar to other malignant apps to a certain degree. To
identify whether or not a new program is malicious, DeepFlow employs a deep learning
model that takes into account these differences and similarities.

R. Nix et al. [20] concentrated on program analysis that tracks an app’s use of the
Android API. API calls are the means by which an app exchanges data with the Android
operating system. Such communication is fundamental to an app’s ability to perform its
functions, and as a result, can reveal critical insights about its behaviors and procedures.

An identification strategy based on Convolutional Neural Network (CNN) was de-
vised and implemented in the system DeepClassifyDroid by Yi Zhang et al. [21]. Deep-
ClassifyDroid’s architecture is made up of three parts: a feature extraction component, an
embedding in vector space, and a deep learning model that employs convolutional neural
networks to classify malware.

To improve categorization efficiency, Alazab et al. [22] created a framework that took
advantage of API calls alongside permission requests. To increase the possibility of finding
Android malware applications, three distinct grouping algorithms were presented to select
the most important API calls. To gauge the efficacy and precision of the suggested strategy
when dealing with large datasets, a thorough evaluation of several private and public
classes, packages, and methods was carried out.

The DeepRefiner malware identification system, created by K. Xu et al. [23], uses
deep neural networks with a wide variety of hidden layers. Before applying any detection
rules, DeepRefiner reads XML values from XML files and bytecode from the decompiled
classes.dex file. When feeding data into a deep neural network, DeepRefiner represents
apps with vectors. Neural systems’ hidden layers use the non-linear transformation of
input vectors to construct identifying features.

The static analysis just displays the code without actually running it. W. Li et al. [24]
developed a deep-belief network-based malware identification system. Threatening API
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function calls and permissions were proposed as two features of Android apps that may be
used to classify malware.

2.2. Android Malware Detection Based on Deep Learning and Machine Learning

According to a recent survey, the number of people who own smartphones is expected
to rise substantially from 2019’s projected 5.643 billion to 2021’s projected 6.378 billion [25].
In addition to making calls and conducting business, people use these devices to share
information with one another and communicate socially. Because of the potentially sen-
sitive nature of the data generated by these processes, they must be secured from any
unauthorized access [26]. Most assaults on Android devices involve downloading and
installing malicious third-party apps, which poses a new problem for security researchers.
Several deep learning and machine learning algorithms have been documented in the
literature [27] for detecting Android malware. In particular, ref. [28] introduced a back-
propagation neural network (BPNN) and convolutional neural network (CNN) hybrid
feature-based malware variant identification. However, no statistically engineered aspects
have been accounted for in this approach. Similar study by [29] revealed a malware de-
tection accuracy of 93.92% using random forest (RF) and latent semantic indexing (LSI)
on the CICInvesAndMal2019 dataset. To solve these problems, the authors of [30] used
a non-negative matrix factorization methodology for malware detection, together with
feature engineering methods.

To detect malicious apps on Android devices, Zhu et al. [19] presented a stacking
integration framework called SEDMDroid. To improve detection accuracy, principal com-
ponent analysis was applied to each feature subset, with all retained principal components
being used to train each multilayer perception model (MLP). After that, we fused the
knowledge learned by each member of the ensemble using a support vector machine (SVM)
as a classifier.

A unique feature-weighted-based Android malware detection approach, JOWMDroid,
was proposed by Cai et al. [31], which coupled the classifier parameters and optimization
of weight mapping functions. Following the extraction of eight classes of features from
the Android app package, the information gathered was utilized to narrow down the
pool of candidates to a manageable set of features optimal for malware detection. Next,
they used three different machine learning models to determine an initial weight for
each characteristic we’d chosen, and then we used that initial weight as input to one of
five different weight mapping functions we developed. Lastly, the differential evolution
technique was used to optimize both the weight mapping function and the classifier’s
parameters simultaneously.

An early malware detection approach based on ensemble behavior was proposed by
Aboaoja et al. [32]. The collected evasive behaviors, feature selection and extraction based
on correlation, and model development are the three primary stages of the constructed
framework. Applying ensemble learning techniques, the framework accurately identi-
fied complicated malware activities and made decisions as a result of a majority voting
procedure.

To obtain grayscale images, Zhang et al. [33] took things a step further by combining
the data portion of AndroidManifest.xml files with DEX files. For Android malware
detection, these images are sent to a temporal convolutional network (TCN).

Frenklach et al. [34] also developed a method for the static analysis of Android ap-
plications that utilized a similarity graph of the app. With both unbalanced and balanced
settings in the Drebin dataset, the brand new VTAz dataset from 2020, and the VirusTotal
dataset of over 190,000 programs, the suggested method was shown to be effective, with an
area under the curve (AUC) score of 0.987 and accuracy of 0.975 in balanced conditions.
The offered approaches had analysis and classification times ranging from 0.08 s/app to
0.153 s/app.

A second Android malware detection solution that focuses on permissions was pre-
sented in 2021 by Mahindru and Sangal [35]. Support vector machine with least squares is
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one of ten feature selection methods used by the proposed system. In tests, the proposed
system demonstrated a 98.8 percent detection accuracy within 12 s. When compared to our
proposed approach, the detection time indicates extremely slow processing.

Hei et al. [36] introduced Hawk, a new malware detection system for evolving Android
applications, in 2021. Hawk utilized Android’s semantic meta-structures for establishing
implicit higher-order links as it characterized Android’s entities and behavioral relation-
ships as a heterogeneous information network. Over 7 years, the trials analyzed more
than 80,860 harmful and 100,375 benign apps. Hawk’s out-of-sample application detection
averaged 3.5 ms, and its accuracy versus baselines was high.

Mahindru et al. [37] introduced MLDroid, a web-based Android malware detection
tool that can identify malicious apps by their access to system resources and their use
of APIs. They trained MLDroid using several different machine learning algorithms,
including unsupervised, supervised, hybrid, and semi supervised methods, which resulted
in improved detection rates.

There have been studies that have used different DL methods to improve Android
malware detection systems’ effectiveness. Capsule layers were utilized in place of pooling
layers in CNNs, as demonstrated by Zhang et al. [38]’s proposed network architecture.
Chimera Schranko de Oliveira and Sassi [39] employed multimodal DL, which included a
DNN, TN and CNN to learn features from images transformed from the DEX files, static
data like permissions, Android intents and dynamic data like sequences of system calls [40].

When it comes to identifying malicious software on Android devices, Yadav et al. [41]
provide a comprehensive evaluation of 26 pre-trained CNN models. In total, eight al-
ternative models—VGG19, VGG16, InceptionV3, ResNet50, DenseNet121, MobileNetV2,
EfficientNetB4 and DenseNet169—were used for the analysis. We also compared RF and
SVM classifiers to these models. Binary classification accuracy was 97% using the proposed
technique.

The CNN model may be useful for detecting malware in Android apps, and Martin
et al. [42] introduced a novel approach to locating these spots inside the opcode sequence
of an app. On the standard-setting Drebin [43] data set, CNN was shown to prioritize areas
that were also highlighted by LIME, the gold standard for highlighting feature importance.
In addition, the trial outcomes were to one’s liking, with a precision = 0.98, accuracy = 0.98,
F1-Score = 0.97 and recall = 0.98.

CNN and LSTM were combined by Hosseini et al. [44] to form a hybrid model.lib.so,
Classes.dex were extracted from the provided apk archives, and then call graphs were
constructed for both of them. The results of the studies showed that the combination
of CNN and LSTM achieved a higher rate of accuracy (98.80%) than any of the other
machine learning models tested. Methods based on call graphs are restricted to obfuscation
strategies like junk codes and unreachable calls.

Using a behavioral model of malware as a series of abstract API calls, MaMaDroid [45]
can identify malicious apps. It relies on a mechanism for static analysis to gather API
calls performed by an app and then construct a model using Markov chains based on
the sequences acquired from the call graph. This makes the model more robust to API
changes and keeps the feature set at a manageable size. An F-measure of 99% was achieved
when testing MaMaDroid on a dataset consisting of 8500 benign apps and 35,500 malwares
collected over six years.

