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Abstract: In the context of developing machine learning models, until and unless we have the required
data engineering and machine learning development competencies as well as the time to train and
test different machine learning models and tune their hyperparameters, it is worth trying out the
automatic machine learning features provided by several cloud-based and cloud-agnostic platforms.
This paper explores the possibility of generating automatic machine learning models with low-code
experience. We developed criteria to compare different machine learning platforms for generating
automatic machine learning models and presenting their results. Thereafter, lessons learned by
developing automatic machine learning models from a sample dataset across four different machine
learning platforms were elucidated. We also interviewed machine learning experts to conceptualize
their domain-specific problems that automatic machine learning platforms can address. Results
showed that automatic machine learning platforms can provide a fast track for organizations seeking
the digitalization of their businesses. Automatic machine learning platforms help produce results,
especially for time-constrained projects where resources are lacking. The contribution of this paper
is in the form of a lab experiment in which we demonstrate how low-code platforms can provide
a viable option to many business cases and, henceforth, provide a lane that is faster than the usual
hiring and training of already scarce data scientists and to analytics projects that suffer from overruns.

Keywords: low-code; no-code; machine learning; auto ML; ML platform; data scientist scarcity;
projects overruns

1. Introduction

In the contemporary data-driven world, any organization can have access to data, but
how well they make use of it to generate insights will dictate their market position. To take
a competitive edge over rivals, it is not just enough to have efficient transactional systems; it
has become essential to analyze the historical data promptly and propose necessary actions
for the business to take. Previous research has highlighted the significance of data-driven
decisions and their potential to realize values over decisions based solely on opinions [1].
Other research has pointed out that understanding the data is key, and data science is the
discipline that helps expand knowledge about available data and generate insights from
these data. Furthermore, research explained that data science helps to attain data-driven
decisions [2].

Data science is an umbrella term for various in-depth studies that can be classified into
three major areas: data analytics, data mining, and machine learning (ML) [3]. The data
science paradigm encompasses discrete roles and responsibilities, such as data engineers,
data analysts, and data scientists, as well as external dependencies such as product owners,
project sponsors, business analysts, IT managers, c-level executives, etc. A person with a
specific persona does not need to be an expert in other trades or have a cross-functional
skillset. However, it would be advantageous if a person with an understanding of business
requirements and objectives had access to a platform that allowed them to perform the
basic operations of data-science-related roles without prior coding, analytics, or data
engineering experience.
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On the other hand, Alsharef et al. emphasized that developing an ML model necessi-
tates domain expertise and advanced ML programming skills [4]. They highlighted the
difficulties in finding trained ML experts in the market; hence, automatic ML is seen as an
asset that bridges the gap between data-science use cases and a lack of appropriate ML
resources [4]. This is where the no-code/low-code ML platform comes into play. Before
getting there, we first need to understand the evolution of ML and how we landed on
advanced ML platforms with low or no code. Both low-code and no-code approaches
aid in the rapid development of ML models, the automation of data pipelines, and the
visualization of the findings. However, they differ greatly in terms of the type of audience
willing to use this service. Developers can leverage existing building blocks and libraries
while still having the flexibility to customize the task as required with the low-code ap-
proach. Conversely, no-code is primarily intended for domain experts with minimal to
no prior software development knowledge [5]. With the no-code approach, users can use
drag-and-drop functionality to execute the desired task, with minimal to no flexibility
to customize. We can categorize cloud-native and cloud-agnostic ML platforms as low-
code platforms since they allow us to build custom ML models by writing code in ML
platform-native notebooks.

When it comes to developing ML models using the AutoML service, specifically, we
must categorize it as a no-code since we anticipate the ML platform to conduct all the
tasks in the ML lifecycle automatically with very few inputs from its users initially. Low-
code ML platforms can be used by different personas, including data scientists and ML
developers. Added to this, no-code AutoML services can also be used by persons with
strong business or data domain knowledge, such as data engineers, data analysts, business
analysts, or product owners. We can even form a cross-functional team comprised of all the
aforementioned personas to create ML models using AutoML services; this, in the long run,
would yield multiple benefits in terms of saving time and money. Research has supported
the importance of emerging low-code cloud data platforms and their vital role in the speed
of digitalization [6].

In this research, we examine similarities, differences, advantages, and limitations
in leveraging some of the cloud-based low/no-code ML platforms. The Gartner Magic
Quadrant published in 2020 for cloud-native AI developer service providers listed Amazon
Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP) as the top three
leaders [7]. Hence, we chose these cloud-based platforms and their cloud-native ML
services for further research. When it came to cloud-agnostic ML platforms, we chose
Databricks for future investigation, as it is an enterprise-scale open-source unified data
engineering, ML, and AI platform that is already integrated with all three cloud-native
ML platforms listed [8]. These ML platforms can handle the entire ML lifecycle. In the
following sections, we highlighted our findings by developing ML models without writing
a single line of code using ML services available on the above-mentioned cloud platforms.

2. Problematization

Previous research has demonstrated the dire need to have a methodology for automat-
ically selecting the optimum ML model and tuning the hyperparameters to improve ML
model performance [9]. Building an ML model is quite a laborious task. ML developers
must try out multiple algorithms and tweak hyperparameters constantly to derive the
best ML model for solving a given business problem. This requires not only a thorough
understanding of developing ML models but also time-consuming and intensive com-
puting for data processing. Luo also emphasized the importance of the skillsets required
for building state-of-the-art ML models manually, i.e., by a human attendant. Even with
higher competencies, we cannot reduce the time spent refining the model and its hyperpa-
rameters to derive the best results [9]. While trying out different experiments to find the
right model requires computation and substantial time, we may end up ramping up the
computational resources as needed. The table below lists some of the ML algorithms and
their corresponding hyperparameters.
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From Table 1, we can understand that there are multiple hyperparameters connected
to each ML algorithm. For decision trees, the max_depth parameter defines how far the
leaf nodes can be split; when the maximum value set for this parameter is reached, it
will stop splitting the node any further; the min_impurity_split parameter defines the
minimum impurity level that can be at max up to the value set for this parameter; the
min_samples_leaf parameter defines the minimum number of samples for each leaf node to
be formed; and the max_leaf_node parameter defines the maximum number of leaf nodes
we can have [9].

