
Citation: Lahande, P.; Kaveri, P.;

Saini, J. Reinforcement Learning for

Reducing the Interruptions and

Increasing Fault Tolerance in the

Cloud Environment. Informatics 2023,

10, 64. https://doi.org/10.3390/

informatics10030064

Academic Editors: Pavel Lyakhov

and Maxim Deryabin

Received: 26 May 2023

Revised: 21 July 2023

Accepted: 31 July 2023

Published: 2 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  informatics

Article

Reinforcement Learning for Reducing the Interruptions and
Increasing Fault Tolerance in the Cloud Environment
Prathamesh Lahande , Parag Kaveri and Jatinderkumar Saini *

Symbiosis Institute of Computer Studies and Research, Symbiosis International (Deemed University),
Pune 411016, India; prathamesh.lahande@sicsr.ac.in (P.L.); parag.kaveri@sicsr.ac.in (P.K.)
* Correspondence: saini_expert@yahoo.com

Abstract: Cloud computing delivers robust computational services by processing tasks on its virtual
machines (VMs) using resource-scheduling algorithms. The cloud’s existing algorithms provide lim-
ited results due to inappropriate resource scheduling. Additionally, these algorithms cannot process
tasks generating faults while being computed. The primary reason for this is that these existing
algorithms need an intelligence mechanism to enhance their abilities. To provide an intelligence
mechanism to improve the resource-scheduling process and provision the fault-tolerance mechanism,
an algorithm named reinforcement learning-shortest job first (RL-SJF) has been implemented by
integrating the RL technique with the existing SJF algorithm. An experiment was conducted in a
simulation platform to compare the working of RL-SJF with SJF, and challenging tasks were com-
puted in multiple scenarios. The experimental results convey that the RL-SJF algorithm enhances
the resource-scheduling process by improving the aggregate cost by 14.88% compared to the SJF
algorithm. Additionally, the RL-SJF algorithm provided a fault-tolerance mechanism by computing
55.52% of the total tasks compared to 11.11% of the SJF algorithm. Thus, the RL-SJF algorithm
improves the overall cloud performance and provides the ideal quality of service (QoS).

Keywords: cloud-computing; performance; reinforcement learning

1. Introduction

The cloud hosts a network of remote servers to provide a platform to compute various
challenging user tasks [1]. To compute these tasks on its virtual machines (VMs), the
cloud environment relies mainly on its resource-scheduling algorithms to provide the
ideal expected results [2,3]. Since the existing scheduling algorithms are not provisioned
with any external intelligence, they cannot dynamically adapt to the current scenario of
the cloud at any given instance, leading to improper resource scheduling and limited
results [2,3]. Additionally, the cloud experiences damage when the currently computed
task generates uncertain faults, such as breaches of cloud security, violations of service
level agreements (SLAs), and data loss [2–4]. This leads to the cloud being vulnerable
and fault-intolerant. To focus on these issues, an intelligence mechanism is provided
by integrating the reinforcement learning (RL) [5] technique with the existing resource-
scheduling algorithm shortest job first (SJF) to design and implement an algorithm, RL-SJF.
The RL-SJF algorithm enhances the resource-scheduling process and provides the much-
needed fault-tolerance mechanism to the cloud. The primary reason for using the RL
method integrated with the SJF is that its mechanism and work are close to how human
beings learn.