Imtiaz et al. [46] presented DeepMAMADROID, a deep ANN-based method, for both
malware identification and detection on Android. Analysis of both static and moving
layers is used in DeepMAMADROID. The dynamic base layer will label an application as
malicious if the static base layer detects any malicious behavior. With DeepMAMADROID,
we were able to classify Android malware with a 93.4% accuracy rate.

By constructing adjacency matrices, Admat [47] can treat each Android app like an
“image” for the sake of malware identification and categorization. After the matrices were
built, they were fed into the suggested CNN model. Experiments showed that Admat has
an accuracy of 98.26% in detecting Android malware.
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While previous research has explored the use of natural language processing (NLP)
techniques for feature selection in Android malware detection, these approaches often
face limitations in capturing the comprehensive nature of malware behavior. In this study,
we introduce a novel framework called DroidMDetection that combines multiple deep-
learning classifiers with the integration of API calls and intents. This unique combination
allows for a more comprehensive analysis of Android malware, going beyond the tradi-
tional focus on NLP-based feature selection. By incorporating API calls and intents, our
framework captures fine-grained behavioral patterns and interactions, providing a more
precise and dynamic approach to malware detection. Moreover, DroidMDetection utilizes
deep auto-encoder-generated digests of features to cluster detected malware samples into
distinct family groups. This clustering approach further enhances our framework’s ability
to identify and categorize different families of malware, facilitating targeted analysis and
response. By leveraging both feature extraction and selection methods, including deep
learning techniques, API calls, intents, and feature clustering, DroidMDetection presents a
holistic and advanced framework for Android malware detection. This comprehensive ap-
proach sets it apart from previous works solely relying on NLP-based techniques, enabling
a more thorough examination of malware characteristics and improving overall detection
accuracy.

We acknowledge the importance of the ongoing discussions and research on the
challenges posed by the fast evolution of malware ecosystems. Our study contributes
to this discussion by proposing a framework that combines deep learning classifiers and
feature selection approaches to address the problem of Android malware detection. We
believe that this work opens up avenues for further research and advancements in the field,
aiming to mitigate the challenges associated with the dynamic nature of malware [48,49].

3. The Proposed DroidMDetection Approach

This section describes DroidMDetection, a novel Android malware detection frame-
work written in Python. The framework covers the entire malware detection process. The
components of the proposed framework are displayed in Figure 1. The proposed frame-
work consists of six main steps. It starts with feature extraction applied to extract static
features using static analysis. Then, preprocessing to normalize the values of datasets to
be in the same scale. Then, feature selection is applied to reduce the dimensionality of the
datasets to reduce the training and testing execution time. Feature vectorization puts the
textual features into vector form. Malware detection is then applied to classify the apps
into both malicious and benign using different classification models. Finally, malicious
apps are then clustered into similar groups of malwares. The next subsections provide a
discussion for all the proposed model stages in details.

3.1. Feature Extraction

Android apps are packaged and installed in the Android Package Kit (APK) file format.
It has everything a user needs to get an app installed on their device. This document
contains a wide variety of information, such as API calls, application source codes, images
and permissions. You can think of APK files as compressed files. Therefore, APK files
need to be opened to extract the required data from the app’s files. In our experiments,
AAPT2 is used to access application-specific files [50]. As an attribute, applications’ access
to the AndroidManifest.xml file reveals which permissions they require. AAPT2 combines
static analysis capabilities with the ability to generate Dalvik assembly code. Dalvik
assembly is generated by the Dalvik compiler when it translates Android app bytecode
into executable instructions for the Dalvik VM. AAPT2 enables developers to analyze and
extract information from Android app resources, such as layouts, strings, and assets. To
avoid abusing access, the feature vector is built taking into account just the permissions
that come as standard with Android apps [51]. Algorithm 1 describes how to process APK
files and generate the feature vector. From these data, we were able to extract the following
features:
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• Permissions: A large range of permissions, such as READ_CONTACTS, CAMERA, and
CALL_PHONE, is provided as the Android Application Programming Interface (API)
to determine the powers of Android apps. This means that an app’s functionality is
constrained by the rights it has been granted, as specified in the AndroidManifest.xml
file. Due to the availability of the open-source reverse engineering tool for Android
apps known as apktool [52], apk archives could be decompiled and analyzed. The
AndroidManifest.xml file for each app was then parsed for its set of permissions.

• Intents: They are what characterize communications between apps in the Android
ecosystem [53]. A malware’s goals can be encoded using intents, which are semanti-
cally rich features [54]. Intents, like permissions, are declared and retrieved from the
AndroidManifest.xml file.

• The source code must be analyzed to do extra checks alongside these static features
concerning maliciousness. By utilizing apktool, not only the AndroidManifest.xml
file, but also the decompiled source code in smali format and the disassembled form
of the DEX format used by Android’s Java VM implementation are extracted during
the reverse engineering process [55]. Table 1 details the APIs that DroidMDetection
identified as potentially malicious. To find the sensitive API calls, the decompiled
code was examined recursively.
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Table 1. API calls that DroidMDetection deemed sensitive.

getSubscriberId getBondedDevices
getDeviceId startDiscovery

getSimSerialNumber abortBroadcast
getLine1Number setWifiEnabled

getAllCellinfo setPreviewDisplay
getCallState MediaRecorder
getAccounts createFromPdu

getNetworkInfo sendMultipartTextMessage
getExtraInfo sendTextMessage

requestLocationUpdates obtainMessage
getLastKnownLocation sendDataMessage

getSimOperator killProcess
getNetworkOperator myPid

getNeighboringCellInfo exec
getCellLocation createSubprocess
DexClassLoader

In Figure 2, we can see the entire feature extraction process of DroidMDetection.
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Applying Algorithm 1, we can determine which features are used by every application
in the dataset, and then build a feature vector based on that data. In Figure 3, we can
see a portion of the feature vector. Assigning a value of 1 if the app requests a necessary
authorization and a value of 0 otherwise transforms the feature vector into a mathematical
structure. Some characteristics in the obtained feature vector are found to be of no use in
any of the applications. When these are taken out of the feature vector, only 102 features
remain for analysis. The application-agnostic processing dataset, of which Figure 3 displays
a subset, is the result.
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Algorithm 1: Extracting the feature vector

Input: All apps and standard features.
Output: feature_Vec

1. def FeatureVector(apps, features):
2. feature_Vec[][]← φ

3. M1 ← length(app)
4. for i← 1 to M1 do
5. invoke AAPTT2
6. extract app[i] using AAPT2
7. obtain app[i]. AndroidManifest.xml
8. M2 ← length(standardfeature)
9. for j← 1 to M2 do
10. if standardfeature[j] is member of app[i].

AndroidManifest.xml
11. then
12. feature_Vec[i][j]← 1
13. else
14. feature_Vec[i][j]← 0
15. end if
16. end for
17. end for
18. return feature_Vec
19. End def

3.2. Preprocessing

Due to the varied nature of the Android datasets, pretreatment is essential for effective
data management.

Min–Max Normalization Method

The values in a dataset can be shifted and rescaled with the use of a technique called
normalization. The data were normalized between 0 and 1 using the min–max technique.
The following equation was used to normalize the full dataset’s overlap using the normal-
ization method [56]:

â =
a− xmin

max(A)−min(A)
(newmax(A)− newmin(A)) + newmin(A) (1)

where max(A) and min(A) are the maximum and minimum data, respectively, “newmax” (A)
and “newmin” (A) are the new values of the maximum and minimum used for the data
scaling, and â is the normalized data.

