
Citation: Wang, Y.; Chen, S.; Chen,

G.; Shurberg, E.; Liu, H.; Hong, P.

Motif-Based Graph Representation

Learning with Application to

Chemical Molecules. Informatics 2023,

10, 8. https://doi.org/10.3390/

informatics10010008

Academic Editor: Antony Bryant

Received: 29 November 2022

Revised: 3 January 2023

Accepted: 5 January 2023

Published: 11 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 informatics

Article

Motif-Based Graph Representation Learning with Application
to Chemical Molecules
Yifei Wang 1,* , Shiyang Chen 2 , Guobin Chen 1, Ethan Shurberg 1, Hang Liu 2 and Pengyu Hong 1,*

1 Department of Computer Science, Brandeis University, Waltham, MA 02453, USA
2 Department of Electrical and Computer Engineering, Stevens Institute of Technology,

Hoboken, NJ 07030, USA
* Correspondence: yifeiwang@brandeis.edu (Y.W.); hongpeng@brandeis.edu (P.H.)

Abstract: This work considers the task of representation learning on the attributed relational graph
(ARG). Both the nodes and edges in an ARG are associated with attributes/features allowing ARGs
to encode rich structural information widely observed in real applications. Existing graph neural
networks offer limited ability to capture complex interactions within local structural contexts, which
hinders them from taking advantage of the expression power of ARGs. We propose motif convolution
module (MCM), a new motif-based graph representation learning technique to better utilize local
structural information. The ability to handle continuous edge and node features is one of MCM’s
advantages over existing motif-based models. MCM builds a motif vocabulary in an unsupervised
way and deploys a novel motif convolution operation to extract the local structural context of
individual nodes, which is then used to learn higher level node representations via multilayer
perceptron and/or message passing in graph neural networks. When compared with other graph
learning approaches to classifying synthetic graphs, our approach is substantially better at capturing
structural context. We also demonstrate the performance and explainability advantages of our
approach by applying it to several molecular benchmarks.

Keywords: graph neural network; molecular representation; molecular property prediction; graph
matching; interpretability; motif-based pretraining; GPU-enabled accelerating

1. Introduction

The amount of graph data has grown explosively across disciplines (e.g., chemistry,
social science, transportation, etc.), calling for robust learning techniques for modeling
knowledge embedded in graphs and performing inference on new graphs. To shed new
light on the mechanisms underlying observations, the learning techniques need to be
interpretable so that we can link structural patterns to properties of interest. Many types
of complex graphs (e.g., chemical molecules, biological molecules, signal transduction
networks, multi-agent systems, social networks, knowledge graphs, etc.) can be naturally
represented as attributed relational graphs (ARGs) [1,2]. The ARG representation extends
ordinary graph representations by associating attributes (or features) with nodes and edges
to characterize the corresponding entities and relationships, respectively. This makes
ARGs substantially more expressive, which makes them appealing to many real-world
applications; however, the nuance of ARGs comes with added complexities in training and
analysis. We denote an ARG as G =< {v}, {euv}, {av}, {ru,v} >, where {v} is the node set,
{eu,v} is the relation set with eu,v indicating the relation between nodes u and v, and av and
ru,v are the attribute vectors of node v and relationship eu,v, respectively.

Recently, graph neural networks (GNNs) [3–6], which operate on the graph domain,
have been combined with deep learning (DL) [7] to take advantage of big graph data.
Many GNN variants have been proposed for a variety of applications (e.g., visual scene
understanding, learning dynamics of physical systems, predicting properties of molecules,

Informatics 2023, 10, 8. https://doi.org/10.3390/informatics10010008 https://www.mdpi.com/journal/informatics

https://doi.org/10.3390/informatics10010008
https://doi.org/10.3390/informatics10010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/informatics
https://www.mdpi.com
https://orcid.org/0000-0002-8295-5534
https://orcid.org/0000-0003-2626-7865
https://orcid.org/0000-0001-6323-7388
https://orcid.org/0000-0002-3177-2754
https://doi.org/10.3390/informatics10010008
https://www.mdpi.com/journal/informatics
https://www.mdpi.com/article/10.3390/informatics10010008?type=check_update&version=1

Informatics 2023, 10, 8 2 of 21

predicting traffic, etc.) [8–18]. In this study, we focus on the application of graph represen-
tation learning to efficiently and accurately estimate the properties of chemical molecules,
which is in high demand to accelerate the discovery and design of new molecules/materials.
In addition, there is an abundance of publicly available data in this domain, for example,
the QM9 dataset [19]. In the QM9 dataset, each chemical molecule is represented as an
ARG with nodes and relations representing atoms and bonds, respectively. Each node has
one attribute storing the atom ID and the 3D coordinates, and each relation has attributes
indicating bond type (single/double/triple/aromatic) and length.

Accurate quantum chemical calculation (e.g., typically using density functional theory
(DFT)) needs to consider complex interactions among atoms and requires a prohibitively
large amount of computational resources, preventing the efficient exploration of vast
chemical space. There have been increasing efforts to overcome this bottleneck using GNN
variants to approximate DFT simulation, such as, enn-s2s [15], SchNet [20], MGCN [21],
DimeNet [22], DimeNet++ [23], and MXMNet [24].

GNNs aim to learn embeddings (or representations) of nodes and relations to capture
complex interactions within graphs, which can be used in downstream tasks, such as graph
property prediction, graph classification, and so on. The message passing mechanism is
widely used by GNNs to approximate complex interactions. A GNN layer updates the
embedding of a node v by transforming messages aggregated from its neighbors:

a(l+1)
v = f1(a

(l)
v , ∑

u∈Nv

f2(a
(l)
u , r(l)uv)) (1)

where l indicates the l-th GNN layer (l = 0 corresponds to the input), Nv is the neighbor
set of node v, a(l)v is the embedding of node v, r(l)uv is the embedding of relation euv, f1 is
the node embedding update function, and f2 is the interaction function passing messages
from neighbors. The functions f1 and f2 can be based on neural networks. Relation
embedding updates can also be implemented using neural networks to integrate the l-th
layer embedding of a relation with the l- or (l + 1)-th layer embeddings of the nodes
connected to the relation.

In the context of predicting molecular properties, innovations in GNN variants mainly
focus on improving message passing to better utilize structural information. For example,
SchNet [20] considers the lengths of relationships (i.e., bonds between atoms) using a
band of radial basis functions when calculating message passing. MGCN [21] stacks GNN
layers to hierarchically consider quantum interaction at the levels of individual atoms,
atom pairs, atom triads, and so on. When calculating the message passing to a target
node from one of its neighbors, DimeNet [22] proposes directional embedding to capture
interactions between neighboring bond pairs and is invariant in rotation and translation.
DimeNet++ [23] improves the efficiency of DimeNet by adjusting the number of embedding
layers and the embedding sizes via down-/up-projection layers. MXMNet [24] analyzes the
complexity of the directional embedding proposed in DimeNet and decomposes molecule
property calculations into local and non-local interactions, which can be modeled by local
and global graph layers, respectively. The expensive directional embedding is only used in
the local graph layer. In addition, MXMNet proposes efficient message passing methods to
approximate interaction up to two-hop neighbors in the global layer and interactions up to
two-hop angles in the local graph layer.