The main reason for choosing the SJF algorithm is that this algorithm provides the ideal
and best results among the cloud-scheduling algorithms with respect to the time parameters
and also since it is very handy for long-term scheduling [6,7]. Hence, it has been combined
with the RL method. The proposed RL-SJF algorithm has been implemented in a cloud-
simulated environment where challenging tasks are computed in several scenarios and
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circumstances. To fairly compare the results of RL-SJF with the existing SJF algorithm, tasks
computed by the RL-SJF were computed using the bare SJF algorithm also. Since the existing
SJF algorithm lacks decision-making, it cannot adapt to the cloud’s current situations at
any given instance. On the contrary, with ideal feedback mechanisms with every action,
the RL-SJF algorithm enhances its decision-making by allocating the suitable VM to every
task. Thus, the overall cost required to process all tasks is reduced with improved resource
scheduling and better QoS will be provided to the end-user. Additionally, the RL-SJF
algorithm handles the dynamically occurring faults while being computed and provides
a solution to these faults. Thus, the performance of the cloud is enhanced over time with
RL-SJF, thereby providing better cost and resource-scheduling results while keeping the
cloud safe and secure from all faults. Figure 1 depicts the mechanism of computing the
user tasks using the existing SJF and the proposed RL-SJF algorithms.
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From Figure 1, we can observe that in the cloud environment with the existing SJF
algorithm, there is a mismatch between the task to be computed and the VM it has been
allotted to for computations. Additionally, some fault-generating tasks are not handled by
the SJF algorithm. Since the mechanism of RL has been combined with this SJF algorithm
to design and implement the RL-SJF algorithm, this algorithm undergoes several trial-and-
error processes and obtains a series of corresponding rewards for its scheduling processes.
This can be observed from Figure 2. With time and proper rewards, the RL-SJF can make
ideal scheduling decisions in the cloud environment, ensuring its resources are utilized
to their maximum. Additionally, the fault-generating tasks are handled by the RL-SJF
algorithm by providing a solution to those faults and making sure the task has been
computed without hampering the cloud’s performance.

The rest of the paper is organized as follows:
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� Related Works provided in Section 2.
� Experimental Design provided in Section 3.
� Results and Implications provided in Section 4.
� Validating Experimental Results using Empirical Analysis provided in Section 5.
� Conclusion provided in Section 6.
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2. Related Works

The RL method has been used not only to focus on issues in the cloud computing
environment but also to solve any challenge in other domains around the cloud. Several
researchers have used this RL method to give an intelligence mechanism to the cloud by
designing and implementing various strategies, algorithms, and techniques to improve
cloud performance. The researchers in this paper have used the RL method intending to
improve the resource-allocation strategies and overall network latencies in the cloud-edge
environment [6]. The improvements made in allocating the resources mainly depend
upon the past request history and states of the cloud networks. The simulation results
convey that the presented method using RL has lower latencies compared with the existing
solutions in the cloud-edge environment. To focus on the issue of job-shop scheduling
(JSS), the researchers have used the RL method to improve the job-scheduling process [8].
The performance of this method is found to be better when compared with the existing
benchmarked methods. To address the issues of energy consumption and latencies of the
task, the researchers have presented a task offloading (TO) strategy based on RL, which
is adaptive and takes little time to adjust to newer environments [9]. The experiment
results convey optimal energy consumption while reducing task-processing delays and
energy consumption.
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To improve the overall performance in the cloud environment, this study has focused
on detecting various anomalies in the surveillance of videos [10]. The experimental re-
sults convey multiple anomalies were detected with higher accuracy when compared
with the existing studies. Regarding the issues of resource allocation, where a task is
allotted to a VM, the researchers have proposed a task-scheduling approach using the RL
method [11]. This approach outperforms the existing ones in the overall resource-allocation
and task-scheduling approaches, improving the successful computing ratio and overall
task computing satisfaction level. The researchers have used the RL method to solve the
routing problems in a network environment [12]. This improvement in routing lowers
the required time, cost, and bandwidth. The RL method has been implemented to solve
the traveling salesman problem (TSP) and presents it as a dynamic TSP [13]. The DTSP
adapts to the environment’s dynamic changes and provides more satisfactory results of
more than five percent more than the traditional TSP within less time. This paper used
the RL method to solve the mathematical issue of the knapsack problem (KP) [14]. The
process of selecting items is observed to be constructive, flexible, and adaptive with the RL
technique concerning the cost required. This method provides better results concerning the
existing greedy method.