Table 1. ML Algorithms and their Hyperparameters.

Algorithm Hyperparameters

Decision Tree max_depth, min_impurity_split, min_samples_leaf,
max_leaf_nodes

Random Forest n_estimators, max_features

Support Vector Machine kernels, penalty value [3], tol

K-Nearest Neighbor n_neighbors, metric, weights

Naïve Bayes kernel density estimator, window width

Stochastic Gradient Boosting learning_rate, n_estimators, subsample, max_depth

Neural Network no. of hidden layers, no. of nodes in hidden layers, activation
function, no. of epochs, learning rate

For random forest, n_estimators define the number of decision trees to be generated,
and max_features define the maximum number of features to be selected for each split.

For the support vector machine, the kernel defines how the input data will be repre-
sented, the penalty value is a regularization constant, and the tol parameter defines the
stopping criteria for the model when no significant improvements are noticed on two
consecutive iterations of training the model [3].

For k-nearest neighbor, n_neighbors define how many neighbors should be related,
and the metric parameter defines the distance metric, for example, Euclidean distance.

For Naïve Bayes, the kernel density estimator defines the kind of data distribution to
be considered, and window width is used for smoothing the kernel window size.

For stochastic gradient boosting, learning_rate defines how fast the ML model should
learn and understand the pattern of the given data distribution; n_estimators define the
number of trees or steps; subsample defines the subset of data to be considered; and
max_depth defines the maximum depth of each tree [9].

For a neural network, we must find the ideal number of hidden layers, how many
nodes should be present in each hidden layer, what would be the activation function, the
number of epochs for trying out the maximum number of training iterations, and finally
the learning rate [9].

Previous research on tuning hyperparameters for deep learning models by imply-
ing different optimization techniques symbolizes the complexity and expertise needed
in transferring the previous learning to every new iteration of testing ML model per-
formance [10,11]. Another research highlighted that tuning hyperparameters is time-
consuming [12]. They also support the notion that finding the optimal hyperparameter
value for an ML model requires multiple iterations of testing. Although not covering
all parameters, Table 1 shows how complex it would be to select the best algorithm to
address a business case by trying out different ML and ensemble models. This requires
in-depth knowledge to address questions such as: Which type of ML algorithm to use?
How to configure the hyperparameters? How to evaluate the model? How to select the best
model? How to deploy the model to a different endpoint? Such a list is not comprehensive;
however, the list can go on and on based on the type of business case we are trying to
achieve. Another important aspect is how fast these questions can be answered, because
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time is an important factor when considering market competitiveness. Additionally, to
train and test multiple models, there is a need for scaling the computational resources.
This is where cloud-based ML platforms come into the picture, which can address all the
questions easily and in less time. Another advantage of a cloud-based ML platform is
that we are not required to be masters of all trades; we could just have basic knowledge
about data and business use cases and still be able to develop a classic ML model using
the automatic ML features offered by different cloud vendors. Lastly, when the model is
being trained, resources are scaled automatically in real time based on the requirements.
As highlighted by Bahri et al., the automatic ML service helps in choosing the best ML
model and tuning hyperparameters through multiple iterations of testing and different
combinations of values [12].

3. The Methodology

Obtaining access to historical data to generate insights is an important question,
especially for organizations pursuing their digitalization journey. Among the challenges
they face is resource scarcity. To address such a challenge, different cloud platforms started
offering managed services in order to handle sheer amounts of heterogeneous data and
auto-scale the underlying infrastructure resources from which to process, analyze, and
generate insights. Accordingly, we now have cloud platforms to handle big data, which
provide capabilities to perform advanced ML tasks and can be used by different personas
from non-programming backgrounds. In this research, we investigate the plausibility of
that assumption, which entails the possibility of ingesting the data, developing and training
the ML model, choosing a relevant model, evaluating the performance of the model, and
eventually deploying it to the desired endpoint without writing a single code. Hence, we
posit the following research question: “How can low-code machine learning platforms provide a
fastlane to digitalization?”

In order to answer the research question, we adopted a mixed approach for conducting
the research, where we used qualitative interviews with industry experts in order to
conceptualize the problem with evidence from the field as well as a lab experiment in order
to demonstrate the value of low/no-code platforms. Considering that our objective is to
describe the current capabilities of different ML platforms and compare their similarities
and differences, we therefore acquired the necessary data and applied a single ML scenario
to them. Our lab experiment supports the feedback that we received from five expert
interviews. Those we interviewed have used different cloud-based ML platforms and have
come across real-world use cases from diverse industries.

4. Conceptualizing the Problem via Qualitative Interviews

We also conducted qualitative interviews with interviewees from five different SMEs
working on ML and data engineering. The SMEs belong to different industries, e.g.,
AI consulting, reflecting their versatile backgrounds. Table 2 summarizes the intervie-
wees’ metadata.

Table 2. Interviewees’ Metadata.

Role Years of Experience

Data Scientist 10+

Data Engineer 7+

Data Engineer 10+

ML Developer 7+

Data Scientist 6+
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We conducted qualitative interviews by asking semi-structured open-ended questions
to the interviewees. All the interviews were conducted from a distance through Microsoft
Teams. We conducted the interviews individually with each interviewee. Questions were
not shared prior to the interviews with the interviewees, but the context of the interview
was shared. The rationale behind choosing data engineers along with data scientists and
ML developers is attributable to the responsibility that they have for setting up the whole
data platform for ingesting and transforming the data so that they can be consumed by the
data scientists and ML developers. Hence, we thought it was worthwhile to take the data
engineer’s input on this subject as well. The data scientist and ML developers are chosen
for the most obvious reason, that they are responsible for choosing relevant ML algorithms,
building ML models, evaluating the model results, choosing the best model, and eventually
deploying it in the production environment.

We have asked those whom we have interviewed about the elements that ML platforms
ought to have or provide, as well as the rationale for supporting such platforms. We
summarize their responses to our questions as key pointers and segregated them into three
major themes: AutoML-Centric, Human-Centric, and ML Platform-Centric, see below:

AutoML-Centric:

• The following tasks are recommended to be automated: data ingestion, orchestrating
the ML model, and enabling auto-scaling to generate a production-ready ML model.
Apart from this, any help for auto-tuning hyperparameters and choosing the best ML
models is highly appreciated by the data scientists.