Existing GNNs typically start with node attributes, which do not efficiently capture
structural information. In addition, each message-passing calculation considers the limited
local context of the destination node. Most of the early studies on GNNs treated rela-
tions as independent in each iteration of message calculation. DimeNet/DimeNet++ and
MXMNet consider the interaction between a one-hop relation and its neighboring two-hop
relations. Although MGCN can potentially add higher layers to directly consider larger
local contexts, its interaction space will increase exponentially with respect to the layer
number. Moreover, it may not be straightforward to choose the number of levels because
nodes have different local context sizes. We hypothesize that the local context space can be

Informatics 2023, 10, 8 3 of 21

well-characterized by a set of motifs, each of which may correspond to a certain type of local
structure/substructure. For example, a motif may represent a chemical functional group.
The motif set can be learned from data and be used to extract node features that explicitly
encode the local context of the corresponding node, and, hence, improve the performance
of a GNN. We, therefore, propose a motif-based graph representation learning approach
with the following major components: (a) unsupervised pre-training of motifs; (b) motif
convolution for isomorphic invariant and local-structure-aware embedding; (c) highly
explainable motif-based node embeddings; and (d) a GPU-enabled motif convolution
implementation to overcome the high computational complexity. We demonstrate our
approach by its application to both synthetic and chemical datasets.

2. Motif-Based Graph Representation Learning

The key of our motif-based representation-learning technique is a motif convolution
module (MCM) (Figure 1A), which contains a motif convolution layer (MCL) connected
to an optional multilayer perceptron (MLP) network. The motifs in an MCL are spatial
patterns and can be constructed by clustering subgraphs extracted from training graphs
(Figure 1B). These motifs describe various substructures representing different local spatial
contexts. The convolution step applies all motifs on every node in an input graph to
produce a local-context-aware node representation, which is invariant to transformations
(rotation and translation in 3D). The MLP component can further embed the above node
representation by exploring interactions between motifs. The node embeddings produced
by MCM encode local structural context, which can empower downstream computations
to learn richer semantic information. Below, we explain in more details motif vocabulary
construction, motif convolution, and using MCM with GNNs.

Figure 1. Motif convolution module. (A) The convolution operation calculates the structural similarity
score between every of the N motifs and the subgraph centering at each node in the input graph (see
Sections 2.2 and 2.3) to produce an N-dimension context-aware representation for the corresponding
node, which is further transformed by a multilayer perceptron (MLP) network to produce a MCM-
embedding for the input node. For example, although two input nodes, u and v, represent the same

element (e.g., atom), their MCM-embeddings a(0)u and a(0)v are different as u and v are in different
local context. An expanded illustration of MCM is shown in Figure 2. The output of MCM can be fed
into GNNs. (B) The motif vocabulary is built via clustering on subgraphs sampled from input graphs
(Section 2.1).

2.1. Motif Vocabulary Construction

Ideally, the motif vocabulary should be learned in an end-to-end fashion; however,
this would incur an extremely high computational complexity. Therefore, we turned to a
straightforward method for building a motif vocabulary that represents recurrent spatial
patterns in training ARGs. First, we sampled a large number of subgraphs (e.g., k-hop
neighborhoods) from the dataset. Each subgraph records its own center node. To make the
extracted subgraphs cover local contexts as much as possible, we reduced the probability
of sampling a subgraph by 50% if the center node of the subgraph already appears in
a sampled subgraph. This allows unvisited local contexts to be sampled with greater
probability. Highly similar subgraphs (up to 3D rotation+translation transformations)
can be represented by one motif. To achieve this, the sampled subgraphs are grouped

Informatics 2023, 10, 8 4 of 21

into a user-specified number of clusters using a hierarchical clustering technique using
average linkage [25], implemented in the Orange3 library [26]. A representative subgraph
is selected from each cluster as a motif. If the size of the whole subgraph set is too big for the
hierarchical clustering algorithm, we can randomly partition the whole subgraph set into
many smaller subsets, and apply the above procedure to extract representative subgraphs
from each subset. The above procedure is then applied to the representative subgraphs
extracted from all subsets to obtain the final motifs. Pair-wise similarity calculations are
required to perform hierarchical clustering between subgraphs (each of which are ARGs).

2.2. ARG Similarity Measurement

We need to measure the similarity between two ARGs when building the motif
vocabulary (Section 2.1) and performing motif convolutions (Section 2.3). Such a similarity
measurement should be invariant to the permutation of nodes, which requires node-to-
node matching between two graphs. In addition, the similarity measurement should not be
sensitive to graph sizes. Otherwise, a larger graph could have a higher chance to be more
similar to a motif than a smaller graph. Assuming we have the node-to-node matching,
which is represented by a matching matrix M, between two ARGs G1 and G2. Each element
Mui ∈ {0, 1} indicates whether node u in G1 matches with node i in G2. Inspired by [27,28],
we define the normalized similarity between G1 and G2 as:

S(G1, G2) = (
n1

∑
u=1

n2

∑
i=1

n1

∑
v=1

n2

∑
j=1

MuiMvjs1(e
(1)
uv , e(2)ij)

2
√

l1 × l2
+ α

∑n1
u=1 ∑n2

i=1 Muis2(u, i)
√

n1 × n2
)× 1

1 + α
(2)

where n1 and n2 are the numbers of nodes in G1 and G2, respectively. l1 and l2 are the
numbers of edges in G1 and G2, respectively, s1(e

(1)
uv , e(2)ij) is the relation compatibility

function measuring the similarity between e(1)uv ∈ G1 and e(2)ij ∈ G2, s2(u, i) is the node
compatibility function measuring the similarity between node u ∈ G1 and node i ∈ G2.
α is the trade-off parameter to balance the contributions from edge similarities and node
similarities. Theorem 1 shows that S(G1, G2) is independent of graph sizes. A matching
matrix M is required to compute S(G1, G2). Finding an optimal matching between two
ARGs is an NP problem and has been widely studied. We leave the details of problem
definition and the efficient algorithm for finding a sub-optimal M for Appendix B. We
developed a GPU-accelerated matching method with sublinear complexity (see discussions
in Appendix B.5).

Theorem 1. If the compatibility functions s1(e
(1)
uv , e(2)ij) and s2(u, i) are well-defined and normal-

ized compatibility metrics, S(G1, G2) achieves maximum of 1 if and only if G1 and G2 are isomorphic.

The proof is in Appendix A.

2.3. Motif Convolution

The motif convolution layer (MCL) computes the similarity (see Section 2.2) between
every motif and the subgraph centered at each node in an input graph. A motif repre-
sentation of each input node is obtained by concatenating the similarity scores between
the subgraph of the node and all motifs. This representation can be fed into a trainable
multi-layer perceptron (MLP) with non-linear activation functions (e.g., ReLU) to produce
a further embedding that encodes interactions among motif features. We denote this
operation as:

a(0)u = MCM(u ∈ G; {Mi}N
i=0)) (3)

where G is an input ARG, u is a node in G, {Mi}N
i=0 represents the motif vocabulary of size

N, and a(0)u is the MCM embedding of u. Figure 2 illustrates an expanded illustration of
the MCM computation flow. The convolution operation calculates the structural similarity

Informatics 2023, 10, 8 5 of 21

score between every motif in the motif set {Mi}N
i=0 and the subgraph centering at each

node in the input graph. For each node in the input ARG, the similarities between all motifs
and the local structure of the node are concatenated to produce an N-dimension context-
aware representation, which encodes the local structural features represented by motifs.
The motif feature representation can be further transformed by a trainable multilayer
perceptron (MLP) network to produce the final MCM embedding for the input node. If a
user chooses to omit the MLP component, the motif feature representation will be the MCM
embedding for the input node. Motifs are obtained via a pre-training process described in
Section 2.1. The MLP should be trained with the downstream task.