A hybrid approach combining the RL and constraint programming has been presented
in this research paper to provide a solution to the TSP, management of the portfolio, and
KP [15]. The experimental results prove this strategy provides enhanced output compared
to existing ones. The Q-learning (QL) technique of the RL has been implemented to improve
the cache problem in the internet-of-things (IoT) environment [16]. The performance
improvements made in this cache provide better results regarding response time and
bandwidth requirements. The researchers have applied the RL algorithms QL, state-action-
reward-state-action (SARSA), Watkin’s Q(λ), and SARSA(λ) for single-machine scheduling
in the online environment [17]. The experiment results convey that Watkin’s Q(λ) provides
enhanced results compared with the rest of the RL algorithms. To improve the JSS issue,
this paper uses the RL method [18]. The experimental results convey better results by
enhancing the JSS and providing a better balance between the response and computing
times. This study presents an edge-caching technique based on RL to improve the ability
to adjust dynamically in the IoT environment [19]. This method reduces the performance
losses, makespan, traffic, and, most importantly, hit rates in the cache. The researchers in
this paper have focused on the JSS problem and used the RL method and graphs’ neural
networks to solve it [20]. The experimental results provide better results when compared
with the existing ones.

To focus on the response time of the resource-scheduling problem, the researchers
have used a combined communication and computational resource-allocation strategy to
optimize the task scheduling process in the cloud-computing environment [21]. The results
convey better latencies when compared with the existing ones. The researchers have used
an architecture consisting of multiple rewards, which is based on RL, to provide a solution
to the highway driving problems [22]. The experimental results depict that this method
provides better results when compared with existing ones concerning speed, frequency of
exchanging lanes, and safety issues. The RL method has been implemented along with
the Q-Learning method in the MEC environment to tackle resource allocation issues [23].
The results convey that this presented method achieves better cost when contrasted to the
existing algorithms. The problems of resource scheduling in the network environments of
radio access have been focused on in this research paper, and the RL method has been used
to tackle these issues [24]. This method shows comparatively higher effectiveness, since the
RL process accelerates the system’s learning process.

The RL method, which learns from past experiences, has been used to tackle the
issues in the wireless local area network [25]. The experimental results are verified and
validated by comparing them with the current developments. To reduce the traffic in
wireless networks, the researchers have focused on the cache-enhancement problem using
the RL method [26]. This strategy improves the long-term and short-term cache hit rate
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compared to the other existing methods. This paper focuses on using the RL technique
for performing predictive analysis in smart cities in a deterministic environment [27].
The researchers have used the RL method to improve the overall reliability in managing
resources in distributed systems [28]. The experimental results convey improvement in the
resource allotment and effectiveness of using the RL method. Researchers have used the
RL method to enhance the scheduling process in the JSS issue [29]. This paper enhances the
resource-scheduling process and evaluates its efficiency using benchmark solutions. The
RL method has been implemented to make the overall resource-scheduling dynamic [30].
This method provides enhanced resource allocation along with a reduction in migration
costs. The network slicing problem, which aims to map numerous services to a single
shared network infrastructure and distribute network resources to meet various quality
of service (QoS) needs, has been taken into consideration by the authors of this study [31].
They have also presented a formulation approach to address this issue. The superiority of
the proposed formulations over current ones is shown by numerical findings. An approach
for predicting experience quality parameters in a larger communication system, including
users and a communications network, based on the predicted values of QoS indicators,
is described [32]. There are four normalization methods discussed, which are suggested
to normalize an indicator’s scale. The software-defined-networking idea is expanded in
this paper to include wireless networks [33]. In this study, the mathematical model that
enabled the authors to obtain this parameter is provided and reviewed. Finally, by putting
the suggested solutions into practice, their usefulness has been assessed.

3. Experimental Design

This section includes the detailed design of the experiment conducted, which is
further presented in three sub-sections: Section 3.1 provides the detailed experimental
configurations related to the simulation environment. Section 3.2 includes the proposed
RL-SJF algorithm. Section 3.1 also provides the dataset used for computations by the SJF
and RL-SJF algorithms during the experiment.

3.1. Configuring the Simulation Environment

The simulation platform of the WorkflowSim [34] environment has been used for
configuring the cloud-computing environment. The algorithms SJF and RL-SJF have been
incorporated into this simulation platform. The SJF mechanism of choosing tasks from the
cloud’s ready queue having the least VM computational time is followed in the RL-SJF
algorithm. However, the major change between SJF and RL-SJF is that the RL-SJF algorithm
possesses intelligence to enhance the resource scheduling and provide fault tolerance to
the cloud. This experiment has been conducted into two phases: Phase I: Computing all
the tasks using the existing SJF algorithm; Phase II: Computing all the tasks using the
proposed RL-SJF algorithm. To fairly compare the behavior and mechanism of the RL-SJF
algorithm with the SJF algorithm under various scenarios, circumstances, and conditions,
both these phases consist of fifteen scenarios, where the number of VMs that compute
the tasks starts at five and increases by five VMs in each subsequent scenario until the
tenth scenario, consisting of fifty VMs. Following this, the number of VMs for the eleventh
scenario is a hundred, increasing by one hundred until the fifteenth scenario, in which the
number of VMs is five hundred.

