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Abstract: Alzheimer’s disease (AD) and AD-related dementias (AD/ADRD) are a group of progres-
sive neurodegenerative diseases. The progression of AD can be conceptualized as a continuum in
which patients progress from normal cognition to preclinical AD (i.e., no symptoms but biological
changes in the brain) to mild cognitive impairment (MCI) due to AD (i.e., mild symptoms but not
interfere with daily activities), followed by increasing severity of dementia due to AD. Early detection
and prediction models for the transition of MCI to AD/ADRD are needed, and efforts have been made
to build predictions of MCI conversion to AD/ADRD. However, most existing studies developing
such prediction models did not consider the competing risks of death, which may result in biased
risk estimates. In this study, we aim to develop a prediction model for AD/ADRD among patients
with MCI considering the competing risks of death using a semi-competing risk approach.

Keywords: Alzheimer’s disease; electronic health record; competing risks

1. Introduction

Alzheimer’s disease (AD) and AD-related dementias (AD/ADRD) are a group of
progressive neurological diseases. As the most common cause of dementia, AD accounts
for 60% to 80% of dementia cases [1]. AD/ADRD poses significant public health burdens
in the United States (US). It is estimated that there are 6.5 million adults over 65 years
living with AD, with the number expected to reach 12.7 million by the year 2050 [1]. The
estimated total healthcare cost for AD treatment in 2020 is estimated at USD 305 billion,
with the cost expected to increase to more than USD 1 trillion as the population ages [2].

The progression of AD/ADRD can be conceptualized as a continuum in which pa-
tients progress from normal cognition to preclinical AD/ADRD (i.e., no symptoms but
biological changes in the brain) to mild cognitive impairment (MCI) due to AD/ADRD
(i.e., mild symptoms but not interfere with daily activities), followed by increasing severity
of dementia due to AD/ADRD [1]. As an early stage of memory or other cognitive ability
loss, MCI has usually been considered a pre-dementia phase of AD/ADRD. However, not
all patients with MCI will transition to AD/ADRD dementia. Prior evidence suggests the
existence of heterogeneity in AD progression pathways (e.g., faster progression or with
different clinical syndromes) [3,4]. Characterizing and predicting different AD/ADRD
progression pathways and the associated risk factors is a crucial step in understanding the
mechanism of AD/ADRD.
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It is estimated that about 10–15% of patients with MCI will transition to AD/ADRD
each year, and after six years of follow-up, approximately 80% of MCI patients will be
converted to AD/ADRD [5–10]. Therefore, early detection—thus, prediction models—of
the transition of MCI to AD/ADRD are needed. There has been a considerable increase in
efforts over the past few years to build machine-learning-based models for AD/ADRD pre-
diction with clinical data such as neurobehavioral status exam scores, patient demographics,
neuroimaging data, and laboratory test values [11–13]. Meanwhile, the proliferation of clin-
ical research networks with large collections of real-world data (RWD), including electronic
health records (EHRs), claims, and billing data among others, offers unique opportunities
to generate real-world evidence (RWE) [14] that will have direct translational impacts on
AD/ADRD research. Recent advancements in machine learning (ML) have led to success
in various RWD analysis tasks, such as clinical risk prediction [15,16], disease subphenotyp-
ing [17,18], and personalized treatment [19]. Analyses of EHRs are complicated due to large
sample sizes, high dimensionality, sparsity, and heterogeneity [20], but more importantly,
an appropriate study design that accounts for the various potential biases inherently exists
in observational EHR data.