Figure 2. Motif convolution module. The convolution operation computes graph matching between
each motif and the local structure centering at each node in the input ARG.

2.4. Coupling Motif Convolution with GNNs

The MCM can serve as a preceding module for any GNN to form MCM+GNN. The
output of the MCM is still an ARG, which can be fed into any GNN that accepts an
ARG as input. A readout function of an MCM+GNN model is needed to obtain the final
representation of an input G:

hG = READOUT({a(L)
u |u ∈ G}) (4)

where L is the number of GNN layers. The READOUT function should be invariant to
permutation, and, thus, average, sum, and max-pooling functions are widely used. The
final representation hG can then be fed into a trainable component (e.g., a fully connected
layer or a linear regressor) to generate the desired predictions.

3. Experiments and Results

We applied MCM to both synthetic and real data to thoroughly evaluate its potential
in classifying graphs, predicting graph properties, and learning semantically explainable
representations. All experiments use one-hop neighborhoods in building motifs. The code
is available at https://github.com/yifeiwang15/MotifConv (accessed on 4 January 2023).

3.1. Classification on the Synthetic Dataset

This experiment shows the advantage of motif convolution in capturing local structural
context over GNNs. We designed five ARG templates (Figure 3), and one synthetic dataset
of five classes, which share similar node attributes but have different structures. These
templates can only be well-distinguished by their overall structures. For example, templates
2 and 5 are very similar to each other except for two edges have different attributes.
Sample ARGs were produced from these five ARG templates by randomly adding nodes
to templates and adding Gaussian noises of N (0, 0.1) to node attributes. The number of
added nodes in each sample ARG was sampled from a binomial distribution B(4, 0.1).
Each sample ARG is labeled by the ID of its ARG template. The task is to predict the

https://github.com/yifeiwang15/MotifConv

Informatics 2023, 10, 8 6 of 21

template ID of any given synthetic ARG. We synthesized two datasets of sizes 500 and
10,000, respectively. Each template contributed to 20% of each dataset.

Figure 3. Five templates used to generate the synthetic datasets. Template 2 and 5 are designed to
make the classification task more challenging, in which only two edges take different attributes.

We only used the MCL of the MCM as it was already sufficient. The readout of the
MCL is fed to a logistic regressor (LR) to output the classification result. Standardization
was applied to the readout by removing the mean and scaling to unit variance. We named
this model MCL-LR. Two readout functions (average pooling and max pooling) were tried,
and max pooling always outperformed average pooling. A motif vocabulary of size 5 was
constructed. We tried using more than five motifs, and found no significant advantage.
We compared MCL-LR with several baseline models built from GNN variants with edge
weight normalization implemented by [29], including GCN [30], GIN [31] and GAT [17]
(detailed model configurations in Appendix C.2).

We ran each model 20 times on both datasets. In each run, each dataset was randomly
split into 8:1:1 for training, validation and test. The average prediction accuracy, as well
as the standard deviation, are reported in Table 1. The MCL-LR models significantly out-
perform other models by an average of 20%. In addition, MCL-LR requires substantially
smaller training data as it is able to achieve near-perfect results on the 500 datasets. Fur-
thermore, we observed that the learned motifs illustrated in Figure 4 were quite similar
to the underlying templates and contains necessary local structures for discriminant pur-
pose, which explains the superior performance of MCL-LR. The performance by categories
(Table A1) suggests that MCL-LR is able to discriminate between highly similar templates,
as in the case of templates 2 and 5. In addition, we observed that training of GNNs on the
larger dataset took more time and computational resources than MCL-LR.

Figure 4. The motif vocabulary constructed in the synthetic data experiments. The learned motifs
resemble the templates used to generate the synthetic noisy graphs.

Table 1. Graph classification results using synthetic data. The best scores are marked as bold.

Dataset Size GAT GCN GIN MCL-LR

500 0.691± 0.020 0.745± 0.033 0.640± 0.035 0.996± 0.008
10000 0.734± 0.028 0.853± 0.016 0.749± 0.010 0.997± 0.001

Informatics 2023, 10, 8 7 of 21

3.2. Classification on Molecular Benchmarks

We conducted an experiment using several small- and medium-sized molecular bench-
mark datasets in MoleculeNet [32]. We compared our model with MICRO-Graph [33] and
MGSSL [34] with different generation orders (BFS and DFS), which are also pre-training
frameworks for GNNs with a motif-aware fashion. The results demonstrate that MCM
can be integrated with GNNs in a broad way. An MCM+GNN model uses the MCM
component to preprocess input graphs. We used the open-source package RDKit [35] to
parse the SMILES formula of molecules and performed scaffold-split [36,37] to get the
train-validation-test split as 8:1:1. Following the suggestions in MGSSL [34], both baseline
models (GIN and GCN) have 5-layer with hidden dimension of 300. Mean pooling is used
as the readout function after convolutional layers. Both MCM+GCN and MCM+GIN use a
motif vocabulary of size 100. Smaller baseline models (3 conv layers and 64 hidden dim in
GCN/GIN) are used in MCM-GCN/GIN on all datasets. For each dataset, we carried out
five independent runs and reported means and standard deviations. Table 2 shows that
GNNs integrated with MCM consistently perform better than the base models. Figure 5
compares the training and test curves of MCM+GIN and GIN, and shows that MCM signif-
icantly speeds up and stabilizes training, suggesting MCM+GIN is fundamentally more
expressive than GIN. We believe this is because MCM encodes local structural information
that is not sufficiently captured with traditional message passing in GNNs. The details of
training settings and data preprocessing are provided in Appendix C.4.

Table 2. Compare test ROC-AUC (mean ± std) on molecular property prediction benchmarks. The
best result for each dataset is in bold.

Dataset bace bbbp clintox sider tox21 toxcast hiv

GCN 0.811 ± 0.030 0.881 ± 0.036 0.615 ± 0.102 0.615 ± 0.025 0.784 ± 0.017 0.633 ± 0.007 0.754 ± 0.067
GIN 0.797 ± 0.049 0.873 ± 0.036 0.530 ± 0.065 0.616 ± 0.025 0.783 ± 0.024 0.634 ± 0.009 0.762 ± 0.058

MICRO-Graph 0.819 ± 0.004 0.870 ± 0.008 0.540 ± 0.024 0.617 ± 0.018 0.774 ± 0.006 0.635 ± 0.006 0.780 ± 0.026
MGSSL (DFS) 0.797 ± 0.008 0.705 ± 0.011 0.797 ± 0.022 0.605 ± 0.007 0.764 ± 0.004 0.638 ± 0.030 0.795 ± 0.011
MGSSL (BFS) 0.791 ± 0.009 0.697 ± 0.001 0.807 ± 0.021 0.618 ± 0.008 0.765 ± 0.003 0.641 ± 0.070 0.788 ± 0.012

MCM + GCN 0.806 ± 0.026 0.917 ± 0.031 0.612 ± 0.145 0.624 ± 0.024 0.794 ± 0.015 0.650 ± 0.012 0.792 ± 0.046
MCM + GIN 0.820 ± 0.055 0.900 ± 0.031 0.655 ± 0.139 0.627 ± 0.028 0.802 ± 0.015 0.651 ± 0.010 0.800 ± 0.043

Figure 5. The training and testing curves on molecular benchmarks suggest MCM+GIN converge
faster and more stably than GIN.