3.3. Feature Selection

Our paper contributes significantly to the field by demonstrating how to choose a
smaller set of attributes without sacrificing the efficacy of a malware detection system [57].
Singular value decomposition, principal component analysis, and linear discriminant
analysis are just some examples of dimensionality reduction algorithms, and they give rise
to two main worries. The first is that only the features that are used to train the classifier
undergo a decrease in quantity. Data collection is unaffected; therefore, there is no loss of
productivity. The second problem is that in practical deployments, all of these methods
need resource-intensive preprocessing of the gathered data to prepare it to be fed into the
classifier. Because of this, we choose to use linear regression. Because of this technique, not
only was the dimensionality of the data coming into the system decreased, but the number
of features needed for prediction in production environments was too. This allowed for
faster data collection, training, and testing, as well as less cumbersome deployment in
the world. Modelling the association between two or more variables is the goal of linear
regression, a statistical technique [58]. If only one independent variable is used in the
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created model to assess the dependent variable, we refer to this as simple regression; if
numerous independent variables are included, we refer to this as multiple regression.
Application features serve as the independent variables in this analysis, with application
types serving as the dependent variable. Regression models require a numeric dependent
variable.

Thus, in Figure 3, labels for malicious apps are set to 0, while labels for benign apps
are set to 1. Regression analysis is used to determine the strength of association between a
dependent variable and a set of independent variables. In a linear model, the connection
between the dependent variable and n independent variables looks like Equation (2):

Y = b0 + b1X1 + b2X2 + · · ·+ bnXn + e (2)

where the dependent variable is denoted by Y, and the coefficient used in the model is
referred to by b1, b2, . . ., bn. The application features are presented by X1, X2, . . ., Xn. The
point where the y-axis is intersected is b0, and the error is shown as parameter e. The
least squares approach is used to determine these coefficients. The prediction error in
Equation (2) is attempted to be minimized by employing the least squares method.

SSE = ∑n
i=1(yi − y̆i)

2 (3)

where the total number of data is represented by n, the predicted/estimated value of the
model is denoted by y̆i, and yi is the actual data.

The Sum of Squares for Error (SSE) is the total squared error in a set of predictions.
Once the coefficients are differentiated, the SSE value is adjusted to be as close to zero
as possible in linear regression. The resulting model is the multiple linear regression
model depicted by Equation (2). By utilizing the least-squares method, as shown in
Equation (4), a multiple linear regression model can be obtained with three coefficients and
two independent variables. n ∑n

i=1 x1,i ∑n
i=1 x2,i

∑n
i=1 x1,i ∑n

i=1 x2
1,i ∑n

i=1 x1,i · x2,i

∑n
i=1 x2,i ∑n

i=1 x1,i · x2,i ∑n
i=1 x2

2,i

 a
b
c

 =

 ∑n
i=1 yi

∑n
i=1 x1,i · yi

∑n
i=1 x2,i · yi

 (4)

where y represents the dependent variable. Variables x1, x2 denote the independent vari-
ables, and the coefficients are represented by a, b and c.

By computing the coefficients for each independent variable, we can see how much of
an effect they have on predicting the dependent variable. Multiple linear regression models
built from the collected data show that the coefficients range from −1 to 1. Taking a look
at Figure 3, we can tell that the processed dataset is primarily a sparse matrix made up of
0 s. Some permission or feature coefficients will be zero or very close to zero under these
conditions. In this way, the permissions with coefficients close to 0 and 0 are removed from
consideration during the feature selection process using Algorithm 2.

3.4. Feature Vectorization

The features are then encoded in a one-hot feature vector, as described in Section 3.2.
According to studies in the Natural Language Processing field, one-hot encoding does
not include any corpus information, and the distance between any two words is the same.
Word2vec [59] builds a word vector based on context, with highly relevant words being
closer together. In other words, word2vec is more evocative and better able to communicate
the underlying qualities of data. Word2vec uses either the Continuous Bag-of-Words
(CBOW) model or the Skip-Gram model to generate a dispersed representation of words.
The model in the continuous bag-of-words architecture makes predictions about the next
word based on a window of previously predicted words. The current word is used to make
predictions about a window of adjacent words in the context learning model in skip-gram
architecture.
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Algorithm 2: Obtaining deleted features

Input: Linear model of regress.
Output: Del.Feature_Set

1. def FeatureSelection(RegressModel):
2. Convert the linear regression model to pairs of coefficients and independent variables.
3. Store the pairs obtained in a hash data structure called SelectModel{}
4. M1 ← length(SelectModel)
5. for i← 1 to M1 do
6. if SelectModel[SelectModel.keys[i]] < 0.1 then
7. if SelectModel[SelectModel.keys[i]] > −0.1 then
8. Del.Feature_Set← SelectModel.keys[i]
9. end if
10. end if
11. end for
12. return Del_Feeature_Set
13. End def

To better express features relevant to Android malware classification, we attempt to
apply word2vec, which uses word embeddings. In this work, we conceptualize features
derived from Android application packages as words. Specifically, a k-dimensional vector
is used to represent each feature. When it comes to training, we rely on the CBOW model.
Assuming N samples, X feature dimensions and K word vector dimensions, the final
trained matrix has N × K × X) dimensions. Every point in the k-dimensional space can
be represented by a vector, and the elements of each vector are learned through repeated
training and feature-weighting iterations. Throughout all of our models, we set K = 100.
The details of the vectorization procedure are shown in Algorithm 3.

First, we use the method described in the previous section to choose features in lines
3 and 4. On line 5, we have separated the feature document into four sentences based on
the feature type. Thirdly, the word vector is obtained via training a word2vec model in
lines 6–7. Lastly, in lines 8–14, we substitute 0 for any attributes that are not present in the
sample.

Algorithm 3: Vectorization of features

Input: Sample feature documents S
Dimension of word2vec K
Feature list L of number N
Output: M × (K × N)- dimension vector as V

1. def FeatureVectorization(S, K, L, N):
2. foreach si ∈ S do
3. sentences = empty_list()
4. si = feature_select(si)
5. Sentences← extract sentences from si
6. model = word2vec_train(sentenses, K)
7. word_dict←model.wv.vocab
8. zero_vec← K-dimension zero vector
9. foreach li ∈ L do
10. if li ∈ word.dict then
11. V.append(word_dict[li])
12. else
13. V.append(zero_vec)
14. end if
15. end foreach
16. end foreach
17. return V
18. End def
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3.5. Malware Detection

Both LSTM and CNN are algorithms from deep learning, and when combined, they
form a fusion model known as CNN-LSTM. CNNs use hidden neurons whose weights and
biases can be adjusted through training. Unlike other structures, it is often used to analyze
data in a grid format [60]. Since the data flow in only one direction from the input to the
output, this type of network is also known as a feed-forward network. Convolutional, pool-
ing, and fully connected layers make up the bulk of a CNN’s architecture. In deep learning,
the convolutional and pooling layers are used for feature extraction and dimensionality
reduction. Folded and connected to the preceding layer’s output, the fully connected layer
is the final stage of the stack. Figure 4 depicts the primary architecture of the CNN model
used to identify malicious Android apps.
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LSTM is an approach for learning long-term data dependency, and it was first pre-
sented by Hochreiter et al. [61]. One kind of recurrent neural network (RNN) is long
short-term memory (LSTM). In contrast to RNN methods, the LSTM architecture includes
memory cells. Candidate, input, output and forget make up the four parts of a memory
cell. The input features are classified as “forgettable” or “keepable” by the forget gate. The
LSTM structure’s input gate refreshes the memory cells, while the LSTM’s output gate
maintains in constant control over the hidden state. In addition, LSTM handles difficulties
with the RNN learning’s disappearing gradient and explosion gradient by employing a
gate mechanism and embedded memory block [62]. Figure 5 depicts the basic layout of the
LSTM model.
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The LSTM model’s settings can be found in Table 2. Researchers found that these
settings were crucial for achieving optimal performance in malware detection for Android.
When picking out relevant features from the filter layer, the maximum pool size was 4, and
the size of the kernel of convolution was 4. To avoid overfitting, we set the dropout value
to 0.50, and we show how the function of the RSMprop optimizer may be used to fine-tune
the model. A batch size of 150 is employed for the error gradient. The following equations
characterize LSTM-related gates:

ft = σ
(

W f · Xt + W f · ht−1 + b f

)
(5)

it = σ(Wi · Xt + Wi · ht−1 + bi) (6)
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St = tanh(Wc · Xt + Wc · ht−1 + bc) (7)

Ct = (it · St + ft · St−1) (8)

ot = σ(Wo + Xt + Wo · ht−1 + Vo · Ct + bo) (9)

ht = ot + tanh(Ct) (10)

where the weight matrices are denoted by W f , Wi, Wo, Wc, and VO. The input features’
vector is referred by Xt.