• Generating an automatic ML model can generally be used for faster go-to-market
needs or proof of concepts.

• AutoML should work better on a smaller dataset. It will also be very useful for basic
ML problems such as regression, classification, and time-series prediction.

• We should not completely rely on the results obtained from ML platforms and then
act. We should set acceptance criteria to validate the results based on relevant metrics.

• We must have a complete grip on the values we are providing as input parameters, as
they tremendously affect the ML model’s performance. A small error in input could
easily lead to highly biased results.

Human-Centric:

• ML platform services would help in bringing standardization to the way ML models
are generated; otherwise, different ML developers may generate ML models in their
own style, which may eventually cause trouble in maintaining respective ML models
when they are deployed in production.

• Explaining the ML model is one of the most difficult tasks for the ML developers,
whereas ML platform services come up with an auto-explainability feature off-the-shelf
for any ML model generated.

ML Platform-Centric:

• Cloud-agnostic ML and data-engineering platforms can provide higher performance
at a low cost.

• Cloud vendors must provide ML-optimized hardware for building an automatic
ML model. They ought to provide an option to choose between standard and ML-
optimized compute for processing the data.

• ML platforms must allow users to try out different ML models, validate the results,
and choose the best ML automatically.

• ML platforms should take care of feature selection and feature extraction-related tasks,
which demand significant human time and competence.
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• ML platforms should allow users to try the most complicated deep learning algorithms
with minimal code or fewer inputs. It should be possible to create a multi-layer neural
network and tune it with less human interference. However, it should be created in
accordance with the pre-condition criteria set by the respective ML platform vendors;
thus, it is prone to improve over time. Hence, it is better to try this option than not try
it out due to not having the required knowledge.

• Operationalizing the ML platform models should be made possible with the MLOps
service available across the platforms.

• Continuously monitor ML model performance by comparing the results with the
baseline model through the MLOps service, and it is also possible to trigger correc-
tive action in terms of retraining the ML model when there is any data drift (when
significant variation in the live data is found in comparison to test and validation data).

• There is always a cost involved while using ML platform services; hence, we must be
careful and aware of which service we are leveraging and for what purpose.

5. Cloud-Based ML Platforms

Regarding cloud-based ML platforms, the three cloud vendors (AWS, GCP, and MS
Azure) provide different services to address the use case of building an end-to-end ML
model lifecycle without writing a single line of code and providing the least number of
inputs. This helps business stakeholders who do not possess prior programming knowledge
to be able to develop ML models easily.

In Figure 1, we have depicted the ML architecture based on the Azure ecosystem.
Azure Data Lake Generation 2 can act as a data warehouse for storing structured, semi-
structured, and unstructured data. We can even store all types of data in Azure blob
storage. However, if we intend to use Azure Synapse, then it is a prerequisite to use Azure
Data Lake instead. Regarding data transformation requirements, Azure offers the Synapse
service, which acts as a lakehouse. This means it has the capabilities to store the data in
conjunction with Azure Data Lake and is yet able to query using transact-standard query
language (T-SQL) upon the metadata of data stored. Azure Synapse also supports atomic,
complete, isolated, and durable (ACID) transactions. Synapse also consists of different
features, such as data from different source connectors that can be ingested into Azure
using linked services. Similarly, we can transform the data using some of the operations
connectors in the pipeline. Synapse can invoke the Azure ML service for building manual
or automatic ML models. Azure offers an ML service for building the ML model either
using a pre-built model, through notebooks, or via the AutoML option. When the best
model is built and evaluated, it is ready to be deployed at an endpoint. This is where the
Azure container registry service comes into play; it takes care of containerizing the ML
model and saving the container image, which can then be deployed using an orchestration
service built by Azure, which is the Azure Kubernetes service. When the model is built
and deployed on the endpoint, it will be continuously observed by Azure Monitor. When
the model performance has decreased, due to significant change in the underlying trained
dataset, this would trigger auto-training of the ML model again. If the auto-trained model
has a low performance score, it is time to build a new or ensemble model. All the users
registered with Azure Active Directory when they login to the Azure portal once will not
be prompted again to access any other service to which they have access until they log out
of the portal or time out due to being idle for a long time. Further, all the sensitive assets,
such as passwords, authentication, or access keys, can be stored in the Azure key vault.
Only the users having access to the key vault can assess the secrets stored inside it [13–15].



Informatics 2023, 10, 50 7 of 19

Figure 1. Azure native services offering holistic ML platform experience for the users (Adapted
from [13]).

In Figure 2, we have depicted the ML platform architecture in the AWS ecosystem.
AWS supports different types of data from heterogeneous sources. Data should first be
uploaded into the Amazon S3 bucket or Amazon EC2 instance. When the data are within
the AWS premise, they can be transformed using Amazon SageMaker Studio. AWS has
developed SageMaker as a unified ML platform that can handle the end-to-end ML lifecycle.
If the requirement is to generate automated ML, then we can make use of SageMaker’s
AutoPilot service. The AutoPilot takes care of training the model, evaluating the model,
and choosing the best model based on the evaluation metrics score. When the best model
is identified and tested, we can register it in the Amazon elastic container registry, then
we will have a container image of our model that can be deployed to any endpoint. The
Amazon Cloud Watch service is used to monitor AWS services. The Amazon single sign-on
service is used to authenticate users to the AWS portal; once a user signs into the portal,
they will not be prompted again to login when they access any of the AWS services to
which they have access. The Amazon IAM service takes care of granting required privileges
on resources to a role or a user [14,16,17]. Researchers [18] have explained the two phases
of an AutoPilot job as candidate generation and candidate exploration. The candidate
generation phase is responsible for splitting the dataset into train, test, and validation,
exploring the data distribution, and performing necessary pre-processing. The candidate
exploration phase is responsible for tuning different hyperparameters and finding the right
values based on model performance metrics.