A recent systematic review examined studies that used machine learning methods and
clinical data to model risk for the progression of AD/ADRD [11]. Of the 64 papers included
in the systematic review, about half of them modeled the development of AD/ADRD in
individuals who were initially cognitively normal or had only MCI. However, most existing
studies developing such prediction models do not consider the competing risks of other
factors, such as death. Competing risks refer to the situation where the study population is
at risk for more than one type of possibly correlated failure events [21], and it could lead to
biased results and misleading interpretation of the hazard ratio if we simply treat death
as random censoring and fit a standard Cox proportional regression model in the sense
that it does not account for the scenario that a patient who experienced the AD/ADRD
subsequently had death. In the case of AD/ADRD prediction, the study population is
subject to both the risk of AD/ADRD and the risk of death. On one hand, individuals
with MCI are at an increased risk of developing AD/ADRD; on the other hand, these
individuals are also at an increased risk of death compared to those without MCI because
of age and aging-related health conditions such as cardiovascular disease, diabetes, and
cancer are more common in older adults. These conditions can cause long-term damage to
the body’s systems, making individuals more vulnerable to complications and infections.
Additionally, age-related changes in the immune system can weaken the body’s defenses
against infections and increase the risk of mortality from infectious diseases. Thus, older
adults are at an increased risk of death due to the accumulation of aging-related health
conditions and their impact on overall health and immune function [22–25].

The risk of death is a competing risk for the development of AD/ADRD, as individuals
who die before developing AD/ADRD will not contribute to the incidence of AD/ADRD,
meaning that the competing risk of death would censor the AD/ADRD outcomes; thus,
the risk of death serves as an informative censoring for AD/ADRD failure events. Failure
to account for death as a competing risk may lead to biased estimates of the incidence of
AD/ADRD and inaccurate predictions of the risk of developing AD/ADRD. The data used
in such prediction task can be viewed as semi-competing risks data with a non-terminal
event (i.e., AD/ADRD) and a terminal event (i.e., death) [26], and the disease process can
then be described as an illness–death process with three states: MCI, AD/ADRD, and
death. The illness–death process is characterized by three hazard functions to quantify
the transition rates between states, i.e., the hazard from MCI to AD/ADRD, the hazard
from MCI to death, and the hazard from AD/ADRD to death, as shown in Figure 1. For
simplicity, in this paper, we only consider the progression from MCI to AD/ADRD or
death and aim to develop a prediction model for AD/ADRD among patients with MCI
considering the competing risks of death using a semi-competing risk approach, while
other semi-competing risks of AD/ADRD can be modeled similarly.
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Figure 1. The illness–death process for semi-competing risks data.

2. Materials and Methods

In this study, we used the structured electronic health records (EHR) data from the
OneFlorida+ Clinical Research Network [27], one of the eight clinical data research net-
works contributing to the national Patient-Centered Clinical Research Network (PCORnet)
funded by the Patient-Centered Outcomes Research Institute (PCORI). The OneFlorida+
network contains robust longitudinal and linked patient-level real-world clinical data
of ~16.8 million Floridians, including data from Medicaid and Medicare claims, tumor
registries, vital statistics, and EHRs from its clinical partners. The OneFlorida+ data is
a Health Insurance Portability and Accountability Act of 1996 (HIPAA) limited data set
(i.e., dates are not shifted) that contains detailed patient demographics and their clinical
characteristics, including encounters, diagnoses, procedures, vitals, medications, and labs,
following the PCORnet Common Data Model (CDM) [27,28]. The data contributed to
the OneFlorida+ network undergoes rigorous quality checks and a privacy-preserving
record linkage process is used to link and deduplicate patient records from multiple health
systems and data sources (i.e., through Datavant required by PCORnet).

From the OneFlorida+ data, patients who had MCI diagnosis recorded in at least one
inpatient or two outpatient encounters within a year were identified with ICD codes (ICD-9:
331.83, 294.9; ICD-10: G31.84, F09). For each MCI patient, their first MCI diagnosis was
considered as the baseline, and the patients were followed-up until their first AD/ADRD
diagnosis, death, or the last record available. Figure 2 displays the overall patient timeline
of a typical patient.
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observation window.