Table 2. Setting the parameters for the LSTM model.

Items Configuration Value

Max pooling size 4
Kernel size 4

Fully connected layer 32
Epochs 20

Dropout 0.50
Activation function Relu

Optimizer RSMprop
Batch size 20

The obtained values for the output, forget and input gates are, at any time t, as follows:
ot, ft, it. The short memory vector is represented by ht−1. The point at which the memory
cell’s declared value at time t is ht. The bias vectors are represented by bi, bc, b f , and
b0. tanh and σ are the activation functions. At time t, the memory cell’s candidate value is
represented by St, and the memory cell’s state is represented by Ct.

As can be seen in Figure 6, a CNN-LSTM model was developed. It was taught on
the training data, and then its hyper parameters were fine-tuned with the help of the
validation data and the Adam optimizer. Next, The test dataset was run through several
models, including the CNN, AE, LSTM and CNN-LSTM model, which mapped each
testing tuple’s features to its true class (benign or malicious) [63]. The experiments in
Section 4 proved the superiority of CNN-LSTM over other classifiers in android malware
detection. Therefore, the rest of the evaluations are conducted using CNN-LSTM. Two
one-dimensional convolution layers with a kernel size of 4 and 32 filters make up the
CNN-LSTM model that is used for training and optimization, with two fully connected
layers composed of an output layer with the SoftMax activation function and 256 hidden
neurons. The overfitting issue was fixed by using a combination of dropout and global max-
pooling layers. Using the global max-pooling layer, which captures the maximum value,
and the dropout layer, which turns off a portion of the CNN-LSTM network’s neurons,
overfitting of the learned features can be prevented. Adam optimizes by making changes
to the weights to reduce the loss function. The CNN-LSTM model’s settings are displayed
in Table 3.

Table 3. Setting up the CNN-LSTM model parameters.

Items Configuration Values

Max pooling size 4
Fully connected layer 32

Kernel size 4
Drop out 0.50

Optimizer RSMprop
Activation function Relu

Epochs 20
Batch size 150
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3.6. Malware Clustering

Malware family clustering, in contrast to classification, necessitates an additional
representation that compresses an instruction sequence into a single feature vector rather
than a sequence of embedding’s for a specific malware sample. With the use of the feature
hashing technique [64] and a bag of words (N-grams) NLP model, we generate feature
vectors for each malware sample found by analyzing the code’s instruction sequences.
Each result is a vector referred to as a FeVec vector, and there is one for every piece of
malware that was detected. Using deep neural auto-encoders [65] on the FeVec vectors,
we generate an even more compact digest or embedding for each malware sample. The
malicious apps that have been detected by DroidMDetection are grouped into families
based on the similarities in their digests. Clustering in DroidMDetection is performed
using the DBScan [66] method.

This section goes over the system of family clustering in detail. The goal of the
clustering phase is to categorize the malicious apps discovered in the previous phase into
subsets that share a high degree of similarity and are therefore likely to be related strains of
malware.

3.6.1. Android App Representation for Clustering

We represent the Dalvik assembly as a collection of code snippets, each of which
represents a method from a single class. Because Dalvik code DC is structured as a
collection of classes, this division makes sense DC = {C1, C2, . . . , Cs}. Methods are or-
ganised into classes, with each class Ci having its own C = {R1, R2, . . . , Rk} where the
actual instructions reside. An Android app’s micro-behavior may involve the execution
of a method, while the app’s macro-behavior may involve a global execution path. An
Android app can have many global execution pathways determined by external events.
Malware on Android, however, is typically designed with several others and one essential
global execution path to trick anti-malware tools. The malware may generate distinct
global execution paths for the payload. However, micro-behavior is still necessary for
other macro-behavior. Preprocessing the assembly resulting from DroidMDetection yields
many sequences H = {S1, S2, . . . , Sh}, in which every sequence S is a set of instructions
S = 〈A1, A2, . . . , Av〉 of a method of a class. In other words, H comprises sequences’
instruction H = {〈A1, A2, . . .〉1, 〈A1, A2, . . .〉2, . . . , 〈A1, A2, . . .〉h}.

3.6.2. Clustering Preprocessing

The clustering procedure begins with a set of sequences, denoted H = {S1, S2, . . . , Sh},
of the malicious apps that were found. To create malicious apps’ embedding digests,
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we present a new technique based on natural language processing and a deep neural
network auto-encoder called FeVec. Next, we use the DBScan clustering algorithm to
classify the malware samples into families by clustering their digests. Take note that unlike
the classification phase, in which a list of embeddings is sufficient to represent malware
samples, our clustering technique requires a single feature vector to represent each sample.
Because of this, we describe a novel method called FeVec, which uses automated feature
vector representation to identify malware samples. The FeVec method utilizes feature
hashing [67] and an NLP bag of words (N-grams) [68–71] to form fixed-size embeddings
from concatenated instruction sequences. This step consists of two main steps.

The N-gram has seen widespread use in authorship attribution, automatic text classifi-
cation and other applications such as text analysis and natural language processing. For
a big sequence, n-gram can be used to calculate the sequences of n items that are consec-
utive. In the proposed framework, N-grams of instructions (of length n) are calculated
for a concatenated sequence P. Note that a forward-moving window (of size n) is used
to extract the N-grams, and that the counter of the detected sequence is incremented by
one after each iteration. Due to our experiments, we find that the optimal value for the
window-size hyper-parameter, n, is 4. Our findings show that the effectiveness of feature
vector generation is drastically impacted when n is larger than 4. The efficiency of the
clustering changes when n < 4. To avoid excessive use of memory and computation caused
by the high dimensionality of N-grams, we compute them concurrently with the feature
hashing.

To vectorize P, DroidMDetection uses N-grams and Feature Hashing (FH) that accepts
the feature vector’s target length Q and N-grams of P as inputs. The final result is a feature
vector of size Q consisting of components yi. We set Q = |V| in our framework, where V is
a vocabulary list. With Formula (11), we see that the Euclidean norm is used to normalize
yi. FeVec generates a hashing vector, hashV, of fixed size from the signature of a malicious
software P. So, the hashing vector hashV = {hashV0, hashV1, . . . , hashVDM} is the result of
DM malicious apps that were detected before.

L2Norm(y) =‖ y ‖2=
√

y2
1 + . . . + y2

n (11)

The square root of the sum of the squares of the vector values is the euclidean norm.
Extensive prior study [59] demonstrates that the hash kernel roughly maintains the vector
distance and scales linearly with the sample size.

3.6.3. Digests Generation Using Auto-Encoder

We create a deep neural auto-encoder by stacking neural layers and performing
encoding and decoding operations. Latent app representations are learned unsupervised
by the proposed auto-encoder. Auto-encoders can learn unsupervised when their input
data are reconstructed from hash vectors HAV = {hashV0, hashV1, . . . , hashVDM} that have
not been labelled (Table 3). It is important to note that when training the auto-encoder used
in DroidMDetection, we do not need any labelling, as data from publicly available Android
applications are sufficient.

The training’s goal is to teach the auto-encoder how to consistently produce a digest of
an Android app’s hashV that maintains the traits that set malicious apps apart from benign
ones. Formally, an unlabeled hash vector HAV = {hashV0, hashV1, . . . , hashVDM} is sent
into the deep neural auto-encoder network as input-referred as T′ ∈ U , where the encoder
circuit operates fencoder : R|V| → Ra for, a = 64 which is parameterized by Θencoder to form
the digest IT′ ,Θencoder

IT′ ,Θencoder
= fencoder

(
T′; Θencoder

)
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The decoder circuit fdecoder : Ra → R|V| uses the resulting digest, IT′ ,Θencoder
, to rebuild the

FeVec feature vector. The auto-encoder circuit’s training loss, given T′, is:

T̃
′
= fdecoder(I; Θdecoder)

where the generated reconstruction is denoted by T̃
′ ∈ Rd×w.