The scenarios considered for each phase can be represented as follows:

� Scenario i: Number of VMs = 5;
� Scenario ii: Number of VMs = 10;
� Scenario iii: Number of VMs = 15; and so on until,
� Scenario x: Number of VMs = 50; where number of VMs increase by count of 5.
� Scenario xi: Number of VMs = 100;
� Scenario xii: Number of VMs = 200;
� Scenario xiii: Number of VMs = 300;
� Scenario xiv: Number of VMs = 400;
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� Scenario xv: Number of VMs = 500; where number of VMs increase by count of 100.

The task-event dataset provided by Alibaba has been used for computing tasks by
both the SJF and RL-SJF algorithms. Here, each task consists of the following:

� Task ID: representing a unique number to identify a certain task;
� Planned CPU: represents the task’s total computing time
� Task Type: Low (L) ................... if 10 ≤ Planned CPU ≤ 60

Medium (M) ........... if 70 ≤ Planned CPU ≤ 300
High (H) ................. if Planned CPU > 300

The dataset consisting of tasks to be computed differs from scenario to scenario.
However, the dataset used for a certain scenario for SJF has also been used for the same
scenario for RL-SJF. The primary reason for doing this is to fairly compare the RL-SJF
algorithm with the SJF algorithm scenario-wise. Any task being computed on the cloud VM
can either be computed without any faults or it may generate faults to hamper the cloud’s
performance. For such tasks, if the RL-SJF algorithm makes poor scheduling decisions
regarding either scheduling or faults, it is provided with negative rewards; similarly,
with ideal scheduling decisions and fault tolerance, it is provided with positive rewards.
Here, with faults, the RL-SJF will be initially provided with a solution so that the system
can use the same solutions for providing a fault-tolerance mechanism. Therefore, for any
scheduling or fault-tolerating purposes, the RL-SJF algorithm monitors the previous reward
obtained and accordingly improves its decision. With this, the RL-SJF algorithm provides
the much-needed intelligence mechanism to provision a fault-tolerance mechanism and
computes that task successfully. The various faults considered for this study are shown in
Table 1.

Table 1. Task faults with its description.

Sr. No. Task Fault Description of the Task Fault

1 Unavailability of VMs No free VMs available to compute tasks at a certain instance of time.
2 Breaching the cloud security The currently computing task on a certain VM breaches the security of the cloud.

3 All VMs are deadlocked A situation where all the VMs are blocked because each VM is holding a cloud
resource and waiting for another resource held by another VM.

4 Task denied computing service A certain task has been waiting to be computed in the cloud’s task queue and has
suffered from starvation.

5 Data loss observed at the cloud The currently computing task on a certain VM accidently or intentionally causes a
data loss at the cloud end.

6 Cloud accounts hijacked The currently computing task on a certain VM intentionally hacks cloud accounts.

7 Cloud’s SLAs violations The currently computing task on a certain VM violates the regulatory measures
mentioned in the SLAs.

8 Insufficient RAM RAM of the VM is low on memory

The cloud VMs which process and compute the tasks are divided into nine categories
according to their configurations. The categories are: L-L, L-M, L-H, M-L, M-M, M-H,
H-L, H-M, and H-H. The VMs in every scenario are divided in such a way that a greater
number of ‘M’ configuration VMs are there so that these VMs can be available to process
and compute a greater number of tasks. The RL-SJF algorithm uses rewards as feedback
to the cloud environment to enhance its decision-making process. The RL-SJF algorithm
uses Q-Table to manage these rewards with every action it performs. In case of improper
scheduling and/or faults thrown up by the tasks, a lower reward is generated by the RL-SJF
algorithm, indicating that the decision-making needs improvements. A high reward is
generated when the scheduling is appropriate, and the task is processed without faults.
This process of reward offering continues over a period of time, and with time the decision-
making ability of the RL-SJF algorithm enhances, thereby enhancing the scheduling process
and provisioning the fault-tolerance mechanism.
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3.2. Architecture of the RL-SJF and Working of Q-Table with RL-SJF