For outcome identification (AD/ADRD diagnosis), we considered five conditions:
Alzheimer’s disease (ICD-9: 331.0; ICD-10: G30, G30.0, G30.1, G30.8, G30.9), vascular de-
mentia (ICD-9: 290.4, 290.40, 290.41, 290.42, 290.43; ICD-10: F01, F01.5, F01.50, F01.51), Lewy
body dementia (ICD-9: 331.82; ICD-10: G31.83), frontotemporal dementia (ICD-9: 331.1,
331.11, 331.19; ICD-10: G31.0, G31.01, G31.09), and mixed dementias (i.e., multiple types of
AD/ADRD dementias). A set of predictors were identified from the literature and extracted
from each patient’s medical records prior to the baseline [8,29–33]. A total of 41 predictors
were included in the analysis, including clinical conditions, comorbid conditions based on
Charlson’s comorbidity index, demographic variables, and smoking status.

To investigate the impact of risk factors on the progression from MCI to AD/ADRD in
the presence of a competing risk of death, we utilized the illness–death model [19]. Our
analysis focused on the time to AD/ADRD (T1) and the time to death (T2), which may be
correlated. It is important to note that assuming independence between T1 and T2 and
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separately applying the Cox model to each time-to-event may introduce bias to the results
due to not fully accounting for correlation between T1 and T2. To address this, we applied
the illness–death model to jointly model T1 and T2, accounting for their correlation and the
possibility of T1 influencing the occurrence of T2.

The model assumes that T1 and T2 are semi-competing risks, where an individual can
experience one event (AD/ADRD) while remaining at risk for the other event (death). We
assumed that AD/ADRD is the non-terminal event and death is the terminal event. In
Figure 3, we illustrate the joint distribution of T1 and T2. Under Scenario I, only the death
event is observed, resulting in the marginal distribution of T2 when T1 approaches infinity.
Therefore, we assume that the hazard function for death is proportional over time and
the censoring process is non-informative. Under Scenario II, both AD/ADRD and death
events are observed, with the support of the joint distribution in the upper wedge of the
plot (T1 < T2) since the time to death always occurred after the time to AD/ADRD. In
this scenario, we assume that the risk of AD/ADRD and death are correlated, the hazard
functions for both events are proportional over time, and the censoring process is non-
informative. These assumptions are crucial for ensuring the validity of the model and
obtaining accurate estimates. By utilizing this model, we obtained a more comprehensive
understanding of the relationship between AD/ADRD and death and identified potential
risk factors for each event.
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The illness–death model uses the following equations:

h1(t1|αi, X1) = αih01(t1)exp
(

XT
i β1

)
t1 > 0 (1)

h2(t2|αi, X1) = αih02(t2)exp
(

XT
i β2

)
t2 > 0 (2)

h3(t2|t1, αi, X1) = αih03(t2|t1)exp
(

XT
i β3

)
0 < t1 < t2, (3)

where αi is a patient-specific frailty parameter, and Xi is covariate for ith patient [34–36].
The frailty parameter is a random effect that is used to account for unobserved heterogeneity
among patients that could affect their risk of experiencing events of interest. In Equation (1),
h1(t1) denotes the baseline hazard function of time from MCI to AD/ADRD. β1 denotes a
p-dimension coefficient for AD/ADRD from MCI. We interpret the jth component of β1 as
the log of the hazard ratio (HR for one unit increase in that component while adjusting for
other components of X and αi. Similarly, in Equation (2), we denote the baseline hazard
function for death from MCI by h2(t2) and interpret the jth component of exp(β2 ) as
the hazard ratio (HR) of death from MCI for one unit increase in that component while
holding other components of X and αi. The difference between the illness–death model and
other competing risks model, such as the Fine-Gray model [21], is that the illness–death
model measures the transition-specific hazard from AD/ADRD to death, as death is a
terminal event whereas AD/ADRD is a non-terminal event. Thus, the transition is from
the AD/ADRD event to the death event and is not irreversible. In Equation (3), we denote
the baseline hazard function for transitioning from AD/ADRD to death by h3(t2|t1). The
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jth component of exp(β3 ) can be interpreted as the HR of death from AD/ADRD to death
for one unit increase in that component while adjusting other components of X and αi.