Lauto-encoder
(
T′; Θencoder, Θdecoder

)
=‖ T′ − fdecoder

(
IT′ ,Θencoder

; Θdecoder

)
‖2

During training, an unlabeled Android app’s FeVec feature vectors have their objective
reconstruction function minimized using a gradient-based optimizer.

(
Θ*

encoder, Θ*
decoder

)
= arg min

Θencoder ,Θdecoder

M1+M2

∑
i=1

Lauto-encoder
(
T′i; Θencoder, Θdecoder

)
Due to its widespread usage, the auto-encode used by DroidMDetection only needs to be
trained once before being put to use in any of the experiments. Specifically, DroidMDe-
tection uses a trained encoder, fdecoder, to generate digests I = {d0, d1, . . . , dDM} for the
malicious apps detected in the previous step.

3.6.4. Family Clustering

Using a clustering algorithm, DroidMDetection clusters and organizes the malware
digests D = {d0, d1, . . . , dDM} into families based on their shared characteristics. When
it comes to clustering in DroidMDetection, first and foremost, only samples with a high
degree of similarity are put into clusters, while the rest are labelled as nonclustered by the
clustering algorithm. We may not always find malicious apps from the same family, and
we would prefer to have family groups only if the sample malware family includes groups,
so this functionality may be more useful in real-world deployments. We use the DBScan
clustering technique to implement this function. A second, discretionary phase involves
selecting the optimal cluster for the non-cluster samples from among the clusters generated
by calculating the euclidean similarity between a specific cluster sample and a specific non-
cluster sample. This process is known as “family matching”. The evaluation includes both
pre- and post-optional step homogeneity and coverage metrics for the clustering. In contrast
to K-means and other clustering algorithms, DBScan generates highly reliable clusters.
The homogeneity of the produced clusters is the most crucial statistic in DroidMDetection
clustering.

4. Experimental Results

In this section, the evaluation of the proposed framework is evaluated. Malware detec-
tion process and clustering of different families are assessed with other related researches.

4.1. Implementation Environment

DroidMDetection is written in Python. To convert DEX bytecode to Dalvik assembly,
we utilize the tool dexdump5. Dexdump is an easy-to-use but powerful program for
extracting textual disassembly from APK files. Take note that the preprocessing has not
been optimized; just one thread script is used to evaluate the app’s efficiency. Specifically,
we use PyTorch6 to carry out DroidMDetection activities. We use the standard hdbscan7
implementation for clustering. The implementation computer’s hardware and software
requirements are listed in Table 4. The classifier’s preliminary processing, training, and
testing were all conducted on this machine. It also served as a repository for a simulated
testing environment.
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Table 4. Hardware and software for the environment of the implementation.

HW/SW Settings

Clock speed 2.40 GHz
Processor Ryzen 5 3600, MAMADROID

GPU NVidia RTX 3060Ti
RAM 64 GB

Python 3.9.14
Operating system Windows 10

Sci-Kit Learn 0.24.1
VMWare Workstation Pro 16.0

4.2. Dataset

As shown in Table 5, our evaluation dataset includes millions of Android apps gath-
ered over the past decade to serve as a sampling space for our studies. Our study is
convincing because of the breadth of size, time, and malware families that it covers. Mal-
ware from Drebin [43], MalGenome [69], MalDozer [7], and MaMaDroid [46] are used
to test DroidMDetection’s family clustering and detection capabilities. In addition, we
employ benign programs from the AndroZoo [66] repository. Given that many families
have very few data, we focus on the 20 most frequent families, shown in Table 6. The
malware samples used in the family clustering examination are taken directly from the
reference datasets. The various stages of the experiments were as follows:

(1) Training and testing: To acquire preliminary findings using all five classifiers, the
dataset was divided randomly into a 25% testing subset and a 75% training sub-
set [7,11,40,46].

(2) Feature selection: We then narrowed down the features we were using by selecting
fewer of them. Specifically, linear regression was the technique of choice for the
feature selection phase. To generate new results, the classifiers were retrained using
the smaller dataset that resulted from the feature selection process.

(3) Malware detection performance: Classification results are obtained and evaluations
are reviewed based on performance metrics after the most important features have
been selected. The proposed model for android detection uses a large number of
classifiers to guarantee its generalizability.

(4) Family clustering: Once malicious apps have been identified, clustering is used to
categorize them into like-minded groups.

Table 7 explains the confusion matrix.

4.3. Evaluation

Here, we analyze the DroidMDetection framework using a variety of tests and config-
urations on various datasets. The following activities are assessed: (1) DroidMDetection’s
detection efficacy on both small and big training datasets; (2) the effects of feature selection;
(3) the efficacy of a clustering technique that emphasizes families and number; (4) in terms
of runtime efficiency on common hardware, how well does DroidMDetection perform? (5)
DroidMDetection’s resistance to widespread forms of obfuscation.

Table 5. Used datasets and example of family names.

Name Number of Families Number of Samples

Drebin [35] 179 5.5K
MalGenome [59] 49 1.3K
MaMaDroid [37] - 40K

MalDozer [7] 20 21K
AndroZoo [60] - 9.5M
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Table 6. Family names.

Family Family

GoldDream BaseBridge
GinMaster Adrd

Imlog DroidKungFu
Iconosys DroidDream
MobileTx FakeDoc

Kmin ExploitLinuxLotoor
Plankton FakeRun
Opfake FakeInstaller
SMSreg Geinimi
SendPay Gappusin

Table 7. Confusion matrix.

Actual

Positive Negative

Predicted
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

4.3.1. Performance Metrics

The classification of the dataset yields four potential outcomes. These are false negative
(FN), true positive (TP), false positive (FP) and true negative (TN). True positivity (TP)
occurs when a sample is appropriately identified as positive. Mislabeling a sample that
should be positive as negative is known as false negative (FN). The term “TN” is used
to describe the situation in which a truly negative sample is appropriately identified as
negative. If a sample is falsely identified as positive when it is truly negative, we call
that an FP. Table 1’s confusion matrix includes all of these scenarios. Precision, accuracy,
F1-score and recall are used to display the evaluation results. We evaluate the efficiency
of family clustering using the coverage and homogeneity [71] measures. The generated
family clusters are evaluated on their degree of purity using the homogeneity metric.
Since DroidMDetection clustering only seeks to construct groups with certainty while
disregarding fewer certain groups, a perfect homogeneity means that each formed cluster
contains samples from only one malware family. The percentage of a clustered dataset that
may be trusted is measured by coverage metrics. Precision (P) is the proportion of correct
predictions or the fraction of malicious applications found in a given set of sample apps;
P = TP

TP+FP .
A system’s recall (R) indicates how many malware samples were accurately identified

as malicious software; R = TP
TP+FN .

The number of all accurate predictions divided by the overall dataset size yields
accuracy (ACC); ACC = TP+TN

TP+TN+FP+FN .
Calculating just the accuracy, recall and precision values is not enough to evaluate the

efficacy of classification systems. To measure how well a classification system performs, we
use the F1-Score (F1), which is the harmonic mean of recall and precision.

4.3.2. Malware Detection

Here, we detail how well DroidMDetection can spot malware, and how changing
hyper-parameters affects that detection.

(1) Detection Performance

This study compared the effectiveness of the LSTM, AE, LSTM-CNN and CNN, pro-
posed in this study concerning Android malware detection in the model DroidMdetection
proposed in this study when used in conjunction with the feature selection approach pro-
posed in this study. These classifiers were specifically chosen for their ability to capture
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different aspects of the malware behavior and provide complementary detection capabil-
ities. The primary objective was to compare the effectiveness of these diverse classifiers
within the proposed model. Each classifier brings its unique strengths and characteristics to
the DroidMDetection model, allowing for a comprehensive analysis of malware samples.

To ensure the generalizability of the proposed model, the experiments are performed
on the aforementioned datasets. Tables 8–11 detail the outcomes of the experiments. The
outcomes of the LSTM, AE, LSTM-CNN and CNN models are displayed in Table 8. The
CNN-LSTM model beat the CNN, LSTM, and AE models with high accuracy on the
MalGenome dataset (99.15 percent).