Figure 2. AWS native services offering holistic ML platform experience for the users (adapted
from [14–16]).
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In Figure 3, we have depicted the ML platform architecture based on the GCP ecosys-
tem. Like Azure and AWS, GCP supports all types of data. The prerequisite for generating
an ML model is that we upload the data to Google Cloud Storage and create a dataset.
Google has developed vertex AI for the unified ML platform experience. We can perform
all the data transformation tasks from vertex AI by creating data pipelines with the help
of native data-engineering task templates. For generating ML models automatically, we
can make use of the Google AutoML service. The AutoML service trains, evaluates, and
chooses the best model automatically without writing a single line of code. When the model
is ready, we can register it with the Google container registry. Then, the container image
can be deployed to an endpoint using the orchestration service called Google Kubernetes.
The Google monitoring service monitors all Google resources and triggers auto-healing
when required. For identity and access management, we can use the cloud IAM service.
For storing the secrets, we can use Hashicorp Vault integrated with GCP [14,16,17,19]. With
AutoML in GCP, when it comes to image data, it could belong to any of the following
categories: single-label classification, multi-label classification, object detection, and seg-
mentation. With tabular data, we can choose between either regression, classification, or
prediction. For natural language processing (NLP) business cases and text data, we can
choose between the following categories: single-label classification, multi-label classifi-
cation, entity extraction, and sentiment analysis. For video-related data, we can choose
between the following categories: action recognition, classification, and object tracking.

Figure 3. GCP native services offering holistic ML platform experience for the users (adapted
from [19]).

All the cloud-based ML platforms provide respective cloud-native security, monitoring,
and deployment solutions. In principle, they all support identity and access management
for granting role-based access and have vault services for storing the secrets, access keys,
and certificates.

In Table 3, we present a summary to compare the three platforms (AWS, GCP, and
MS Azure).

Table 3. AI and ML Services offered by Azure, AWS, and GCP (adapted from [15]).

AI & ML Use-Case AWS GCP Azure

ML Platform Sagemaker Vertex AI Synapse

Computer Vision Amazon Rekognition and
Lookout for Vision Vision AI Azure Cognitive Service

Computer Vision

AutoML Sagemaker AutoPilot Vertex AI AutoML Azure Machine Learning
Service—Automated ML
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Table 3. Cont.

AI & ML Use-Case AWS GCP Azure

ML Frameworks Supported TensorFlow, PyTorch, Apache
MXNet

TensorFlow, PyTorch,
Scikit-Learn TensorFlow, PyTorch, ML.Net

NLP Service Amazon Comprehend Natural Language AI Azure Cognitive Service Text
Analytics

Speech to Text Amazon Transcribe Speech-to-Text Azure Cognitive Service
Speech to Text

Text to Speech Amazon Polly Text-to-Speech Azure Cognitive Service Text
to Speech

Language Translation Amazon Translate Cloud Translation Azure Cognitive Service
Translator

Conversational Service Amazon Lex Dialogflow Azure Bot Service

Text Extraction Amazon Textract Document AI Azure Form Recognizer

Recommendation &
Personalization Service Amazon Personalize Recommendations AI Azure Cognitive Service

Personalizer

6. Cloud-Agnostic ML Platform

Databricks is a cloud-agnostic data-engineering and ML platform. It follows the data
lakehouse architecture. Traditionally, we have had enterprise data warehouses and data
marts to store structured data, through which we can support business intelligence and
reporting use cases. Later, with the help of different data lakes across all the major cloud
ecosystems, we can ingest semi-structured and unstructured data as well. By doing so, we
can support ML and data-science-related use cases. It is also common that both enterprise
data warehouses and data lakes support various organizational use cases, forming a
hybrid data architecture. The problem with hybrid architecture is its high complexity for
administration and maintenance. Additionally, for different use cases, we must log on
to different systems. To solve these problems, Databricks has introduced data lakehouse
architecture, where we can still have data lakes from any cloud ecosystem of interest, and
on top of the data lakes, we have delta lakes. The delta lake acts as a query engine, and it
supports ACID transactions. We can use native SQL or Spark commands to query against
the dataset available in the data lake more consistently and efficiently [20]. See Figure 4 for
an explanation.

Figure 4. Cloud-agnostic Databricks Lakehouse Architecture (adapted from [20]).
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Databricks can ingest data from any of the popular cloud ecosystems or streaming
services. Data can be persistently stored in the cloud storage of choice. When the data
are uploaded to cloud storage, we can create a dataset and consume them for building
automatic ML models. Data processing and transformation are performed by the optimized
Databricks Apache Spark runtime, which is specially designed for this purpose. To build an
AutoML model, we must create Databricks clusters with ML-supported Databricks units
(DBU) for computing. When the data and cluster services are available, we can execute
the AutoML task to generate the ML model. We can monitor the model performance
from experiments; similarly, clusters and other data engine assets/tasks can be monitored
through Databricks command-line interface (CLI) or graphical user interface (GUI). We can
register a git repository with Databricks repos to take in source code from the repository
and deploy it in Databricks. When we create a cluster, we have the possibility of configuring
the automatic scaling option, how many minimum worker nodes should be assigned to the
task, and the maximum number of worker nodes. Similarly, we can set a timeout period,
and the cluster will automatically shut down when it reaches the maximum timeout period
set by us. When we create a Databricks instance, we must choose the pricing tier. If we
choose a standard tier, then our Databricks environment would be secured by Apache
Spark along with a cloud-specific active directory. If we choose the premium tier, then
we obtain role-based access controls to provide fine-grained access. Data in the persistent
storage layer are secured and protected through security services offered by the respective
cloud vendors [8,21]. Researchers [22] pointed out that Apache Spark is the best-in-class
in-memory data distributed framework. Databricks has optimized a version of Apache
Spark that helps it process large datasets. In the Figure 5, we can see the different native
databricks services available for building and monitoring the ML model.

Figure 5. Databricks native services offering holistic ML platform experience for the users (adapted
from [8]).