In our study, we assumed that αi follows a gamma distribution, which is a widely used
distribution for modeling random effects in survival analysis. The gamma distribution
assumption is based on the characteristic that individual frailties are non-negative and have
a skewed distribution, which is a common characteristic of frailties in survival analysis.
The frailty parameter αi accounts for the correlation between the time to AD/ADRD and
the time to death and reflects the unobserved patient-specific factors that may influence
the risk of experiencing the events of interest. The interpretation of β1, β2, and β3 are
thus different from fitting a single Cox model for each transition since it incorporates the
patient-specific effect in the model. The Bayesian paradigm is computationally efficient
and provides a framework for predicting future outcomes. All data analyses in this paper
are conducted using R 4.0.3 package “SemiCompRisks” [37].

3. Results

A total of 35,774 patients with MCI were identified from the OneFlorida+ clinical
research network. Figure 4 shows a flow diagram of the study cohort. After excluding
patients who had no visits after their first MCI diagnosis, 33,661 patients were included in
the analysis. Among them, 27,771 did not develop any types of AD/ADRD, while 5890
developed AD/ADRD. Among patients with AD/ADRD, 3214 of them have developed AD,
1268 of them developed vascular dementia, 283 of them developed Lewy body dementia,
105 developed frontotemporal dementia, and 1020 of them have mixed dementia. In terms
of the number of death, for patients with no AD/ADRD, 3749 (13.5%) patients died, while
for patients with AD/ADRD, 5890 (23.5%) of them died.
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The distributions of all baseline characteristics from the predictor extraction win-
dow were shown in Table 1 for patients with any type of AD/ADRD vs. those with no
AD/ADRD. Compared with those who did not develop AD/ADRD, there were more
females (60.1% vs. 52.8%), more Hispanics (25.7% vs. 18.2%), and patients with AD/ADRD
also tended to be older (mean age: 74.4 vs. 59.4) and have higher mortality rates (23.5%
vs. 13.5%). Both groups have similar BMI, and there are fewer current smokers (9.7%
vs. 14.4%) among AD/ADRD patients but more patients with unknown smoking status
(61.2% vs. 56.0%). There are also different distributions between AD/ADRD patients and
non-AD/ADRD patients in the risk factors we included. In general, AD/ADRD patients
tend to have higher frequencies in most diseases except for anxiety, rheumatic disease, liver
diseases, hemiplegia or paraplegia, HIV/AIDS, sleep disorder, and visual impairment.
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Table 1. Baseline characteristics of the study population.

No AD/ADRD Developed AD/ADRD

(N = 27,771) (N = 5890)

Sex

Female 14,654 (52.8%) 3538 (60.1%)

Male 13,117 (47.2%) 2352 (39.9%)

Race/ethnicity

Hispanic 5065 (18.2%) 1515 (25.7%)

NHB 4328 (15.6%) 776 (13.2%)

NHW 12,008 (43.2%) 2577 (43.8%)

Other 1266 (4.6%) 200 (3.4%)

Unknown 5104 (18.4%) 822 (14.0%)

Age

Mean (SD) 59.4 (21.2) 74.4 (12.2)

Smoking

Current smoker 4007 (14.4%) 569 (9.7%)

Former smoker 4995 (18.0%) 1103 (18.7%)

Never smoker 3221 (11.6%) 615 (10.4%)

Unknown 15,548 (56.0%) 3603 (61.2%)

BMI

Mean (SD) 27.4 (6.72) 26.9 (5.46)

Death

Mean (SD) 3749 (13.5%) 1383 (23.5%)

Anxiety 9673 (34.8%) 1895 (32.2%)

Apathy 32 (0.1%) 6 (0.1%)

Depression 12,163 (43.8%) 2653 (45.0%)

Hypertension 17,907 (64.5%) 4588 (77.9%)

Diabetes 9115 (32.8%) 2386 (40.5%)

Cerebrovascular diseases 8088 (29.1%) 2313 (39.3%)

Cardiovascular diseases 22,025 (79.3%) 5103 (86.6%)

Atrial fibrillation 3266 (11.8%) 982 (16.7%)

Hypercholesterolemia 4214 (15.2%) 1081 (18.4%)

Myocardial infarction 2303 (8.3%) 601 (10.2%)