Figure 3 depicts the entire architecture of the proposed algorithm.
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The user tasks at the users’ end are submitted to the cloud for computing. The cloud
accepts them and puts them in a queue. Since the proposed algorithm is a blend of RL and
SJF, the RL-SJF algorithm schedules tasks with minimum completion time, and additionally,
RL provides the intelligence mechanism. While allocating the appropriate VM to a certain
task, the RL-SJF takes inputs from the Q-Table in the form of rewards. The Q-Table is an
additional data structure maintained in this architecture to store all the rewards where
every task has an associated reward for a VM. The rewards are offered as follows:

� Task’s Planned CPU ‘Low’ allotted to ‘Low’ performance VM: Highest Ideal Reward
� Task’s Planned CPU ‘Medium’ allotted to ‘Low’ performance VM: Medium-Low

Reward
� Task’s Planned CPU ‘High’ allotted to ‘Low’ performance VM: Lowest Reward
� Task’s Planned CPU ‘Low’ allotted to ‘Medium’ performance VM: Low-Medium

Reward
� Task’s Planned CPU ‘Medium’ allotted to ‘Medium’ performance VM: Highest Ideal

Reward
� Task’s Planned CPU ‘High’ allotted to ‘Medium’ performance VM: High-Medium

Reward
� Task’s Planned CPU ‘Low’ allotted to ‘High’ performance VM: Lowest Reward
� Task’s Planned CPU ‘Medium’ allotted to ‘High’ performance VM: Medium-High

Reward
� Task’s Planned CPU ‘High’ allotted to ‘High’ performance VM: Highest Ideal Reward

With every task scheduling to any VM, the RL-SJF algorithm takes input from this
Q-Table and keeps updating it dynamically. Here, the current task to be computed is taken
from the queue considering its shortest, i.e., lowest computational time. When any next
task has to be scheduled, the RL-SJF algorithm finds the currently vacant VM and calculates
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the reward. Similarly, it obtains the highest reward for that task from the Q-Table and
obtains the corresponding VM. Later, by comparing the currently vacant VM with the ideal
VM, the reward is updated, and accordingly, scheduling and fault-tolerance mechanism
is performed. Over a period of time, the Q-Table will possess enhanced rewards, thereby
helping the RL-SJF to make better decisions and improving the overall cloud performance.

4. Results and Their Implications

This section includes the experimental results and their implications, presented into
two sub-sections: Section 4.1 consists of the experimental results concerning the resource-
scheduling process, and Section 4.2 contains the experimental results regarding the fault-
tolerance mechanism.

4.1. Resource-Scheduling Results

This sub-section includes the experimental results of the algorithms SJF and RL-
SJF concerning resource-scheduling mechanisms. The improvements in the resource-
scheduling process can be observed by considering the aggregate required cost scenario-
wise to compute the tasks by the algorithms. To have a considerate and fair comparison
between the existing SJF and the proposed RL-SJF algorithm, the tasks that the SJF algorithm
has successfully computed are computed using the RL-SJF algorithm. Table 2 represents
the cost comparison of SJF and RL-SJF algorithms across all the scenarios.

Table 2. Cost comparison of SJF and RL-SJF across all the scenarios.