3.3. Molecule Property Prediction on QM9

The QM9 dataset [19] is a widely used benchmark for evaluating models that predict
quantum molecular properties. It consists of about 130 k organic molecules with up to 9
heavy atoms (C, O, N and F). The mean absolute error (MAE) of target properties is the
commonly used evaluation metric. We adopted the data-splitting setting used in [22–24].
More specifically, following [38], we removed about 3 k molecules that failed the geometric
consistency check or were hard to converge. We applied random splitting to the dataset,
which takes 110,000 molecules for training, 10,000 for validation, and the rest for test. We
only used the atomization energy for U0, U, H and G, by subtracting the atomic reference
energies as in [22]. For property ∆ε, we followed the DFT calculation and calculate it by
simply taking εLUMO − εHOMO.

Informatics 2023, 10, 8 8 of 21

We designed the MCM to be MCL + 2-layer MLP (MLP: input→ 128→ ReLU→ 128
→ output). The motif vocabulary size is represented as a hyper-parameter, where we tried
100 and 600 in the experiments. We formed our model MCM+MXMNet by connecting
the above MCM to an MXMNet. Two options (5Å and 10Å) were tested for the distance
cut-off hyper-parameter dg of MXMNet. A separate model was trained for each target
property and used grid search on learning rate, batch size, motif number, and cut-off
distance dg. Edges in molecules are defined by connecting atoms that lie within the cut-off
distance dg. Following [22], we did not include auxiliary features like electronegativity of
atoms. Detailed training settings are provided in Appendix C.5, and the discussion of motif
vocabulary construction and efficiency is in Appendix C.6.

We compared our model MCM+MXMNet with several other state-of-the-art models
including SchNet [20], DimeNet [22], DimeNet++ [23] and MXMNet [24]. For other models,
we use the results reported in their original works. All experiments were run on one
NVIDIA Tesla V100 GPU (32 GB). Table 3 summarizes the comparison results, and shows
that our model MCM+MXMNet outperforms others on eight molecule property prediction
tasks. For two MXMNet settings, a larger cut-off distance (i.e., dg = 10Å) can lead to better
results for some tasks, but not all of them. This is because larger dg leads to a larger receptive
field and thus helps to capture longer range interactions. However, higher dg might cause
redundancy or oversmoothing in message passing and will also increase computation cost.
We observed a similar phenomenon for MCM+MXMNet. We also observed that under the
same dg setting, MCM+MXMNet tends to perform better than MXMNet. We believe that
this is because MCM helps to produce more informative node representations that better
encode local chemical context.

Table 3. Comparison of MAEs of targets on QM9 dataset for different tasks. The best result for each
task is in bold.

Task SchNet DimeNet DimeNet++
MXMNet
dg = 5Å

MXMNet
dg = 10Å

MCM+MXMNet
dg = 5Å

MCM+MXMNet
dg = 10Å

µ (D) 0.033 0.0286 0.0297 0.0382 0.0255 0.0375 0.0251
α(a3

0) 0.235 0.0469 0.0435 0.0482 0.0465 0.0477 0.0456
εHOMO (meV) 41 27.8 24.6 23.0 22.8 21.9 22.6
εLUMO (meV) 34 19.7 19.5 19.5 18.9 18.5 18.6

∆ε (meV) 63 34.8 32.6 31.2 30.6 32.1 31.9〈
R2〉(a2

0) 0.073 0.331 0.331 0.506 0.088 0.489 0.124
ZPVE (meV) 1.7 1.29 1.21 1.16 1.19 1.14 1.18

U0 (meV) 14 8.02 6.32 6.10 6.59 5.97 6.49
U (meV) 19 7.89 6.28 6.09 6.64 6.02 6.51
H (meV) 14 8.11 6.53 6.21 6.67 6.01 6.50
G (meV) 14 8.98 7.56 7.30 7.81 7.13 7.54
cυ(cal

molK) 0.033 0.0249 0.0230 0.0228 0.0233 0.0230 0.0234

3.4. Explainability of Motif Convolution

The embeddings that MCM learns are highly explainable and encode domain seman-
tics. We visualize the representations of carbons produced by an MCM with 600 motifs in
the QM9 experiment. The visualization is created using the T-distributed Stochastic Neigh-
bor Embedding (t-SNE) algorithm [39]. We randomly sampled 15,000 molecules from the
QM9 dataset, and then randomly selected 2 carbons from each chosen molecule. Figure 6
shows the t-SNE visualization of these 30,000 atoms’ representations learned by MCM. To
better understand our representation, we manually labelled 300 carbons randomly sampled
from the above 30,000 carbons according to their one-hop local structures. We observed
that carbons in the same local context tend to cluster together and are separated from those
in different local structures.

More interestingly, we observe that node representations learned by MCM encode
meaningful chemical properties. For example, the carbons (red in Figure 6A) in the Tri-
fluoromethyl (-CF3) groups are tightly clustered together, actually stacked into one point.
It is known that the more fluorines are connected to a carbon, the shorter the bonds from

Informatics 2023, 10, 8 9 of 21

this carbon [40], which makes the Trifluoromethyl groups very different from other sub-
structures. Moreover, Methylene (-CH2-) is the most common ‘bridge’ in organic chemistry,
connecting all kinds of functional groups (R, R’). Hence, the carbons (pink in Figure 6A) in
the Methylene groups are scattered apart because of their diverse contexts. The carbons in
the alcohol functional groups (-CH2OH, green in Figure 6A) are clustered into two separate
sub-groups. This is because they are connected to two very different chemical structures
(Figure 6B): cyclic functional groups and linear functional groups.

Figure 6. Node embeddings learned by MCM. (A): The t-SNE visualization of carbon representations
learned by MCM. There are 30,000 carbons randomly sampled from the QM9 dataset. Among them,
300 are randomly chosen and are colored based on types of functional groups that carbons belong
to, for example, alcohol(-OH) in green, three fluorines (F3) in red, and so on. Both R and R’ are the
abbreviations for groups in the rest of a molecule. The details of the nine local structure groups
are listed in Table A4. The green group are separated into two sub-groups (α and β). (B): The
carbons, whose representations visualized in the Left, are marked by red *. The carbons in the green
group share the same one-hop local structures shown at the top. The two green sub-groups have
distinct characteristics in their at-large local structures. In the α cluster, the marked carbons are
connected to cyclic functional groups. In the β cluster, the marked carbons are connected to linear
functional groups.