Congestive heart failure 4559 (16.4%) 1212 (20.6%)

Peripheral vascular disease 5280 (19.0%) 1446 (24.6%)

Cerebrovascular disease 6964 (25.1%) 2047 (34.8%)

Chronic pulmonary disease 8540 (30.8%) 1825 (31.0%)

Rheumatic disease 1263 (4.5%) 241 (4.1%)

Peptic ulcer disease 1060 (3.8%) 234 (4.0%)

Mild liver disease 3348 (12.1%) 503 (8.5%)

Diabetes without chronic complication 8170 (29.4%) 2131 (36.2%)

Diabetes with chronic complication 3608 (13.0%) 936 (15.9%)

Hemiplegia or paraplegia 2166 (7.8%) 351 (6.0%)
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Table 1. Cont.

No AD/ADRD Developed AD/ADRD

(N = 27,771) (N = 5890)

Renal disease 4363 (15.7%) 1189 (20.2%)

Any malignancy 3158 (11.4%) 553 (9.4%)

Moderate or severe liver disease 513 (1.8%) 64 (1.1%)

Metastatic solid tumor 750 (2.7%) 81 (1.4%)

AIDS/HIV 562 (2.0%) 33 (0.6%)

Obesity 7961 (28.7%) 1235 (21.0%)

hyperlipidemia 12,375 (44.6%) 3134 (53.2%)

Stroke 13,570 (48.9%) 3376 (57.3%)

Traumatic brain injury 6088 (21.9%) 1881 (31.9%)

Sleep disorder 3153 (11.4%) 583 (9.9%)

Periodontitis 6323 (22.8%) 1177 (20.0%)

Alcohol use disorder 225 (0.8%) 32 (0.5%)

Exercise 2554 (9.2%) 383 (6.5%)

Visual impairment 754 (2.7%) 89 (1.5%)

Hearing impairment 453 (1.6%) 112 (1.9%)
SD: standard deviation. AIDS/HIV: acquired immunodeficiency syndrome/human immunodeficiency virus.

Table 2 shows the hazard ratios for AD/ADRD treating the death as a random censor
vs. with consideration of death as a semi-competing risk. Several factors were identified by
both models as risk factors for having AD/ADRD, including older age, being Hispanic,
having depression, hypertension, diabetes, cerebrovascular diseases, dementia, and stroke.
In general, there was not much difference between the two models in terms of hazard
ratios (and their corresponding confidence interval) for most included predictors; however,
renal diseases, traumatic brain injury, and vision impairment have had larger confidence
intervals that are not statistically significant in the model that considered competing risk.

Table 2. Hazard ratios for the occurrence of Alzheimer’s disease and AD-related dementias
(AD/ADRD) with treating death as random censoring vs. with consideration of death as a semi-
competing risk.

Variable
Hazard Ratio (HR)

Treating Death as Random
Censoring

Considering Death as a
Semi-Competing Risk

Age 1.054 (1.052, 1.057) * 1.049 (1.047, 1.054) *

Sex (ref = Male) 0.958 (0.907, 1.012) 0.969 (0.908, 1.014)

Race/ethnicity
(ref = NHW)

Hispanic 1.257 (1.178, 1.341) * 1.233 (1.154, 1.317) *

NHB 1.040 (0.957, 1.113) 1.014 (0.934, 1.109)
Other 0.702 (0.606, 0.814) * 0.721 (0.625, 0.827) *

Unknown 0.826 (0.761, 0.896) * 0.838 (0.774, 0.916) *

Anxiety 1.027 (0.964, 1.093) 0.965 (0.903, 1.016)

Depression 1.205 (1.136, 1.278) * 1.096 (1.027, 1.165) *

Hypertension 1.071 (0.975, 1.177) 1.047 (0.941, 1.139)
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Table 2. Cont.