Previous research [23] reviewed building an advanced ML model manually and using
AutoML vision to detect breast cancer with ultrasound scan results. They found that the
AutoML vision service from GCP selected relevant ML models, such as random forest
and convolutional neural networks, for this classification problem. They highlighted the
ease of use while leveraging the AutoML service as a vital advantage. Other research [4]
has underpinned the importance of AutoML for solving time-series-related forecasting.
Time-series forecasting requires in-depth competence over simple linear to complex neural
network models, especially tuning hyperparameters, which involves state-of-the-art skills.
They [4] highlighted that this is where AutoML comes into play and can make a notable
positive impact in auto-selecting the best ML models and auto-tuning the hyper-parameters.
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Other use cases have started taking advantage of the AutoML feature, to name just a few,
e.g., fraud detection, sales management, and customer experience [24].

7. Experimental Results

We studied three cloud ML platforms in this research, and all our further findings are
connected to these cloud platforms. In the following section, we present our findings from
each cloud platform and will descriptively compare the results. One thing to keep in mind
here is that our research is focused mainly on generating automatic ML (AutoML) models
without writing a single line of code or with low-level code. Even though it is possible
to use other data formats, we chose tabular data for further analysis for simplicity and
practical reasons.

7.1. Dataset Description

We have downloaded the Melbourne housing dataset from Kaggle (Link: https://
www.kaggle.com/datasets/dansbecker/melbourne-housing-snapshot?select=melb_data.
csv, (accessed on 22 April 2022)). The dataset consists of 21 features, of which 20 are de-
scriptive and 1 is a target feature. The target feature is the property price. This dataset is not
balanced and consists of missing values. We have not treated this dataset by performing
manual pre-processing tasks or balancing the data distribution. We have ingested the raw
dataset as-is into all three ML platforms and derived results. All the pre-processing tasks
are automatically handled by the respective ML platforms.

7.2. Low-Code ML Platform Based on AWS

Amazon has published an open-source AutoML library called AutoGluon. Through
which developers can create ML models for tabular, text, and image data with just a few
lines of code. In addition, Amazon has developed an in-house fully managed ML service
called Amazon Sagemaker.

In our case, we used the Sagemaker autopilot service to create the automatic ML
model. The prerequisite for using the autopilot service is to upload the data to an Amazon
S3 bucket so the Sagemaker autopilot service can consume the data for further analysis.
Creating a new ML project is called an experiment in Sagemaker’s terminology. We first
uploaded our dataset to the Amazon S3 bucket. Then, we created a new experiment, where
we provided the experiment name, chose the S3 bucket name, and picked our dataset
from the list. Then, we provided the target feature name; in our case, we chose the feature
price. Then, it is possible to deploy the best model automatically to the desired endpoint
by enabling the auto-deployment feature and specifying the endpoint name or leaving
the default name. It is also possible to provide the output directory name, which must
be present in the S3 bucket where all the autopilot output logs will be stored. The above-
mentioned options are the basic setting options; they are enough to create an auto-ML
model. However, we have the possibility of restraining the ML generation behavior by
tuning/tweaking the advanced setting option. We can define the following vital options as
part of advanced settings:

• ML problem type: we can choose the following options: auto, binary classification,
multi-class classification, and regression.

• Experiment run type: we can choose between executing the whole experiment or
copying the generated code into a notebook and executing the commands cell-wise.

• Runtime: we can define how long the experiment can execute, how many maximum
models it can generate, and the maximum time it can spend generating each model.

• Access: we can restrict access to any IAM role.
• Encryption: we can enable encryption for data present at the S3 bucket level.
• Security: we can use a virtual private cloud connection if we desire to have a highly

secure private connection.

https://www.kaggle.com/datasets/dansbecker/melbourne-housing-snapshot?select=melb_data.csv
https://www.kaggle.com/datasets/dansbecker/melbourne-housing-snapshot?select=melb_data.csv
https://www.kaggle.com/datasets/dansbecker/melbourne-housing-snapshot?select=melb_data.csv
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When we initiate a new experiment through autopilot, it automatically takes care of
the following tasks: pre-processing, candidate definition generation, feature engineering,
model training, explainability report generation, insights report generation, and the option
to deploy the model to the desired endpoint.

The AutoPilot job generated different ML models and chose the best model with the
least mean squared error (MSE). This model is built on the XGBoost algorithm. It took
about two hours to generate all the models and choose the best model from the pool. The
best model was automatically deployed to the endpoint specified. When we navigated
to our model, it gave us richer information to understand the output results. It provided
details on the explainability of the model, performance metrics, artifacts, and endpoints.
The AutoPilot job also generates the feature importance based on the best model.

We noticed that distance, type of property, and number of rooms are considered the
most important features of this model. As part of the automatic model build, AutoPilot
automatically tested and tweaked hyperparameters to generate the best model.

There exists a list of artifacts generated from the AutoPilot job, which includes the
input dataset, split of the training and validation sets, preprocessed training and validation
sets, Python code for the feature engineering task, zipped folders consisting of all the
feature engineering models, ML algorithm models, and other explainability artifacts. All
the output data are stored inside the directory name that we specified earlier during
experiment creation.

7.3. Low-Code ML Platform Based on GCP

We used GCP’s Vertex AI for generating the AutoML model. It is a prerequisite that
we have our dataset within Google Cloud for models to consume. Hence, the first step is to
upload the dataset from the local machine to the Google Cloud. It is a mandate to create a
dataset in vertex AI if we want to create a new model for the dataset. While creating the
dataset, vertex AI can fetch the data from the local machine, Google Cloud, or a big query.
However, it will create a dedicated directory within Google Cloud to store the dataset.

After creating the dataset, we can start training the model. While creating a training
model, we must first choose the dataset that has been uploaded to GCP Storage. Based
on the type of dataset, we will be given the option to choose the objective of the business
problem. In our case, as we have tabular data, we are presented with regression or
classification options, and we chose regression. Then, we also have the option to choose
whether the model should be created automatically without any interference from humans
or whether a pre-built model based on TensorFlow, Scikit-Learn, or XGBoost frameworks
should be used.

In the next step, we must provide a name for the new model, and we also have the
option to either create a new model or retrain an existing model. Then, we should choose
the target field; in our case, we chose the price feature. When it comes to splitting the
data, Vertex AI provides us with three different ways to split the data. The first option is
to choose the data for training, testing, and validation at random; the second option is to
choose them manually; and the third option is to choose the data in chronological order:
the first 80% would be assigned to training; the next 10% would be assigned to validation;
and the last 10% would be assigned to the test set.