3.5. Efficiency of GPU Accelerated Motif Convolution

The highest workload in MCM comes from matching motifs with subgraphs, which
can be sped up tremendously using parallel computing in GPUs. We developed a CUDA-
enabled graph-matching kernel (Appendix B.4) for matching multiple Motif-ARG pairs
concurrently, which offer an essential boost to this work. We tested the efficiency of our
graph matching kernel under various settings. All experiments were run on NVIDIA
GeForce RTX 2080 11GB GPUs. We created four test datasets with graph sizes of 10, 15, 20,
and 25, respectively. Each set contains 500 molecules sampled from the QM9 dataset. We
ran our CUDA-enabled graph matching kernel using up to eight GPUs to compute pair-
wise matching within each dataset. In total, there are 124,750 pairs. The execution times
(including loading data from hard disks) of different settings are compared in Figure 7. In
general, as expected, it took longer to match larger ARGs. More GPUs help to accelerate the
computation. When using a number of GPUs ≤ 4, doubling GPU devices approximately
reduced the execution time by half, which indicates that our kernel achieved a balanced
workload in parallel. Using more than 5 GPUs only offered marginal speed improvements
because GPUs spent significant amounts of time waiting for data to be loaded.

Informatics 2023, 10, 8 10 of 21

Figure 7. Test speed of pair-wise matching on GPUs. Each dataset contains 500 molecular graphs.

4. Related Works

Early graph embedding methods [41–43] preserve local neighborhoods of nodes by
using biased random-walk based objectives. Some other works, such as [44–46], train node
encoders by maximizing the mutual information between local and global representations.
These methods encourage the preservation of vertex proximity (i.e., nearby nodes to have
similar embeddings) and were originally designed and evaluated for node- and edge-level
predictions. However, such methods do not work well for predicting graph-level properties
(e.g., molecular properties) since they over-emphasize vertex proximity at the expense of
global structural information. For instance, random-walk based methods [41–43] consider
limited substructures (e.g., subtrees) as graph representatives. There are several other
efforts [47–49] for capturing the structural identity of nodes. However, the applications of
such approaches are limited because of their rigid notions of structural equivalence.

Recently, self-supervised approaches were proposed for pre-training GNNs [33,36,50–59].
Self-supervised tasks at node, edge and graph levels were carefully designed to learn general
structural and semantic representations that can be fine-tuned for downstream tasks. These
approaches broadly fall into two categories. The first one trains models to predict randomly
masked-out node attributes [36] or subgraphs [50]. The second one adopts contrastive learn-
ing to maximize representation consistency under perturbations [33,56,57,59]. However,
these approaches cannot capture the rich information in subgraphs or graph motifs. A
few works have been reported to leverage motif-level information. For example, early
works such as [47,48] encode local structures as binary properties, which do not reflect
deformations of local structures that can happen naturally. Domain knowledge is used to
extract motifs and treat them as identifiers [52]. MICRO-Graph [33] is a motif-driven con-
trastive learning approach for pretraining GNNs in a self-supervised manner. MGSSL [34]
incorporates motif generation into self-supervised pre-learning for GNNs. There is much
room for improvements to take advantages of local structural information and produce
highly explainable node representations. The challenge in motif-based approaches mainly
comes from the difficulty in efficiently measuring similarities between input graphs and
the automatic construction of a high quality motif vocabulary.

5. Discussion

The main contribution of this study is the design of the motif convolution module
(MCM). MCM first takes motif discovery from a dataset and applies motif convolution to
extract initial context-aware representations for the nodes in input ARGs, which are then
embedded in higher level representations using neural network learning. To leverage the
power of existing GNNs and target particular applications (e.g., graph classification or
regression applications), MCM can be connected as a preceding component to any GNN.
One key computational step in MCM is matching ARGs, which is NP-hard in theory and

Informatics 2023, 10, 8 11 of 21

has sub-optimal solutions. To make it possible to apply MCM to large-scale graph datasets,
we modified a graduated assignment algorithm for matching ARGs and implemented a
CUDA-enabled version. Currently, the motifs in MCM are fixed once constructed. In our
future work, we will develop motifs that are co-trainable with the rest of a model.

6. Conclusions

This work presents MCM, a novel motif-based representation learning technique that
can better utilize local structural information to learn highly explainable representations
of ARG data. To our best knowledge, this is the first motif-based learning framework
targeting graphs that contain both node attributes and edge attributes. We show that our
approach achieves better results than the state-of-the-art models in a graph classification
task and a challenging large-scale quantum chemical property prediction task. Moreover,
experimental results highlight the ability of MCM to learn context-aware explainable
representations. Motif convolution offers a new avenue for developing new motif-based
graph representation learning techniques.

Author Contributions: Conceptualization, Y.W., S.C., H.L. and P.H.; methodology, Y.W., S.C., H.L.
and P.H.; software, Y.W. and S.C.; validation, Y.W., S.C., G.C., H.L. and P.H.; formal analysis, Y.W.;
investigation, Y.W.; resources, H.L. and P.H.; writing—original draft preparation, Y.W., S.C., G.C.,
E.S., H.L. and P.H.; writing—review and editing, Y.W., S.C., G.C., E.S., H.L. and P.H.; visualization,
Y.W., S.C., G.C. and E.S.; supervision, H.L. and P.H.; project administration, H.L. and P.H.; funding
acquisition, P.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by NSF MDR 1933525 and NSF OAC 1920147.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We made the synthetic dataset available on https://github.com/
yifeiwang15/MotifConv/tree/main/MCM_for_syn, (accessed on 4 January 2023). Datasets from
MoleculeNet and QM9 are open source.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ARG Attributed relational graph.
GNN Graph neural network.
MLP Multiple layer perceptron.
MCL Motif convolution layer.
MCM Motif convolution module.

Appendix A. Proof of Theorem 1

Proof. First let us give a formal definition of well-defined and normalized compatibility
metric s(x1, x2) ∈ [0, 1] in the theorem, where x1 or x2 are vectors of the same dimension.
It takes a maximal value of 1 if and only if x1 = x2. One example could be s(x1, x2) =

exp(− ||x1−x2||2
2).

Necessity. The first proof is that if G1 and G2 are isomorphic, S(G1, G2) achieves maxi-
mum of 1. Obviously, G1 and G2 have the same number of nodes and edges given the
isomorphism condition (n1 = n2 and l1 = l2). Without loss of generality, we could assume
the node ordering in two graphs are the same and the matching matrix M is the identical

https://github.com/yifeiwang15/MotifConv/tree/main/MCM_for_syn
https://github.com/yifeiwang15/MotifConv/tree/main/MCM_for_syn

Informatics 2023, 10, 8 12 of 21

matrix I. Otherwise, we could find a permutation matrix P to reorder nodes such that
PM = I. Then let us look at the two parts in computing S(G1, G2) from Equation (2)

α
∑n1

u=1 ∑n2
i=1 Muis2(u, i)
√

n1 × n2
=

α

n1

n1

∑
i=1

s2(i, i) = α (A1)

n1

∑
u=1

n2

∑
i=1

n1

∑
v=1

n2

∑
j=1

MuiMvjs1(e
(1)
uv , e(2)ij)

2
√

l1 × l2
=

n1

∑
i=1

n1

∑
j=1

s1(e
(1)
ij , e(2)ij)

l1
= 1 (A2)

The last equation holds because the number of edges is l1 and s1(e
(1)
ij , e(1)ij) takes 1 if

edge eij exists, otherwise 0.
Thus, S(G1, G2) =

1+α
1+α = 1 and we finish this proof.

Sufficiency. Another proof is that suppose S(G1, G2) = 1, then G1 and G2 are isomor-
phic. We will prove by contradiction.

First let us prove that S(G1, G2) < 1 if n1 6= n2 or l1 6= l2. (We assume n1 ≥ n2 without
loss of generality.)