Variable
Hazard Ratio (HR)

Treating Death as Random
Censoring

Considering Death as a
Semi-Competing Risk

Diabetes 1.146 (1.006, 1.305) * 1.170 (1.034, 1.329) *

Cerebrovascular
diseases 1.187 (1.068, 1.322) * 1.287 (1.158, 1.450) *

Cardiovascular
diseases 0.928 (0.829, 1.040) 0.938 (0.850, 1.026)

Atrial fibrillation 0.972 (0.901, 1.048) 0.979 (0.906, 1.074)

Hypercholesterolemia 0.987 (0.918, 1.061) 1.000 (0.930, 1.087)

Myocardial infarction 1.008 (0.919, 1.106) 1.056 (0.966, 1.156)

Congestive heart
failure 0.995 (0.922, 1.074) 0.941 (0.869, 1.012)

Peripheral vascular disease 1.008 (0.941, 1.079) 0.984 (0.923, 1.066)

Cerebrovascular
disease 1.044 (0.923, 1.182) 0.909 (0.899, 1.020)

Chronic pulmonary disease 0.980 (0.921, 1.044) 0.950 (0.899, 1.020)

Rheumatic disease 0.809 (0.710, 0.923) * 0.817 (0.725, 0.938) *

Peptic ulcer disease 1.045 (0.912. 1.204) 1.045 (0.912. 1.204)

Mild liver disease 0.875 (0.792, 0.967) * 0.894 (0.804, 0.990) *

Diabetes without chronic
complication 0.974 (0.852, 1.113) 0.935 (0.824, 1.060)

Diabetes with chronic
complication 1.012 (0.927, 1.104) 0.995 (0.908, 1.084)

Hemiplegia or
paraplegia 1.041 (0.929, 1.166) 1.022 (0.907, 1.143)

Renal disease 1.096 (1.020, 1.178) * 1.031 (0.907, 1.143)

Any malignancy 0.815 (0.742, 0.894) * 0.822 (0.748, 0.897) *

Moderate or severe liver
disease 0.985 (0.761, 1.275) 0.963 (0.742, 0.897) *

Metastatic solid tumor 0.865 (0.687, 1.090) 0.894 (0.730, 1.138)

AIDS/HIV 0.502 (0.356, 0.709) * 0.471 (0.335, 0.660) *

Obesity 0.811 (0.756, 0.871) * 0.819 (0.763, 0.886) *

hyperlipidemia 0.961 (0.900, 1.026) 0.941 (0.866, 1.015)

Stroke 1.084 (1.011, 1.162) * 1.184 (1.085, 1.310) *

Traumatic brain injury 1.110 (1.015, 1.214) * 0.998 (0.891, 1.084)

Sleep disorder 0.908 (0.847, 0.973) * 0.897 (0.838, 0.964) *

Periodontitis 1.095 (0.773, 1.555) 1.195 (0.825, 1.675)

Alcohol use 1.106 (0.988, 1.238) 1.099 (0.973, 1.224)

Exercise 0.995 (0.806, 1.229) 1.035 (0.860, 1.345)

Visual impairment 1.211 (1.002, 1.463) * 1.128 (0.934, 1.329)

Hearing impairment 0.861 (0.785, 0.944) * 0.827 (0.752, 0.909) *
* Indicate a p-value < 0.05 that is considered statistically significant. NHW: non-Hispanic White; NHB: non-
Hispanic Black. AIDS/HIV: acquired immunodeficiency syndrome/human immunodeficiency virus.
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4. Discussion

In this study, using a large collection of real-world data from the OneFlorida+ network,
we aimed to develop models to predict the conversion from MCI to AD/ADRD with
the presence of death as a competing risk. Through this analysis, we have identified
several important risk factors for the development of AD/ADRD. We found that patients
who have older age, are Hispanics, have depression, diabetes, cerebrovascular diseases,
renal disease, or stroke have a higher hazard of having AD/ADRD. These findings are
consistent with previous literature [38], indicating the validity of our study. For example,
vascular diseases have been linked with an increased risk of AD as the impairments
to cerebrovascular network and neurovascular control mechanisms would reduce their
abilities to maintain brain activity [39]. History of hypertension, high blood pressure, and
heart diseases have all been reported to be associated with a higher risk of AD/ADRD.
Diabetes, especially type 2 diabetes (T2D), is also associated with an increased risk of
cognitive dysfunction and dementia through mechanisms such as insulin resistance and
metabolic syndrome [38,40–42]. Individuals with a history of depression were more likely
to develop AD/ADRD later in life, especially those with earlier-life depression. Finally,
it has also been reported that Hispanics are more likely to develop AD/ADRD partially
because of their higher risk of high blood pressure, heart disease, diabetes, and stroke—all
additional risk factors for AD/ADRD [43,44].