Scenario VMs SJF
(in $)

RL-SJF
(in $)

Decrease in
Cost Percentage (in %)

Performance
Comparison

1 5 17.05 16.76 1.71 RL-SJF > SJF
2 10 29.25 28.04 4.14 RL-SJF > SJF
3 15 38.66 35.11 9.19 RL-SJF > SJF
4 20 45.67 39.83 12.79 RL-SJF > SJF
5 25 51.02 43.09 15.55 RL-SJF > SJF
6 30 54.74 44.82 18.13 RL-SJF > SJF
7 35 57.28 45.95 19.79 RL-SJF > SJF
8 40 59.68 47.05 21.17 RL-SJF > SJF
9 45 61.35 47.48 22.61 RL-SJF > SJF
10 50 62.68 47.85 23.66 RL-SJF > SJF
11 100 73.71 56.12 23.87 RL-SJF > SJF
12 200 78.43 59.12 24.62 RL-SJF > SJF
13 300 83.14 62.12 25.28 RL-SJF > SJF
14 400 87.87 65.13 25.88 RL-SJF > SJF
15 500 92.59 68.13 26.41 RL-SJF > SJF

Average 59.54 47.11 18.32 18.32

From Table 2, the following observations can be made across all scenarios:

� ↑ VM = ↑ Cost: The overall cost required rises with the number of VMs.
� Total Cost (SJF) = $893.12
� Total Cost (RL-SJF) = $706.6.
� Average Cost (SJF) = $59.54.
� Average Cost (RL-SJF) = $47.11.
� Average Decrease in Cost Percentage = 18.32%
� Performance (RL-SJF) > Performance (SJF) concerning resource scheduling across all

the scenarios.
� Reduction in the cost percentage in the above table signifies how much cost is saved

by the RL-SJF algorithm as compared to that of SJF.
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4.2. Fault-Tolerance Results

This Section 4.2 presents the experimental results and their implications concerning
the fault-tolerant mechanism. The existing SJF algorithm cannot compute or process any
tasks causing faults since it does not have any external intelligence provided to it. On the
other hand, the proposed RL-SJF algorithm intelligently provides a solution to the tasks that
generated faults, such as the unavailability of VMs, VMs in the deadlocked state, services
denied to a task, and insufficiency of RAM, and computes them successfully. Additionally,
faults such as security breaches, loss of data, hijacked accounts, and violations of SLAs are
intelligently tracked and not computed by the RL-SJF to ensure the cloud is not damaged
and is secure.

Table 3 represents the status of the tasks which have been computed or not with
respect to the existing SJF.

Table 3. Status of tasks computed by SJF algorithm across all scenarios.

SJF

Number of Virtual Machines (VMs)

Task Fault 5 10 15 20 25 30 35 40 45 50 100 200 300 400 500

VMs unavailable × × × × × × × × × × × × × × ×
Security Breach × × × × × × × × × × × × × × ×
Deadlocked VMs × × × × × × × × × × × × × × ×
Service Denied × × × × × × × × × × × × × × ×
Loss of Data × × × × × × × × × × × × × × ×
Hijacked Accounts × × × × × × × × × × × × × × ×
Violations of SLAs × × × × × × × × × × × × × × ×
Insufficient RAM × × × × × × × × × × × × × × ×
No Fault

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Table 4 represents the status of the tasks which have been computed or not with
respect to the proposed RL-SJF algorithm, respectively

Table 4. Status of tasks computed by RL-SJF algorithm across all scenarios.

RL-SJF

Number of Virtual Machines (VMs)

Task Fault 5 10 15 20 25 30 35 40 45 50 100 200 300 400 500

VMs unavailable
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Security Breach × × × × × × × × × × × × × × ×
Deadlocked VMs

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Service Denied
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Loss of Data × × × × × × × × × × × × × × ×
Hijacked Accounts × × × × × × × × × × × × × × ×
Violations of SLAs × × × × × × × × × × × × × × ×
Insufficient RAM ×

√ √ √ √ √ √ √ √ √ √ √ √ √ √

No Fault
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

From Table 3, we can observe that the cloud faces damage when it processes and
computes the fault-generating tasks using the existing SJF algorithm. However, from
Table 4, we can observe that with the RL-SJF algorithm, the cloud handles all the problematic
fault-generating tasks and processes and computes many more tasks than the SJF algorithm.
Table 4 depicts the comparative percentage of successful and failed tasks processed and
computed by the SJF and RL-SJF algorithms concerning all scenarios.