Since M is the hard matching matrix, there is at most one nonzero element (taking
value 1) per row and per column, defining an injective function φM such that φM(i) = u if
Mui = 1. Thus, we have

α
∑n1

u=1 ∑n2
i=1 Muis2(u, i)
√

n1 × n2
= α

∑n2
i=1 s2(φM(i), i)
√

n1 × n2
≤ α

n2√
n1 × n2

≤ α. (A3)

and

n1

∑
u=1

n2

∑
i=1

n1

∑
v=1

n2

∑
j=1

MuiMvjs1(e
(1)
uv , e(2)ij)

2
√

l1 × l2
=

∑n2
i=1 ∑n2

j=1 s1(e
(1)
φM(i)φM(j), e(2)ij)

2
√

l1 × l2
≤ 2 min(l1, l2)

2
√

l1 × l2
≤ 1. (A4)

where the first inequality holds because s1(e
(1)
φM(i)φM(j), e(2)ij) takes maximum of 1 given edge

e(1)
φM(i)φM(j) in G1 is identical to edge e(2)ij in G2 and takes 0 if either edge not exists; thus,

there are, at most, 2 min(l1, l2) nonzero terms in the summation.
Strict inequality in the last line of Equation (A3) holds if n1 6= n2 and strict inequality

in the last line of Equation (A4) holds if l1 6= l2. Thus, S(G1, G2) <
1+α
1+α = 1 if either n1 6= n2

or l1 6= l2. Thus, we complete the first proof.
Next let us prove G1 and G2 are isomorphic by contradiction. Note that we already

have n1 = n2 and l1 = l2. Without loss of generality, let us assume the matching matrix M
is the identical matrix I; otherwise, we could introduce a permutation matrix to reorder
nodes. Then, the injective function φM(i) = i becomes identical mapping.

If G1 and G2 are not isomorphic, at least one of the following cases must hold:
Case1. (i-th node in G1 is not identical to i-th node in G2) ∃i ∈ [1, 2, . . . , n2], such that

s2(i, i) < 1. Thus, Equation (A3) takes strict inequality.
Case2. (Edge e(1)ij in G1 is not identical to edge e(2)ij in G2, or either edge does not exist.)

∃i, j, such that s1(e
(1)
ij , e(2)ij) < 1. Thus, Equation (A4) takes strict inequality.

For either case, we obtain the strict inequality and, thus, S(G1, G2) <
1+α
1+α = 1, which

leads to contradiction.

Appendix B. GPU-Enabled ARG Matching

Appendix B.1. ARG Matching Used in MCM

The convolution operation calculates the structural similarity score between the motif
Mi from Motif Conv Layer and u’s local substructure from the input ARG. Before taking
convolution, we should find the optimal matching assignment between Mi and u’s local

Informatics 2023, 10, 8 13 of 21

subgraph. A graph matching problem is NP-hard and has been well-studied for a couple
of years. In the following section, we briefly introduce the problem definition and efficient
approximated solutions proposed by [27,28]. To make the computation of graph matching
more efficient in practice and meet the need of high-frequency calculation in MCM, we
proposed a CUDA-enabled method to accelerate ARG matching, which could achieve
10,000× the speed running on CPUs.

Appendix B.2. ARG Matching

It should be noted that finding the optimal matching between two ARGs is NP-hard
and can be formulated as a quadratic assignment problem (QAP) [60]. Basically, the optimal
matching can be found by solving the following optimization problem:

max
M ∈ Rn1×n2

1
2

n1

∑
u=1

n2

∑
i=1

n1

∑
v=1

n2

∑
j=1

s1(e
(1)
uv , e(2)ij)MuiMvj + α

n1

∑
u=1

n2

∑
i=1

s2(u, i)Mui,

s.t. ∀u
n2

∑
i=1

Mui ≤ 1, ∀i
n1

∑
u=1

Mui ≤ 1, ∀u, i Mui ∈ {0, 1}
(A5)

where s1(euv, eij), s2(u, i), and α are the same to the ones in Equation (2) in the main body.
A graduated-assignment-based algorithm was proposed in [27] for finding a sub-optimal
matching solutions between two ARGs. A simplified verion of this algorithm was proposed
in [28], which runs much faster with little compromise in accuracy. Nevertheless, the
matching matrix solved by [28] does not always fulfill the constraints in Equation (A5)
in the main body, and may produce ambiguous matching results. We develop a greedy
iterative method that converts the soft matching matrix M into a hard matching matrix (i.e.,
containing binary values). Our method finds the maximum in M, sets it to 1, and sets all
other elements in the same row and column to 0. This step is applied to the rest of M until
the sum of every row/column in M is at most 1.

The above graph matching algorithm still incurs a substantial computational cost when
applied to large-scale graph datasets (e.g., the QM9 dataset). We, therefore, implemented
a version accelerated by GPU computing, which makes it possible for us to apply MCM
to large-scale datasets. The efficiency of our GPU-enabled ARG matching algorithm was
discussed in Section 3.5.

Appendix B.3. Simplified Graduated Assignment Algorithm for ARG Matching

The graduated assignment algorithm [27] finds sub-optimal graph matching solutions
by iteratively solving the first-order Taylor expansion of QAP (Equation (A5)). A simplified
graduated assignment algorithm was later proposed by [28] (pseudo codes included in
Algorithm A1). It first finds the soft assignment matrix that relaxes the constraint Mai ∈
{0, 1} to lie in the continuous range [0, 1], then converts it into hard assignment in a greedy
way. Algorithm A1 shows the iteration steps to obtain the approximated assignment
matrix. Given the initialization of M0, the objective function E(M) in Equation (A5) can
be approximated via a Taylor expansion at M0; thus, the original optimization problem
is equivalent to the assignment problem that maximizes ∑n1

a=1 ∑n2
i=1 QaiMai, where Qai =

∂E(M)
∂Mai

∣∣∣∣
M=M0

is the partial derivative. The optimal M at the current step will substitute back

as the new initialization and repeat the Taylor approximation period until convergence.
One efficient way to solve an assignment with a constraint (row or column summed

up to 1) is by taking softmax with control parameter β > 0 along with the constrained
rows/columns, so that M = softmax(βQ). Increasing β will push the elements in M to
be either 0 or 1 and result in a hard matching when β −→ ∞. However, the assignment
problem in ARG matching has two constraints (both row and column summed up to 1).
To achieve them, the solver can first perform the element-wise exponential operation
such that Mai = exp(βQai), and then alternatively normalize the rows and columns until

Informatics 2023, 10, 8 14 of 21

convergance to a doubly stochastic matrix (i.e., a soft assignment between two input
ARGs) [61]. We initialize β with β0, and increase it at a rate βr at each iteration until beta
reaches a threshold β f . Finally, the soft assignment result M is converted into a hard
assignment by the greedy procedure explained in Appendix B.2.

Algorithm A1 Simplified graduated assignment for ARG matching.

1: Input: G1, G2, β0, βr, β f
2: Output: Hard assignment matrix M∗

3: β = β0 . Initialize β.
4: Mui = s1(u, i), ∀u ∈ G1, ∀i ∈ G2 . Initialize M.
5: while β ≤ β f do
6: ∀u ∈ G1, ∀i ∈ G2
7: Qui =

1
2 ∑n1

v=1 ∑n2
j=1 s2(euv, eij)Mvj + αs1(u, i) . Taking the partial derivative.