In this study, in addition to the standard Cox model, we used a semi-competing risk
approach to build the AD/ADRD prediction model. In theory, the use of semi-competing
risk models can account for the occurrence of the competing risk event (i.e., death in
our case) and its relationship to the primary outcome (AD/ADRD), which improves the
accuracy of risk prediction when the two hazards are strongly correlated. In this experiment,
the hazard of AD/ADRD (at time t) is interpreted as the cause-specific hazard considering
a patient-specific effect, i.e., the instantaneous risk of developing AD/ADRD (at time t) in
the presence of death given not having AD/ADRD or death (up to time t). In comparison,
the standard Cox model assumes that the only possible outcome is the occurrence of the
primary event and does not fully account for the correlation between the primary event
and the competing event. Given the complexity of AD/ADRD diseases, this hypothesis is
plausible and important to capture in the analytical methods.

The assumptions for the semi-competing risks model are reasonable for this study.
First, the independent censoring assumption is untestable [45]. However, we suspect that
the event and the censor are conditional independents of the covariates and frailty for
the dataset because the risk factors for ADRD, such as age and comorbidities, can also
influence the risk of mortality. As we have controlled covariates and considered frailty
effects in our model, this helps to account for their influence on the probabilities of death
and ADRD. Secondly, regarding the assumption of proportional hazards, we conducted a
comprehensive analysis using Schoenfeld residuals and performed formal tests for each
covariate included in the data analysis [46]. These evaluations aimed to determine whether
the multiplicative relationship holds true. We reported that the majority of covariates
(38 of 41 risk factors for time to AD/ADRD and 39 of 41 risk factors for time to death)
in our dataset satisfied the proportional hazards assumption. The Schoenfeld residuals
exhibited no significant deviations from proportionality, indicating that the hazard ratios
for these covariates remain constant over time. Finally, regarding the assumption of
frailty distribution, extensive evidence in the statistics literature supports the use of the
gamma frailty model in situations where events are positively correlated [26,47,48]. We
have thoroughly discussed the justifications for this choice in relation to our dataset and
research question. Additionally, we examined our data using Pearson’s correlation to
assess the relationship between the occurrence of AD/ADRD and death events, and our
analysis revealed a positive and statistically significant correlation coefficient. Consequently,
assuming a gamma distribution for the frailty is reasonable. It is worth noting that the
semi-competing risks model we employed is also flexible in terms of the choice of frailty
assumptions, including the inverse gamma and Gaussian distributions.



Informatics 2023, 10, 46 10 of 13

However, we did not observe significant differences in the HRs between the semi-
competing risks model and the standard Cox model (i.e., significant level > 0.05 for all HR
comparisons) except for a few variables. The lack of observed differences between the two
models suggests that the two methods perform similarly in predicting AD/ADRD among
patients with MCI and that the additional adjustment of the semi-competing regression
model did not yield significantly different estimates. It is possible that death may not
be a competing risk in the progression between MCI to AD/ADRD, as suggested by the
smaller mortality in patients with no AD/ADRD (13.5%) than in patients who developed
AD/ADRD (23.5%). Despite the lack of observed differences, it is still important to consider
the potential advantages of the semi-competing risk approach, as evident from Table 2; renal
disease, traumatic brain injury, sleep disorder, and visual impairment are only statistically
significantly associated with AD/ADRD in the model that did not consider death as a
competing risk. This suggests that patients with these conditions were at higher risk of
developing AD/ADRD compared to those without these conditions only when we treat
death as random censoring, which indicates that the association between these predictors
and the risk of developing AD/ADRD may be confounded by the presence of death as a
semi-competing risk. Therefore, the interpretation of the HRs in our findings should take
into account the model used and the presence of death as a semi-competing risk. The HRs
obtained from the semi-competing risks model may be useful for predicting the risk of
developing AD/ADRD in patients with conditions such as renal disease, traumatic brain
injury, sleep disorder, or a visual impairment, and the standard Cox model may not fully
capture the association between these predictors and the risk of developing AD/ADRD
due to the presence of death as a semi-competing risk.