From Table 5, the following observations can be made across all scenarios:

� ↑ VM = ↑ Cost: The overall cost required rises with the number of VMs.
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� Average Tasks Computed Successfully (SJF) = 11.1017%.
� Average Tasks Computed Successfully (RL-SJF) = 55.5416%.
� Increase in Task Computations (In terms of folds) by RL-SJF when compared to

SJF = 4.9943.
� Average Tasks Failed to Compute (SJF) = 88.8984%.
� Average Tasks Failed to Compute (RL-SJF) = 44.5585%.
� Decrease in Task Computations (in terms of folds) by RL-SJF when compared to

SJF = 1.9952.
� Performance (RL-SJF) > Performance (SJF) concerning Fault-Tolerance mechanism

across all the scenarios.

Table 5. Percentage of Successful and Failed Task Size processed and computed by the SJF and RL-SJF
algorithm across all the scenarios.

Computing Tasks with Respect to Success Computing Tasks with Respect to Failure

Scenario VMs SJF
(in %)

RL-SJF
(in %)

Improvement in Terms of
Success Computations

(In Terms of Folds)
SJF RL-SJF

Improvement in Terms of
Failed Computations
(In Terms of Folds)

1 5 10.9771 55.5819 5.0635 89.0230 44.4182 2.0043
2 10 11.1475 55.552 4.9834 88.8526 44.4481 1.9991
3 15 11.1537 55.6627 4.9906 88.8464 44.3374 2.0039
4 20 11.1388 55.4214 4.9756 88.8613 44.5787 1.9934
5 25 11.0654 55.7399 5.0374 88.9347 44.2602 2.0094
6 30 11.0530 55.4152 5.0136 88.9471 44.5849 1.9951
7 35 11.3615 55.5458 4.8890 88.6386 44.4543 1.9940
8 40 11.0505 55.6466 5.0357 88.9496 44.3535 2.0055
9 45 10.9435 55.3356 5.0565 89.0566 44.6645 1.9940

10 50 11.1226 55.2298 4.9656 88.8775 44.7703 1.9852
11 100 11.1021 55.3559 4.9861 88.898 44.6442 1.9913
12 200 11.1022 55.3273 4.9835 88.8979 44.6728 1.9900
13 300 11.1023 55.2987 4.9808 88.8978 44.7014 1.9887
14 400 11.1025 55.2702 4.9782 88.8976 44.7299 1.9874
15 500 11.1026 55.2416 4.9756 88.8975 44.7585 1.9862

Average 11.1017 55.4416 4.9943 88.8984 44.5585 1.9952

5. Validating Experimental Results Using Empirical Analysis

This section includes the validation and verification of the experimental results con-
cerning the resource-scheduling process and fault-tolerance mechanism by performing an
empirical analysis using the mathematical model of R2 analysis across all the scenarios.
The parameters considered for the same are:

� Linear regression equation: represents the linear relationship between the computa-
tional cost required by the SJF and RL-SJF algorithms against the number of VMs in
all the scenarios.

� Regression line slope: represents the change in the computational cost required by the
SJF and RL-SJF algorithms for one-unit change in the number of VMs across all the
scenarios.

� Slope sign: represents if the slope is either positive or negative.
� Y-intercept of line: depicts a point where the regression line crosses the required cost

by the VM.
� Relationship (positive/negative): positive relationship indicates that the cost required

for computations increases with an increase in the number of VMs; negative relation-
ship indicates that the cost required for computations decreases with a decrease in the
number of VMs.
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� R2: represents a statistical measurement representing the variance proportion of how
well the regression line fits the data points in the graph of cost required against the
number of VMs in each scenario.

The empirical analysis is presented into two sub-sections: Section 5.1 includes the
empirical analysis with respect to the resource-scheduling process; Section 5.2 includes the
empirical analysis with respect to the fault-tolerance mechanism.

5.1. Empirical Analysis Concerning Resource Scheduling

This Section 5.1 includes the empirical analysis concerning the resource-scheduling
process across all the scenarios. Figure 3 depicts the cost comparison graph of SJF and
RL-SJF algorithms across all the ten scenarios.

From Figure 4, we can observe that the cost required by the proposed RL-SJF algorithm
is less than that of SJF across all the scenarios. Table 6 represents the empirical analysis of
SJF and RL-SJF concerning the cost required across all the scenarios.
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Table 6. Empirical analysis of SJF and RL-SJF concerning cost required.