8: Mui = exp (βQui) . Element-wise exponential operation.
9: ∀u ∈ G1, ∀i ∈ G2

10: M′ui =
Mui

∑
n2
j=1 Muj

. Normalize by row.

11: Mui =
M′ui

∑
n1
v=1 M′vi

. Normalize by col.

12: β = β ∗ (1 + βr) . Increase β.
13: return M∗ ←− greedy_hard_assignment(M)

Appendix B.4. GPU Accelerated ARG Matching

To handle pair-wise matching, we parallelize the process across GPUs to accelerate
matching. We implement Line 5–13 of Algorithm A1 with a custom CUDA kernel to process
the matching of multiple molecule pairs concurrently. Specifically, each cooperative thread
array (CTA) of the GPU is assigned to compute the matching between two molecules. In
Algorithm A1, the computation of partial derivative and exponential are element-wise
operations is performed. Therefore, we use each thread within the CTA to compute one
element in the assignment matrix and all threads work cooperatively to normalize the
assignment matrix, which takes advantage of different levels of parallelism on the GPU.
We also implement CUDA kernels for computing node- and edge (relation)- similarity and
the greedy hard-assignment calculation procedure, so the whole matching algorithm is
offloaded onto GPU.

This implementation scales up to a 10-GPU distribution by a workload-partition
algorithm, which also alleviates the memory pressure on the GPU. The algorithm follows
the principles that no communication between two partitions is needed and the matching
of every partition consists of the whole matching result. In this algorithm, we fetch a batch
of molecules first, and assign this batch to other non-overlapped batches in the dataset
without repeating as different partitions. We perform the matching between molecules
from two batches, respectively, in each partition. If there is no unrepeated non-overlapped
batches in the dataset, we perform the matching for every molecule in the batch.

Appendix B.5. Complexity Analysis

In this section, we analyze the computational complexity of the proposed graph match-
ing method from two aspects: (1) the simplified graduated assignment in Algorithm A1,
and (2) the GPU accelerated matching algorithm in Appendix B.4.

The graduated assignment approach for matching ARGs has a low order of compu-
tational complexity O(l1l2), where l1 and l2 are the numbers of edges in the graphs. The
theoretical computational analysis is discussed in [27,28]. Note that this complexity de-
pends on both the graph size and the sparsity of graphs, that is, the graduated assignment
approach becomes more efficient for pairs of sparser graphs. Another worst case analysis
of complexity is O(n2

1n2
2), where n1 and n2 represent the numbers of nodes in the graphs.

Since l1 < n2
1 and l2 < n2

2, the complexity O(l1l2) << O(n2
1n2

2) holds for almost all cases. If

Informatics 2023, 10, 8 15 of 21

two input graphs are both fully connected, the graduated assignment achieves its worst
case of complexity, O(n2

1n2
2). In real scenarios, the graph is usually sparse (l1 ∝ n1 and

l2 ∝ n2) and the complexity becomes O(n1n2).
In addition, we take advantage of the massive parallelism of GPU to address the

challenge of complexity. The worst-case complexity of graph matching in Algorithm A1 is
O(n2

1n2
2). In parallel machines such as GPU, we use parallel-step complexity to asymptoti-

cally describe the number of operations performed by threads. In step s of tree reduction,

threads perform n2
1n2

2
s2 independent operations. Therefore, the parallel-step complexity is

O(log(n1) + log(n2)) [62]. Likewise, the matching of all pairs of graphs employs a similar
parallelism strategy. In particular, N graphs require N(N−1)

2 matching operations, so the
parallel-step complexity isO(log(N)). The overall parallel-step complexity for matching N
graphs is O(log(N)log(n)), where n is the average number of nodes in the graphs. There-
fore, the CUDA-enhanced matching time is sublinear to the number of graphs and graph
sizes, which aligns with the results shown in Figure 7.

Appendix C. Implementation Details and Additional Results

Appendix C.1. Settings of ARG Matching

We used the following settings for the ARG matching Algorithm A1: α = 0.7, β0 = 1,
β f = 30, βr = 0.075. The node-wise and edge-wise similarity measurements, s1(au, ai) and
s2(euv, eij), are task-specific.

In the synthetic data experiment, we defined

s1(au, ai) = exp(−||au − ai||22)

s1(ruv, rij) = exp(−3.14 · ||ruv − rij||22)

s1(au, ai) = 1ui

s1(ruv, rij) = 1(uv,ij)

On the QM9 dataset, where geometric information, i.e., 3D coordinates for atoms, is
equipped, we added bond lengths as edge attributes and the compatibility measurement
was designed as

s1(au, ai) = 1ui

s1(ruv, rij) = 1(uv,ij) · exp(−2||ruv − rij||22)

Appendix C.2. Training Settings Used in the Synthetic Data Experiment

The following configurations were applied to all GNN variants. Each baseline model
contains two GNN convolutional layers followed by a readout function and then a three-
layer MLP to produce predictions. We used a batch size of 32 for the small dataset (500)
and 512 for the large one (10,000). We used the cross-entropy loss to train all models
and used the Adam optimizer with default initial weights implemented in PyTorch. To
prevent overfitting, we used early stopping on the validation loss. We conducted a grid
search on the learning rate, batch size and hidden dimension in GNNs. The hyperpa-
rameters were tuned as the following: (1) learning rate ∈ {0.1, 0.01, 0.001}; (2) hidden
dimension ∈ {32, 64}; (3) readout function ∈ {max, average}; and (4) edge-weight normal-
ization ∈ {True, False}.

Appendix C.3. Additional Results in the Synthetic Data Experiment

Table A1 shows that MCL-LR is particularly better than GAT, GCN, and GIN at
classifying graphs generated from two similar templates, 2 and 5.

Informatics 2023, 10, 8 16 of 21

Table A1. Prediction accuracy for each class on the synthetic dataset.

Class 1 Class 2 Class 3 Class 4 Class 5

GAT 0.710± 0.030 0.495± 0.112 0.950± 0.050 1.000± 0.000 0.515± 0.096
GCN 0.920± 0.014 0.766± 0.037 0.857± 0.047 0.897± 0.024 0.686± 0.055
GIN 0.886± 0.037 0.296± 0.348 0.955± 0.017 0.940± 0.037 0.668± 0.354

MCL-LR 0.996± 0.002 0.996± 0.004 0.994± 0.004 0.998± 0.003 0.999± 0.001

Appendix C.4. Experimental Settings of Molecular Benchmarks

The following configurations were applied to all training tasks on the seven molecular
benchmarks. We used a batch size of 32 and maximal training epoch of 100. We used the
Adam optimizer with a learning rate of 0.001. All experiments were conducted on one Tesla
V100 GPU. Before training, we performed data cleaning to remove certain molecules that
failed to pass the sanitizing process in the RDKit or contained abnormal valence of a certain
atom, as suggested in [63,64]. The detailed dataset statistics are summarized in Table A2.
For two motif-level pretraining frameworks, MICRO-Graph [33] and MGSSL [34], they
were pretrained on 250k unlabeled molecules sampled from the ZINC15 [65] database and
fine tuned on each downstream task. MGSSL performed the same experiments so we tried
reproduction based on their available code and optimal model settings. MICRO-Graph did
not perform experiments on the datasets we worked on, so we followed the pretraining
and finetuning suggestions in MGSSL in reproduction. We were not able to reproduce the
same results for MGSSL reported in [34]. Hence, we copy MGSSL’s reported results instead
of our reproductions.