Table 8. Evaluation metrics of DroidMDetection using different classifiers on the MalGenome dataset.

Model Accuracy Precision Recall F1-Score

AE 92.95 93.60 92.20 92.90
LSTM 96.95 96.81 97.10 96.95
CNN 97.45 97.12 97.80 97.46

LSTM-CNN 99.15 99.00 99.30 99.15

Table 9. Evaluation metrics of DroidMDetection using different classifiers on the Drebin dataset.

Model Accuracy Precision Recall F1-Score

AE 92.60 93.29 91.80 92.54
LSTM 97.05 96.17 98.00 97.08
CNN 97.20 97.39 97.00 97.17

LSTM-CNN 98.65 98.50 98.80 98.65

Table 10. Evaluation metrics of DroidMDetection using different classifiers on the MalDozer dataset.

Model Accuracy Precision Recall F1-Score

AE 92.50 92.93 92.00 92.46
LSTM 96.35 96.40 96.30 96.35
CNN 97.12 97.07 97.17 97.12

LSTM-CNN 99.15 99.40 98.90 99.15

Table 11. Evaluation metrics of DroidMDetection using different classifiers on MaMaDroid dataset.

Model Accuracy Precision Recall F1-Score

AE 90.71 91.63 90.37 90.99
LSTM 95.60 95.78 95.40 95.59
CNN 96.45 96.22 96.70 96.46

CNN-LSTM 97.50 97.88 97.10 97.49

The outcomes of the LSTM, AE, LSTM-CNN and CNN models on the Drebin dataset
are displayed in Table 9. The accuracy of the LSTM-CNN model was very high (98.65%).
High levels of accuracy (97.20 and 97.05 respectively) were also demonstrated by the LSTM
and CNN models, and the AE model’s performance was commendable.

The comparison of the LSTM, AE, LSTM-CNN and CNN models on the MalDozer
dataset is shown in Table 10. When compared to the LSTM, CNN and AE models on the
MalDozer dataset, the CNN-LSTM model scored the highest accuracy (99.15 percent).

Table 11 displays the outcomes of applying the LSTM, AE, LSTM-CNN and CNN
models to the MaMaDroid dataset. High precision (97.50%) was achieved with the LSTM-
CNN model. Additionally, both the CNN and LSTM models demonstrated impressive
accuracy, and the AE model’s performance was commendable.

By comparing it to other models, we find that CNN-LSTM achieves a much higher
evaluation index for DroidMdetection with feature selection. When using CNN-LSTM, the
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F1-score and accuracy of DroidMdetection are improved compared to AE, CNN, and LSTM.
Consequently, we settled on the CNN-LSTM classifier as our ultimate recommended model
to test and validate the model’s generalization skills. DroidMDetection, a CNN-LSTM
hybrid classifier, has been shown to have good accuracy and stability in the domain of
Android malware detection.

(2) Impact of feature selection

With the use of feature selection, we can narrow down the pool of potential features
to those that will have the most impact. To train and test our classifier models, we used
the resulting reduced dataset. In the first stage of training, the entire dataset and all the
features from the four datasets were employed. The results of the preliminary tests are
summarized in Table 11. Table 12 shows that a combined accuracy of 99.15% was achieved
on the MalGenome and MalDozer datasets. This finding suggests the great precision
required as we advance in developing a more lightweight model. In Table 12, we can see
how the proposed model using the CNN-LSTM classifier performed on all four datasets in
terms of accuracy, precision, recall, F1 score, and training and testing times. Checking out
Table 13, we see that the accuracy is reduced by less than 1% in the Derbin dataset, 0.45%
in the MalDozer dataset, and 0.95% in the MalGenome dataset, and the same holds for
the MaMaDroid dataset. In all datasets, the timing parameters got better once the feature
reduction was applied. A classifier model is an effective tool for malware identification
because of its high accuracy and low FN value. The performance results before and after
applying the feature selection step in terms of accuracy, recall, precision and f-measure
over various datasets is shown in Figures 7–10.

Table 12. Performance results when using all features in the dataset with CNN-LSTM classifier.

Dataset Accuracy Precision Recall F1-Score Training
Time

Testing
Time

Derbin 98.65 98.50 98.80 98.65 0.6267 1.3481
MalGenome 99.15 99.00 99.30 99.19 0.5341 0.8102
MalDozer 99.15 99.40 98.90 99.15 0.7832 3.5542

MaMaDroid 97.50 97.88 97.10 97.49 0.9348 2.4531

Table 13. Performance results when using all features in the dataset with CNN-LSTM classifier.

Dataset Accuracy Precision Recall F1-Score Training
Time

Testing
Time

Derbin 97.65 97.51 97.80 97.66 0.3214 0.5221
MalGenome 98.20 98.01 98.40 98.20 0.0311 0.1242
MalDozer 98.70 98.51 98.90 98.70 0.1432 0.9312

MaMaDroid 97.00 96.35 97.70 97.02 0.4102 1.1021

(3) Dataset Size Effect

Table 14 shows that employing CNN-LSTM for detection results in just a little change
when the build set percentage is reduced from 90% to 50% of the whole dataset. For this
reason, it is important to keep in mind that build_data = {train_data, valid_data} already
includes 75% training data and 25% validation data, resulting in a smaller dataset for
model training. Even still, DroidMDetection’s detection capabilities remain robust in such
environments.



Informatics 2023, 10, 67 21 of 31

Figure 7. Performance measures before and after feature selection with CNN-LSTM on Drebin
dataset.

Figure 8. Performance measures before and after feature selection with CNN-LSTM on MalGenome
dataset.

Figure 9. Performance measures before and after feature selection with CNN-LSTM on MalDozer
dataset.
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Figure 10. Performance measures before and after feature selection with CNN-LSTM on MaMaDroid
dataset.

Table 14. Performance results when using feature selection in the dataset with CNN-LSTM classifier.

Dataset F1-Score

50% 70% 80%

Derbin 96.45 97.01 98.49
MalGenome 96.77 98.01 99.15

MalDozer 97.28 98.51 99.25
MAMADROID 96.52 97.27 99.05

4.3.3. Family Clustering

Here, we show off DroidMDetection’s family grouping abilities on some purely mal-
ware apps (reference datasets). Once a large number of malicious Android apps have been
detected by DroidMDetection, the next phase is to cluster them into families. Depending
on the setup, the number of identified apps may also change. We evaluate the efficiency of
family clustering using the coverage and homogeneity measures. The generated family
clusters’ integrity is measured by their homogeneity score.

Each generated cluster contains only malware samples from a single family, represent-
ing absolute homogeneity. The coverage metrics rate the portion of the clustered dataset
that may be trusted. After clustering all of the samples in the dataset using family matching
(an optional step), we also give the clustering performance.

Table 15 summarizes the homogeneity and coverage scores for the clustering perfor-
mance with and without applying the family matching. To begin, DroidMDetection can
generate clusters with a high degree of homogeneity (between 91% and 97%) while still
providing sufficient coverage (54% on average). The 54% coverage may seem low, but we
believe that it is sufficient since (1) increasing it may degrade the quality of the clusters
that are generated if we do so. Perfect coverage (with a high error rate) provided by the
K-Means clustering algorithm would not always be preferred to high-confidence clusters
with adequate coverage. (2) Most malware families in the evaluation datasets only have a
small number of samples available. Due to the small size of the discovered dataset, there
are rarely more than five samples per malware family, making clustering a challenging
task. During deployment, we would be able to include data from sources outside of the
clusters in the next round of clustering. It is possible that we could collect enough data to
begin identifying patterns among the long-tail malware families. Second, DroidMDetection
clusters all the samples in the dataset once the family matching is applied, and the resulting
homogeneity drops to 81–89%, an acceptable range.
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Table 15. The efficiency of family clustering.