Parameters SJF RL-SJF

Linear Regression Equation y = 4.7213x + 21.771 y = 3.0036x + 23.078
Regression Line Slope 4.7213 3.0036
Slope Sign Positive Positive
Y-Intercept of Line 21.771 23.078
Relationship Positive Positive
R2 0.9640 0.9279
Analysis of VMs ↑ VM = ↑ Cost ↑ VM = ↑ Cost
Overall Performance RL-SJF > SJF

From Table 6, the following observations can be made across all scenarios:

� ↑ VM = ↑ Cost: The overall cost required rises with the number of VMs.
� R2 (SJF) = 0.9640.
� R2 (RL-SJF) = 0.9279.
� R2 (RL-SJF) < R2 (SJF): The lower value of R2 for RL-SJF indicates that the cost required

by RL-SJF is lower than the SJF algorithm.
� Performance (RL-SJF) > Performance (SJF)
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5.2. Empirical Analysis Concerning Fault-Tolerance

This sub-section includes the empirical analysis concerning the Fault-Tolerance mech-
anism across all the scenarios. Figure 4 depicts the graph of successful and failed tasks in
terms of percentage for SJF and RL-SJF algorithms across all the scenarios.

From Figure 5, we can observe that the RL-SJF algorithm managed to compute a greater
number of the tasks than the SJF algorithm across all the scenarios. Table 7 represents the
empirical analysis of SJF and RL-SJF concerning the fault-tolerance mechanism across all
the scenarios.
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Table 7. Empirical analysis of SJF and RL-SJF concerning fault-tolerance mechanism.

Tasks Successfully Computed Tasks Failed to Compute

Parameters SJF RL-SJF SJF RL-SJF

Linear Regression Equation y = 0.0001x + 11.101 y = −0.0286x + 55.67 y = −0.0001x + 88.899 y = 0.0286x + 44.33
Regression Line Slope 0.0001 −0.0286 −0.0001 0.0286
Slope Sign Positive Negative Negative Positive
Y-Intercept of Line 11.101 55.67 88.899 44.33
Relationship Positive Negative Negative Positive
R2 1 × 10−5 0.2946 1 × 10−5 R2 = 0.2946
Overall Performance RL-SJF > SJF RL-SJF > SJF

From Table 7, the following observations can be made across all scenarios:

� R2 (SJF) = 1 × 10−5 with respect to successfully computed tasks.
� R2 (RL-SJF) = 0.2946 with respect to successfully computed tasks.
� R2 (RL-SJF) > R2 (SJF): The higher value of R2 for RL-SJF indicates that the RL-SJF

algorithm managed a better fault-tolerance mechanism with respect to successfully
computing tasks.

� R2 (SJF) = 1 × 10−5 with respect to failed computed tasks.
� R2 (RL-SJF) = 0.2946 with respect to failed computed tasks.
� R2 (RL-SJF) > R2 (SJF): The higher value of R2 for RL-SJF indicates that the RL-

SJF algorithm managed better fault-tolerance mechanism with respect to failure of
computing tasks.

� Performance (RL-SJF) > Performance (SJF) concerning fault-tolerance.
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6. Conclusions

Resource-scheduling algorithms are vital for the cloud-computing environment to
provide consistent and best results to the end user. Currently, without any intelligence
mechanism, these algorithms perform inappropriate resource scheduling leading to limited
results from the cloud. Additionally, on several occasions, the tasks being computed on
the cloud VMs generate dynamic faults, thereby hampering the cloud’s overall throughput
and performance. To solve these issues, this research paper proposed an RL–SJF algorithm
to improve the resource-scheduling process and provide a fault-tolerance mechanism at
the cloud end. From the experiment and the results, the RL-SJF enhances the resource-
scheduling process by lowering the required cost of computing tasks by 14.88% when
compared with the SJF algorithm. Additionally, from the total tasks to be computed, the RL-
SJF algorithm successfully processed and computed 55.52% of the overall tasks compared to
11.11% of the SJF algorithm. To verify and validate these experimental results, an additional
extensive empirical analysis is also performed on these results. Thus, the RL-SJF algorithm
provides much-needed intelligence to the cloud and improves its overall performance.
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