There are some limitations in this work. First, we only considered death as a potential
competing risk; however, MCI patients may also have other significant conditions such as
various types of cancers and other types of dementia besides AD/ADRD, especially as they
age, which may serve as competing risks. Multiple chronic conditions are highly prevalent
in older adults, such as hyperlipidemia, ischemic heart disease, and chronic kidney disease,
among others, that are competing risks of AD/ADRD [49]. Nevertheless, our approach can
be easier extended to consider multiple competing risks in one model [37,50,51]. Secondly,
in this study, we only used the structured data from the OneFlorida+ network where some
other important risk factors, such as social determinants of health (SDoH) and clinical narra-
tives, were not readily available and thus not included in our analysis, and there may also be
other unmeasured confounding variables that may bias the model. Furthermore, we were
only able to model AD/ADRD onset as the outcome. To accurately study the progression
of AD/ADRD, we would need to be able to extract and model other intermediate outcomes
such as neuropsychological tests (e.g., Mini-Mental State Examination [MMSE]) that are not
typically captured in structured EHR either. Advanced natural language processing (NLP)
methods can be leveraged to extract additional risk factors and neuropsychological test
results that measure disease severity [52] from clinical narratives. It is also worth noting
that the progression from MCI to AD/ADRD is a heterogeneous process. Some individuals
may progress quickly, while others may not progress at all. There are many factors that can
influence the rate and direction of the progression, including age, genetics, comorbidities,
lifestyle factors, and other environmental factors. Furthermore, there are multiple subtypes
of AD/ADRD. In this study, we grouped five conditions (Alzheimer’s, vascular demen-
tia, Lewy body, frontotemporal dementia, and mixed dementias) together as AD/ADRD,
but individuals with different subtypes may present with different patterns of cognitive
impairment and neuropathology. As such, a better understanding of the heterogeneity of
the progression from MCI to AD/ADRD is essential for the development of personalized
treatment and prevention strategies.

In addition to the above-mentioned improvement to the methodology, potential future
work in this area could focus on further validating and improving the semi-competing risk
model by incorporating additional predictors or exploring different modeling approaches.
Additionally, it may be valuable to explore the impact of different types of competing
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events on the prediction of AD/ADRD, as well as develop and evaluate interventions
aimed at reducing the risk of both AD/ADRD and death in this population. Furthermore,
it may be beneficial to investigate the generalizability of the findings to other populations
and healthcare settings.

While our study developed a novel semi-competing risks regression model to predict
the risk of AD/ADRD in individuals with MCI, we did not report the precision and
sensitivity of the model in our current findings. We acknowledge that these performance
metrics are important for evaluating the predictive ability of the model and are of great
interest to the research community. However, due to the limitations of this current study,
we were unable to include these results in our analysis. We plan to further investigate the
precision and sensitivity of the model in future research and will report our findings in the
discussion section (Section 4) of our paper. We believe that this future work will provide
valuable insights into the performance of our model and its potential use in clinical practice.

5. Conclusions

In this work, using large collections of real-world clinical data from the OneFlorida+
Clinical Research Consortium, we identified a number of risk factors for AD/ADRD, which
are consistent with the literature. We considered death as a competing risk and fitted a
semi-competing risks model in addition to the standard Cox model. However, we did not
observe significant differences from the semi-competing risks model, which suggests that in
this specific study, the traditional Cox regression model may be a sufficient and appropriate
approach for predicting the occurrence of AD/ADRD in the presence of the competing risk
of death among MCI patients. However, further research may be warranted to investigate
the performance of semi-competing regression models in other settings and populations.
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