Dataset DBSCAN Clustering After Family Matching

Coverage Homogeneity Coverage Homogeneity

Derbin 51% 93.36% 100% 83.91%
MalGenome 44% 91.54% 100% 81.32%

MAMADROID 59% 94.62% 100% 85.39%
MalDozer 63% 97.67% 100% 89.12%

4.3.4. Obfuscation Resiliency

This section details the detection capabilities of DroidMDetection when applied to
Android applications that have been obfuscated. First, we try out the DroidChameleon [52]
obfuscation tool on a dataset that we have previously created, and second, we use the PRA-
Guard [40] obfuscation dataset to do our experiments (10k). The PRAGuard experiment
combines the PRAGuard dataset with a random selection of AndroZoo’s benign Android
apps. We created a test dataset that is the same size as the training dataset, which includes
both the training and validation datasets. DroidMDetection’s detection efficacy against
various obfuscation methods is shown in Table 16. DroidMDetection’s nearly average
detection rate F1-score is 99.61%, which demonstrates its excellent resistance to prevalent
obfuscation methods.

Table 16. DroidMDetection obfuscation resistance on PRAGuard data.

Obfuscation Techniques Accuracy Precision Recall F1-Score

String Encryption 99.45 99.50 99.40 99.45
Trivial 99.40 99.20 99.60 99.40

Class Encryption 99.60 99.50 99.70 99.60
Reflection 99.20 99.10 99.30 99.20
(1) + (2) 99.45 99.60 99.30 99.45

(1) + (2) +(3) 99.65 99.60 99.70 99.65
(1) + (2) +(3) +(4) 99.65 99.80 99.50 99.65

In Table 17, we compare DroidMDetection to various other obfuscation methods in
the DroidChameleaon experiment. Samples of both benign code randomly selected from
AndroZoo and malicious code were masked and included in the created dataset originally
from Drebin. To simplify the LSTM-CNN training process, we merely train using one obfus-
cation method (Table 17) and then evaluate the other methods. The results of obfuscation
resilience on a dataset created by DroidChameleon are shown in Table 16. DroidMDetec-
tion’s results demonstrate its reliability. This experiment shows that DroidMDetection,
when trained on non-obfuscated datasets, can identify malware that has been obfuscated
using popular techniques. We attribute DroidMDetection’s resistance to obfuscation to the
fact that Android API sequences are used as features in ML development. A fundamental
part of any Android app is its use of Android APIs. A malware author cannot hide API
access if the malicious payload is not downloaded at runtime. So long as they do not
delete or hide API access calls, the most common types of obfuscation can be tolerated by
DroidMDetection.
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Table 17. DroidMDetection obfuscation resistant on DroidChameleon dataset.

Obfuscation Techniques Accuracy Precision Recall F1-Score

Method Renaming 99.60 99.70 99.50 99.60
Class Renaming 99.50 99.70 99.30 99.50

String Encryption 99.75 99.70 99.80 99.75
Field Renaming 99.75 99.90 99.60 99.75
Call Indirection 99.60 99.40 99.80 99.60

Array Encryption 99.40 99.40 99.40 99.40
Junk Code Insertion 99.25 99.30 99.20 99.25

Code Reordering 99.15 99.30 99.00 99.15
Debug Information Removing 99.50 99.30 99.70 99.50

Instruction Insertion 99.60 99.50 99.70 99.60
Disassembling and Reassembling 99.60 99.80 99.40 99.60

4.3.5. Time Efficiency

We provide the typical detection time using DroidMDetection here. Disassembly,
preparation, and inference time are all part of the detection process. On average, Droid-
MDetection takes 3.8 s to generate a fingerprint for an Android app. Due to higher package
sizes, benign programs take 5.8 s longer to launch than malicious ones. DroidMDetection’s
average fingerprinting time for malware apps is 3.5 s.

4.3.6. Comparative Study

Here, we examine the similarities and differences between DroidMDetection and
four other cutting-edge Android malware detection systems: DroidMalwareDetector,
DroidAPIMiner, MaMaDroid, and MalDozer. To evaluate how DroidMDetection stacks up
against other related work, we used an identical dataset like the one used in MaMaDroid
(malicious and benign apps) and evaluation settings provided by the authors in [46]. This
collection contains 35.5K malicious apps in addition to 8.5K benign ones from the Drebin
dataset. According to MaMaDroid’s most recent assessment, malicious applications from
012 (Drebin), 2013, 2014, 2015, and 2016 are classified as newbenign and oldbenign. In
Table 18, we see how MaMaDroid, DroidAPIMiner, DroidMalwareDetector, MalDozer, and
DroidMDetection fare when pitted against one another across a variety of datasets. The
results of DroidMDetection are shown to the user in the form of an F1-score.

Table 18. Detection performance of DroidMalwareDetector, MaMaDroid, DroidMDetection, and
DroidAPIMiner.

Dataset F1-Score

Proposed DroidAPIMiner MaMaDroid MalDozer DroidMalwareDetector

2016 & newbenign 98.52 36.00 92.00 91.13 95.22
2015 & newbenign 97.32 77.00 95.00 94.31 96.22
2014 & newbenign 99.04 92.00 99.00 93.22 98.43
2014 & oldbenign 99.20 62.00 95.00 94.45 98.24
2013 & oldbenign 98.16 36.00 97.00 89.23 96.50

drebin & oldbenign 99.05 32.00 96.00 91.61 97.14

Table 18 shows that across the board, DroidMDetection is superior to MaMaDroid,
DroidAPIMiner, DroidMalwareDetector, and MalDozer. Tables 19–26 also provide a com-
parison of the proposed system’s performance to that of existing state-of-the-art methods.
The performance under varying dataset conditions is shown in Tables 19–26 which include
training on an outdated malware dataset and testing on a more recent one. In most situa-
tions, DroidMDetection works better than (or at least gets very similar results to) alternative
methods. The performance measurements in Tables 19–26 reveal that the suggested system
is superior to most state-of-the-art methods. This means that even Android smartphones
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with less processing power can benefit from our proposed system. The proposed tech-
nique effectively reduced the size of the datasets without sacrificing accuracy. This lays
the groundwork for future studies to use the reduced dataset to create more nimble and
effective malware detection algorithms. The proposed methodology is highly effective and
efficient, uses minimal resources, and can be applied to a wide variety of classification
problems while still maintaining its high level of accuracy and efficiency. The time savings
were achieved throughout the process of selecting features. These impressive measures
of performance demonstrate that the created classifier can generalize to data beyond the
training set.

Table 19. Performance measures of proposed framework and related work.

Drebin & Oldbenign 2013 & Oldbenign 2014 & Oldbenign

Miner Doser Proposed Miner Dozer Proposed Miner Doser Proposed

drebin & oldbenign 32.0% 91.2% 99.3% 35.0% 92.4% 98.3% 34.0% 88.4% 99.2%
2013 & oldbenign 33.0% 93.5% 98.2% 36.0% 91.4% 98.3% 35.0% 83.4% 96.4%
2014 & oldbenign 36.0% 90.0% 99.1% 39.0% 83.4% 89.4% 62.0% 66.2% 98.5%

Table 20. Performance measures of proposed framework and related work.

2015 & Oldbenign 2016 & Oldbenign

Miner Doser Proposed Miner Dozer Proposed

drebin & oldbenign 30.0% 53.4% 89.3% 33.0% 45.6% 47.1%
2013 & oldbenign 31.0% 67.4% 90.1% 33.0% 88.3% 80.2%
2014 & oldbenign 33.0% 89.3% 91.4% 37.0% 74.2% 77.1%

Table 21. Performance measures of proposed framework and related work.

Drebin & Newbenign 2013 & Newbenign 2014 & Newbenign

Miner Doser Proposed Miner Dozer Proposed Miner Doser Proposed

2014 & newbenign 76.0% 88.2% 98.6% 75.0% 92.4% 99.5% 92.0% 90.2% 99.3%
2015 & newbenign 68.0% 91.4% 99.4% 68.0% 87.4% 98.1% 69.0% 87.1% 95.1%
2016 & newbenign 33.0% 90.4% 99.6% 35.0% 85.1% 98.2% 36.0% 67.3% 88.4%

Table 22. Performance measures of proposed framework and related work.