In the next step, we can define different training options, such as changing the data
type of a feature that is auto-detected or excluding a feature from further analysis.

We also have the option of adjusting the weight of the dataset for all the features based
on the weight of a particular feature in the dataset; if not, by default, equal weight will
be assigned by AutoML to balance the dataset. Then, we can optimize the training model
based on RMSE, MSE, or RMSLE. RMSE can be chosen if we intend to give high importance
to extreme values; MSE can be chosen if we intend to exclude extreme values as outliers; or
RMSLE can be chosen if we intend to penalize error based on the relative weight.

As the last step, we have the option to choose the maximum node hours for training
the model. The minimum number of hours that can be chosen is one, and we can choose a
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higher value based on our requirements. Based on the value, the model will be allowed
to train by autoscaling the required computing resources. With this, we can train a new
model or retrain an existing one. With the four steps mentioned above, we can create a new
model and train it without writing a single line of code. Model training will be allowed to
execute until the budget node time is specified, and then it will automatically be stopped;
no intervention is required.

When the AutoML job has generated new ML models, we can see additional details
such as when the model training has started and until when it is allowed to execute; on
which region compute resources were allocated for training the model, type of encryption
key, dataset details, and data split details; whether we have trained the model with custom-
built or AutoML; and, finally, what type of problem we are trying to address; in our case, a
regression problem.

The trained model also generated the feature importance matrix. As per feature
importance, we noticed that region name, land size, distance, and type of property are
considered the most important features in deciding the price of the property.

We have the option of exporting our model as a TensorFlow-saved model docker
container. By creating the model as a container, we can deploy it elsewhere promptly. We
can also directly deploy our model at any desired endpoint as we wish. When the model
is deployed to an endpoint, we are given the option to test our model from the respective
endpoint without any need for manual testing, creating test strategies, or creating test cases.
We also have the option of performing predictions in batches and storing the results in the
specified cloud storage directory.

7.4. Low-Code ML Platform Based on Microsoft Azure

Microsoft Azure offers a unified ML platform experience through two of their major
services: Azure Synapse and Azure Databricks. Azure has incorporated an optimized
version of the Databricks Spark engine and called it Azure Databricks. Azure Synapse is an
end-to-end ML platform, through which we can perform entire ML life-cycle tasks. Azure
Synapse depends on the Azure ML service when it comes to creating ML models, training
them, and evaluating their performance. The Azure ML service offers AutoML features,
through which we can create a new model or retrain an existing one without writing a
single line of code. Azure Synapse requires the Azure data lake to store the data; it does
not just serve as a data warehouse but also offers to query against the underlying data.
However, the Azure ML service requires either a compute cluster or a compute instance to
process the data and train the model. Later, it also requires a compute cluster or compute
instance for explaining the model, as this task also requires computing power. If we have
a heavy-lifting task or a large dataset to analyze, then we can consider a compute cluster,
which is a collection of interconnected nodes or instances. If we have a smaller dataset or a
less resource-intensive task, we can consider a compute instance, a single node instance.

Before creating the automated ML model, we must create a persistent dataset in the
Azure workspace blob storage by uploading the dataset from the local machine. Once the
dataset is available in Azure blob storage, we can create an AutoML job. The first step is to
choose the source dataset. Then, provide a name for the experiment and choose the target
feature name; in our case, we chose the feature price. We must also choose the compute
type for creating and training the new model. We can choose between a compute cluster
or compute instance as per the business requirement; if none exists, then we must create
one by choosing different available sizes of pre-built compute instances and clusters. The
next step is to choose the type of task, whether regression, classification, or time-series
forecasting. In our experimental case, it is a regression model. The last step is to select the
validation type, where we can choose between auto or manual options. Then, we have the
option to choose how to split the data for the test set. We have three options to choose from:
either we can provide our own test dataset, skip the test dataset, or provide the percentage
of data that should be allocated to the test dataset. In our case, we chose 20% of the data to
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be allocated to the test dataset. The AutoML job generated multiple models and chose the
best model based on the RMSE score.

The AutoML job also generated the feature importance chart for each model created.
We noticed that the region name, distance to the property, type of property, and number of
bedrooms were chosen as the top four important features. Unlike GCP and AWS, Azure
has consolidated the ML-related features into Azure ML Services and the data-engineering-
related features into Synapse. For basic data integration and transformation requirements,
we can also use Azure Data Factory, which helps copy the data from source to target. Azure
supports more than 80 source and target connectors.

7.5. Low-Code ML Platform Based on Databricks

It is cloud-agnostic, as we have the freedom to choose the data residency of our choice.
Data can be stored and hosted on any of the cloud-service-provider ecosystems (AWS,
GCP, or Azure). It is a prerequisite to mount the storage on any of the cloud platforms
and create a Databricks cluster for computing before trying to ingest the data. When the
prerequisites are met, we can easily ingest the data by either providing the dataset’s path
from the filestore or dragging and dropping the file from the local system. Once the dataset
is uploaded to Databricks, we can perform different actions with it. For example, we can
create an AutoML job with the given dataset to create an ML model, or we can create a
table from the dataset and explore the data by executing a Spark or SQL query against the
respective table. In our case, we chose an AWS S3 bucket as a data storage area for our
Databricks AutoML experiments.

Configuring the AutoML experiment is smooth with Databricks; we must provision
a Databricks cluster for computing, choose the type of problem, choose the dataset, pro-
vide the target class (in our case, its price), and name the experiment to keep track of it.
Databricks takes care of imputing the missing data if we leave the default Auto option.
Apart from the basic details, we can choose the evaluation metric, whether it should be MSE,
RMSE, MAE, or R-Squared. In our case, we chose R-Squared as an evaluation metric. Then,
we can choose between three different training frameworks recommended by Databricks:
LightGBM, Scikit-learn, and XGBoost. We chose all three frameworks for better comparison.
We can set the timeout period for how long the experiment should run. Then, it is a good
idea to provide a time feature value from the dataset, which should be of the date/time
data type; in our case, we chose the date feature. Databricks uses the time feature to split
the data into training, testing, and validation sets. We can also provide the data storage
location for storing the experiment results in the persistent storage area.