2015 & Newbenign 2016 & Newbenign

Miner Doser Proposed Miner Dozer Proposed

2014 & newbenign 67.0% 84.1% 93.2% 65.0% 92.4% 95.4%
2015 & newbenign 77.0% 91.3% 96.2% 65.0% 47.1% 91.3%
2016 & newbenign 34.0% 90.1% 98.2% 36.0% 83.4% 92.2%

Table 23. Performance measures of proposed framework and related work.

Drebin & Oldbenign 2013 & Oldbenign 2014 & Oldbenign

MaMa MD Proposed MaMa MD Proposed MaMa MD Proposed

drebin & oldbenign 96.0% 97.3% 99.3% 95.0% 95.2% 98.3% 72.0% 92.1% 99.2%
2013 & oldbenign 94.0% 93.2% 98.2% 97.0% 97.2% 98.3% 73.0% 90.2% 96.4%
2014 & oldbenign 92.0% 94.0% 99.1% 93.0% 90.2% 89.4% 95.0% 97.1% 98.5%
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Table 24. Performance measures of proposed framework and related work.

2015 & Oldbenign 2016 & Oldbenign

MaMa MD Proposed MaMa MD Proposed

drebin & oldbenign 39.0% 88.0% 89.3% 42.0% 61.2% 47.1%
2013 & oldbenign 37.0% 62.1% 90.1% 28.0% 42.0% 80.2%
2014 & oldbenign 78.0% 85.1% 91.4% 37.0% 55.0% 77.1%

Table 25. Performance measures of proposed framework and related work.

Drebin & Newbenign 2013 & Newbenign 2014 & Newbenign

MaMa MD Proposed MaMa MD Proposed MaMa MD Proposed

2014 & newbenign 98.0% 98.1% 98.6% 98.0% 98.2% 99.5% 99.0% 99.0% 99.3%
2015 & newbenign 97.0% 97.2% 99.4% 97.0% 96.0% 98.1% 99.0% 98.2% 95.1%
2016 & newbenign 96.0% 98.0% 99.6% 98.0% 88.1% 98.2% 98.0% 98.1% 98.4%

Table 26. Performance measures of proposed framework and related work.

2015 & Newbenign 2016 & Newbenign

MaMa MD Proposed MaMa MD Proposed

2014 & newbenign 85.0% 88.2% 93.2% 81.0% 87.0% 95.4%
2015 & newbenign 95.0% 96.0% 96.2% 88.0% 72.4% 91.3%
2016 & newbenign 92.0% 94.0% 98.2% 92.0% 91.5% 92.2%

4.4. Reliability in the Face of Evolving Threats

To address the concern regarding the impact of earlier studies on the reliability of
the proposed approach in the face of evolving malware and benign apps, we have further
analyzed and evaluated the potential implications. It is crucial to consider the dynamic
nature of the malware landscape and its continuous evolution, which can potentially lead to
the degeneration of detection models over time. In our study, we recognize the importance
of regularly updating and adapting the proposed model to effectively combat evolving
threats. By closely monitoring the changing characteristics of malware and benign apps,
we can identify patterns and trends that may impact the performance of the detection
framework. This ongoing analysis enables us to refine the model and incorporate relevant
adjustments to maintain its effectiveness.

In this section, we discuss the challenges posed by the dynamic nature of the malware
ecosystem and the measures taken to mitigate the potential degradation of the proposed
model. We discuss the potential implications of the evolving malware landscape and the
measures taken to address them within the proposed approach.

1. Understanding the Evolution of Malware and Benign Apps: We provide an overview
of the dynamic nature of malware and benign apps, highlighting the rapid evolution,
polymorphic behavior, and obfuscation techniques employed by malicious actors.
This understanding is crucial to comprehend the challenges posed to malware detec-
tion and the potential impact on the reliability of the proposed model.

2. Challenges in Maintaining Model Effectiveness: We acknowledge that the continuous
evolution of malware and benign apps can introduce new variants, making it neces-
sary to adapt the detection model to capture emerging threats effectively. We discuss
the potential consequences of not addressing these challenges, such as false negatives,
decreased detection accuracy, and increased vulnerability to new attack vectors.

3. Adaptive and Continuous Learning Approaches: To mitigate the effects of evolving
threats, we employ adaptive and continuous learning techniques within the proposed
framework. These approaches allow the model to dynamically update its knowledge
and adapt to changing patterns and characteristics of malware and benign apps. We
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explain the strategies used, such as incremental learning, ensemble methods, and
regular model retraining, to ensure the model remains up to date and effective.

4. Collaborative Intelligence and Threat Intelligence Integration: Recognizing the impor-
tance of collective efforts, we highlight the integration of collaborative intelligence and
threat intelligence sources in the proposed approach. By leveraging real-time informa-
tion on emerging threats, malware signatures, and behavioral patterns, the model can
enhance its detection capabilities and adapt to the evolving threat landscape.

5. Evaluation of Model Robustness: We provide insights into the evaluation of the pro-
posed model’s robustness in the face of evolving threats. This includes benchmarking
against evolving malware datasets, measuring the detection rate over time, and assess-
ing the model’s ability to identify new malware variants and benign app changes. The
evaluation demonstrates the model’s resilience and ability to adapt to the dynamic
nature of the ecosystem.

We provide a comprehensive understanding of the proposed approach’s response to
the challenges posed by the continuous evolution of malware and benign apps. This analy-
sis emphasizes the proactive measures taken to maintain the reliability and effectiveness of
the model, ensuring its practicality in real-world scenarios.

4.5. Sustainability and Resilience against Evolution

In order to address the challenge of sustainability and resilience against the rapid
evolution of malware and benign apps, it is crucial to consider the long-term effectiveness
of the proposed model. While the performance of the constructed classifier has been
demonstrated on the evaluated apps, it is essential to assess its adaptability to future apps
that may exhibit novel behaviors and evasion techniques. To ensure the reliability and
continuous efficacy of the model, proactive measures need to be taken to mitigate the
impact of evolving features. This involves monitoring the changing landscape of malware
and benign apps, identifying indicators of deteriorating features, and implementing timely
updates to the model.

We present strategies and considerations employed in our approach to enhance sustain-
ability. This includes adaptive feature selection mechanisms, continuous model retraining
with evolving datasets, and leveraging ensemble techniques to combine multiple models
trained on different time periods. These strategies aim to address the challenge of evolving
apps and ensure the sustainability of the proposed approach. We describe the evaluation
methodology used to assess the sustainability and resilience of the proposed approach.
This includes conducting experiments and analyses to measure the model’s performance
over time, tracking the evolution of features and their impact on detection accuracy, and
examining the model’s adaptability to new app variants. The results of these evaluations
provide insights into the sustainability aspect of our approach.

5. Conclusions

Recently, the mobile ecosystem has faced a serious security threat from mobile malware.
To solve security concerns, which are typically concerned with the effective performance of
the chosen classifiers as well as the impactful selection of features, deep learning algorithms
needed to be more accurate. To demonstrate that it is possible to increase accuracy by
reducing the number of permissions while retaining high efficiency and effectiveness, we
statically examined the Android ecosystem. We introduced DroidMDetecion, an NLP-
based deep learning approach to Android malware detection. In this study, the primary
static feature types of Android apps were first extracted, and word embeddings were used
to characterize them. Then, we use feature selection to narrow the number of features to the
most pertinent subset. The classifier was created using deep learning using CNN-LSTM. To
cluster extremely similar malicious programs into their most likely malware family groups,
DBScan clustering is added on top of FeVec and deep auto-encoder capabilities. We assess
it using a variety of real-world datasets of both benign and malicious apps. According to
experimental findings, DroidMDetecion outperforms some harmful detection programs in
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terms of accuracy and execution efficiency. The current work is limited to android apps, but
not all phones are on android apps besides the large extension of iOS systems. This study
could be expanded upon to encompass other operating systems, such as iOS, in future
work. Then, to create a new dataset that we would label, new tools for extracting static
features should be created. Additionally, all findings concerning learning methodologies,
evaluation metrics, and hyperparameter settings could be used for the training of neural
networks. It would be important to update the dataset with the most recent labelling
methods for more research and to create an automated tool for an automatically updating
neural network.
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