When the AutoML job ends, we have the option of viewing the Python code generated
by the Databricks AutoML job for each model in depth by either opening the notebook for
the respective model or viewing the data exploration notebook to understand the different
data exploratory actions performed by the AutoML job. Models are sorted based on the
test_r2 score in descending order, starting from the best model to the model that performed
less well.

If we want to obtain more details about a particular auto-generated ML model, then we
can simply click on the hyperlink; it will take us to a separate page consisting of end-to-end
details about the model description, parameters provided, evaluation metrics considered,
and all the artifacts generated during the model creation. It is also possible to register the
model from this page, so it can be exposed to the outside world as a Rest API endpoint. We
have noticed there are 124 hyperparameters set by the AutoML job; these parameters are
constantly tuned by testing different values by generating different models and validating
the results against evaluation metrics. In our case, the AutoML job generated more than
100 models within 60 min. Moreover, for each model evaluation metric, artifacts required
for deployment and inference were accessible both from the Databricks user interface and
in the AWS S3 bucket.

We noticed that all the Databricks-related artifacts are available in the persistent
Amazon S3 bucket storage. To deploy the model to an endpoint or containerize it, we can
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use the artifacts generated as an AutoML job. We can use the model file in conjunction with
the dependent pickle file to deploy the model to any endpoint, the conda file to install the
necessary libraries, and the Python environment requirement files to install the necessary
Python libraries. Detailed model inference is found by opening the model notebook. This
notebook briefly describes importing the required libraries, ingesting data, pre-processing,
splitting the data into training/test and validation sets, training the model, generating
feature importance, and evaluating the model against different performance metrics.

7.6. Comparing Models Based on Performance Metrics

All the auto-generated ML models across GCP, AWS, Azure, and Databricks have been
evaluated automatically using different evaluation metrics such as MAE, RMSE, and R2.
However, for this comparison, we have only considered the R2 metric, as it indicates how
the variance in the independent variable explains the difference in the dependent variable.
It is also commonly referred to as the coefficient of determination, which simply determines
the variance between the predicted value and the plotted regression line. As we intend to
predict the price of the property, we are interested in knowing how the variation in the
response variables affects the price of the property. Hence, we chose R2 as a performance
metric for comparison.

For the Melbourne housing dataset, the model performance score for the best ML
models generated from GCP, AWS, Azure, and the Databricks platform is depicted in
Table 4. As per the results, we can see that Azure has the highest R2 score. However, we
cannot conclude that one ML platform is better than others based on this metric alone since
several other metrics need to be considered, such as the visibility of AutoML jobs operation,
traceability of AutoML job logs, the complexity involved in providing inputs for AutoML
job, AutoML job elapsed time, customizability, support for co-authoring, how well AutoML
can be explained, and how easy it is to deploy a generated ML model. These criteria are
briefly explained in the following section.

Table 4. Automatic ML Model Performance Score Comparison.

Model Performance Score GCP AWS Azure Databricks

R2 0.831 0.836 0.898 0.822

7.7. Comparison between ML Platforms

We created and trained automatic ML models on all three cloud platforms using
the respective AutoML services. We noticed similarities and differences in how AutoML
services work on each cloud; see Table 5 below.

Table 5. Similarities between Cloud ML Platforms.

Aspect Similarities

Prerequisites Dataset must be created, and data must be uploaded to
Cloud Storage for model consumption

Feature Importance Results All three clouds have found similar feature importance
results with the best model generated

Evaluation Metrics All three clouds have quite similar evaluation metrics as
follows: MAE, MSE, RMSE, and R Squared

In Table 4, we highlighted the similarities between generating an AutoML model and
the three cloud ML platforms. It is a prerequisite for all three ML platforms to upload the
data to cloud storage and create a dataset. The best model generated through AutoML
jobs from different cloud ML platforms resulted in very similar feature-importance results.
Added to that, model evaluation metrics are similar between the three ML platforms. There
could also be some additional metrics, but the three cloud ML platforms have considered



Informatics 2023, 10, 50 16 of 19

commonly used evaluation metrics such as MAE, MSE, RMSE, and R2. On the other hand,
the differences are reported in the table below.

In Table 6, we have highlighted some of the differences that we found while generating
the AutoML model from the three cloud-based ML platforms. Regarding the traceability
aspect, AWS has created all the output logs quite neatly under a directory name, as we
provided inside the Amazon S3 bucket. It was quite easy for us to consume the performance
logs, Python code for different models, and hyper-parameters tuned from the directory.
However, from our experience with GCP and Azure, we found output logs were available in
their respective portals; we must manually download them to our local machine if required.
Due to the complexity of creating the AutoML model, we found that both AWS and Azure
have very few touchpoints for creating the AutoML model and are less time-consuming.
However, with GCP, we must provide additional inputs, and it is time-consuming.

Table 6. Differences between Cloud ML Platforms.

AI and ML Features AWS AutoPilot GCP AutoML Azure AutoML

Traceability

All the AutoML operation
logs are stored under a
given directory in
S3 Bucket.

Model-related logs are available
only in the UI; however, it is
possible to download them.

Model-related logs are available
only in the UI; however, it is
possible to download them.

Complexity
AutoML models can be
created at ease with very
less touchpoints.

We are expected to provide a few
additional inputs for generating
AutoML models compared to AWS.

AutoML models can be created at
ease with very less touchpoints.

Adaptability Highly adaptable Not so adaptable. Somewhat adaptable.

Co-Authoring
Yes, with shared compute
for all the
developers involved.

Yes, with shared compute for all the
developers involved.

Yes, but dedicated compute is
required for each developer.

Explainability Models created are
automatically explained.

Detailed Model summary and
explanation are available as a part
of UI.

Must provide compute instance or
compute cluster manually for
explaining each model.

Deployment It can be deployed to
internal endpoints.

Possible to containerize the model
and deploy it to any endpoint.

Possible to deploy the model to
any endpoint.

Regarding customizing the AutoML job, we found that AWS offered the highest level
of customization in comparison to both GCP and Azure. When it comes to the co-authoring
feature, where more than one developer can be involved in the ML model development, all
three cloud vendors offer this feature. However, only AWS and GCP offer co-authoring
with shared compute resources; with Azure, each developer requires dedicated compute
resources. When it comes to the explainability of the model, AWS has automatically
explained the model without any intervention from our end. With GCP, we can explain the
model with a button click. However, with Azure, it is more than a button click, as we have
allocated a separate compute instance or cluster for explaining the model. When it comes
to deployment, models can be deployed to both internal and external endpoints with GCP
and Azure, yet models can only be deployed to the internal endpoint with Amazon.

8. Discussion

This research has helped to understand the different data and ML services available
across three cloud ecosystems. We demonstrated how to create an ML model automatically
without writing a single line of code using Amazon Sagemaker integrated with autopilot,
Google Vertex AI integrated with AutoML, and Azure Synapse integrated with ML. Dur-
ing the data-gathering phase, we learned about the different cloud services involved in
ingesting the data, transforming the data, training the model, deploying the model, and
monitoring the platform. We highlighted the similarities and differences in using AutoML
features between the three cloud ML platforms. It was found that AWS Sagemaker offers
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better visibility and ease of use when it comes to generating automatic ML-model-related
tasks compared to the other two cloud ecosystems. We also found that Databricks offers
a simplistic approach for generating automatic ML models and keeping all the heavy
lifting under the hood. Google Vertex AI offers AutoML features for a wide number of use
cases; this could be an option if we are trying to address a particular problem. The whole
practical and theoretical exercise that we conducted as part of this research has exposed
us to different data services across major cloud data platforms and on cloud-agnostic data
platforms such as Databricks. We recommend that organizations seeking the digitalization
of their businesses take advantage of these no-code/low-code ML platforms to speed up
analytics implementation and combat the scarcity of human resource challenges. Each
cloud platform introduces new data services and features periodically. Hence, it becomes
challenging to get a hold of all the new features introduced by the cloud platform im-
mediately. In this case, no-code/low-code ML services come in handy when exploring
the possibilities. Another major advantage we noticed is hyperparameter tuning. ML
developers or data scientists must have many years of hands-on experience to know the
rationale behind every single hyperparameter and how to tune them accordingly. Howbeit,
when it comes to automatic ML services, this is taken care of automatically. When it comes
to any data science project, a significant amount of time is allocated to ingesting the data
and performing data pre-processing tasks. This time is tremendously saved with the help
of automatic ML services.

We also think that our lab experiment results were in line with what we obtained from
industry experts during the qualitative interviews. We demonstrated how ML platforms
are used for data ingestion, ML model building, and evaluation. We also showed how
the attained model is self-tuned when it comes to the hyperparameters’ configuration.
Additionally, we discussed how the obtained models have explainability features. We
also discussed the different analytics models available via the platforms and explained
their flexibility in selecting and designating features and their roles in the analytics project.
We added, discussed, and explained the use of metrics to evaluate models. The use of
complicated dataset scenarios and deep learning models are pointers that the interviewees
we interviewed have highlighted; however, we have not demonstrated them in this research,
which we identify as future research.

8.1. Theoretical Implications

Increasingly, data analytics capabilities are seen as crucial to an organization’s long-
term competitiveness, innovation, and survival [1]. This research study has opened doors
for organizations to investigate how the automation of ML analytics projects via low-code
platforms could help advance their digitalization strategies as well as their corresponding
resource planning. Our study contributes by helping to reduce the barriers between organi-
zations and a quick ML project. The body of literature lacks similar studies articulating and
demonstrating how low-code platforms could be used, and, therefore, we see our research
as a seed towards further research to investigate the use of low-code platforms further from
an integrated perspective, taking into account technical, societal, and financial aspects in a
longitudinal fashion.

8.2. Practical Implications

This research demonstrated how to conduct analytics projects with the help of low-
code ML platforms, which will address human resource scarcity problems and have practi-
cal implications in terms of more projects realizing their goals, even in the absence of data
scientists within premises. We demonstrated a project that could easily be replicated and
help practitioners with insufficient data science skills learn how to conduct the analytics
lifecycle with the aid of low-code ML platforms. We demonstrated the foundation of
data-driven projects, emphasizing the importance of data and overcoming the resource
scarcity problem in a time-efficient manner. We think practitioners need such studies, and
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there is a lack of similar ones. Further efforts are still required from the vendor side to
provide explainability and reduce operating costs.

9. Conclusions

As several businesses have already turned digital and the rest have already started
the digital transformation, there is a strong need for some of the digitalization tasks to be
automated. In this research, we investigated one of the aspects of digitalization, which is
building ML models through ML platform service offerings from three major cloud players:
Google, Microsoft, and Amazon. We found that all the cloud vendors have developed
advanced ML services through which ML models can be built with ease, without writing
a single line of code. At the same time, there is still room for improvement, and we are
sure that the cloud vendors will address the most critical aspects of ML platforms, extend
ML platform usage to other domain experts apart from ML developers, help organizations
make smarter decisions, and help to fast-track digitalization. We do not think automatic ML
services will replace data scientists or ML developers. They will, however, complement their
ability to perform their tasks effectively and validate their ML model results. Automatic ML
services can become our allies if we know when to use them and for what purpose. From
this research, we found that automatic ML services, as part of a low-code ML platform, can
help to fast-track digitalization, thereby allowing organizations to realize their digitalization
goals faster and stay competitive. In this research, we built an automated ML model using
a simple tabular dataset for our experiment, but there are also options available to use
unstructured and semi-structured data. Due to time limitations and our focus in this
research on comparing how an AutoML service is approached by cloud-based and cloud-
agnostic ML platforms, validating the other capabilities of the respective ML platforms was
not investigated. On the other hand, further research is required pertaining to data security
and privacy. There is an opportunity to conduct research by building custom models
from the notebook using supported programming frameworks for each ML platform.
Furthermore, future research is required regarding more complex scenarios and more
versatile datasets. Because most of the beneficiary companies that have implemented an
ML platform in either of the cloud ecosystems are not fully utilizing all the capabilities for
which they are paying, awareness about the different features of the ML platform needs to
be investigated further.
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