Table A2. Dataset statistics.

Dataset # Graphs # Graphs after
Cleaning # Tasks

bace 1513 1513 1
bbbp 2039 1953 1

clintox 1478 1469 2
sider 1427 1295 27
tox21 7831 7774 12

toxcast 8578 7245 617
hiv 41,127 41,125 1

Appendix C.5. Training Settings of MCM+MXMNet on QM9

To make a fair comparison, we used the same training settings (e.g., training and
evaluation data splitting, learning rate initialization/decay/warm-up, exponential moving
average of model parameters, etc.) employed in MXMNet [24]. We also kept the same
MXMNet configurations (basis functions and hidden layers) as reported in its original
paper. The weights of MCM+MXMNet are initialized using the default method in Pytorch.
The Adam optimizer was used with the maximal training epoch as 900 for all experiments.
The initial learning rate was set to 10−3 or 10−4. A linear learning-rate warm-up over
1 epoch was used. The learning rate is then decayed exponentially with a ratio of 0.1 every
600 epochs. To evaluate on valid/test data, the model parameters are the exponential
moving average of parameters from historical models with a decay rate of 0.999. Early
stopping based on the validation loss was used to prevent overfitting. The motif vocabulary
size in MCM was set to 100 or 600. The MCM only adds a small number of parameters (see
Table A3).

Informatics 2023, 10, 8 17 of 21

Table A3. Model parameters in DimeNet, MXMNet and MXMNet+MCM.

Model # Params

DimeNet 2,100,064
MXMNet 3,674,758

MXMNet+MCM, vocab_size = 100 3,703,302
MXMNet+MCM, vocab_size = 600 3,767,302

Appendix C.6. Efficiency of Executing MCM on QM9

Building motif vocabulary from subgraphs is the most time-consuming part in MCM,
especially for large-scale datasets. Hierarchical clustering on a gigantic size of subgraphs
is prohibitively expensive. For example, from the QM9 dataset, we obtained 0.5 million
one-hop subgraphs. Many of them turned out to be highly similar to each other up to a 3D
transformation (rotation + translation). To give an example, the carbonyl functional group
(C=O) is quite common in organic compounds. However, the length of the C=O bond in
carbonyl may change depending on its local context [66]. To remove “redundancy”, we
applied a hierarchical clustering technique using average linkage [25], implemented in
the Orange3 library [26], to group highly A motifs into the most representative subgraph
in a cluster, which has the highest total similarity to the rest of subgraphs in the cluster.
For large datasets such as QM9, there is a huge number of subgraphs, which makes the
clustering analysis prohibitively expensive for us. To make the computation feasible for
QM9, we randomly sampled 40 sets of subgraphs. For each subset, we performed clustering
and chose the 1000 most representative subgraphs. Most “redundant” subgraphs were,
thus, removed and we obtained a merged subgraph set of size 44,000. We repeated the
procedure: divided them into four subsets, performed clustering to obtain 3000 subgraphs
for each subset and, finally, obtained a merged set of size 12,000. Another round of
single-linkage clustering analysis was applied to the pooled set to find the final 100 or
600 representative subgraphs as the motif vocabulary. We applied the same clustering
technique to the 12,000 representative subgraphs in 100 or 600 clusters, and chose one
representative subgraph from each cluster as a motif.

To cluster subgraphs using hierarchical clustering, we needed to run a large number of
pair-wise matching processes, which took 4.4 h for each subset on 8 RTX 2080 GPUs. With-
out considering the geometric information such as dataset ogb-molhiv, the graph-matching
part is approximately 1.5 times faster. After constructing the motif vocabulary of size 100,
then it takes around 13 h to generate the motif matching scores for the whole QM9. Impor-
tantly, though, the matching step can be parallelized in a very efficient manner, resulting in
significantly lowered computation time. Additionally, the motif vocabulary construction
and scoring process only needs to be performed once per dataset. Once constructed, the
motif vocabulary can be reused without additional computational expenses.

Appendix C.7. Additional Results Demonstrating MCM’s Interpretability

Figure A1 shows the 3D visualization of several motifs that represent diverse functional
groups, including Fluorophenyl, Trifluoromethyl, Nitrile, Aldehyde, Ester and Methyl. The
visualizations confirm that the learned motifs are semantically meaningful and improve
the interpretability of our approach.

Table A4 shows the nine local structure categories of the carbons visualized in Figure 6.

Informatics 2023, 10, 8 18 of 21

Figure A1. 3D visualization of motifs and the functional groups they represent.

Table A4. The first column lists the structural abbreviations corresponding to the legends in
Figure 6. The second column lists the corresponding chemical groups. The first column shows
the structure formula.

Abbr Name Structural Formula

RPhF Fluorophenyl

RCF3 Trifluoromethyl

RCH2OH Alcohol

RCHO Aldehyde

RCOOR’ Ester

RCOR’ Ketone

RCN Nitrile

RCH2R’ Methylene

RCH3 Methyl

References
1. Barrow, H.; Popplestone, R. Relational descriptions in picture processing. Mach. Intell. 1971, 6, 377–396.
2. Tsai, W.H.; Fu, K.S. Error-correcting isomorphisms of attributed relational graphs for pattern analysis. IEEE Trans. Syst. Man

Cybern. 1979, 9, 757–768. [CrossRef]

http://doi.org/10.1109/TSMC.1979.4310127

Informatics 2023, 10, 8 19 of 21

3. Baskin, I.I.; Palyulin, V.A.; Zefirov, N.S. A neural device for searching direct correlations between structures and properties of
chemical compounds. J. Chem. Inf. Comput. Sci. 1997, 37, 715–721. [CrossRef]

4. Sperduti, A.; Starita, A. Supervised neural networks for the classification of structures. IEEE Trans. Neural Netw. 1997, 8, 714–735.
[CrossRef] [PubMed]

5. Gori, M.; Monfardini, G.; Scarselli, F. A new model for learning in graph domains. In Proceedings of the IEEE International Joint
Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005; pp. 729–734.

6. Scarselli, F.; Yong, S.L.; Gori, M.; Hagenbuchner, M.; Tsoi, A.C.; Maggini, M. Graph neural networks for ranking web pages. In
Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, Washington, DC, USA, 19–22 September
2005; pp. 666–672.

7. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
8. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. In Proceedings of the

International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014.
9. Henaff, M.; Bruna, J.; LeCun, Y. Deep Convolutional Networks on Graph-Structured Data. arXiv 2015, arXiv:1506.05163.
10. Duvenaud, D.K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P. Convolutional networks

on graphs for learning molecular fingerprints. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 7–12 December 2015; pp. 2224–2232.

11. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In
Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 3844–3852.

12. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated graph sequence neural networks. In Proceedings of the International
Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

13. Monti, F.; Boscaini, D.; Masci, J.; Rodola, E.; Svoboda, J.; Bronstein, M.M. Geometric deep learning on graphs and manifolds
using mixture model cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI,
USA, 21–26 July 2017.

14. Chang, M.B.; Ullman, T.; Torralba, A.; Tenenbaum, J.B. A Compositional Object-Based Approach to Learning Physical Dynamics.
In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

15. Gilmer, J.; Schoenholz, S.; Riley, P.F.; Vinyals, O.; Dahl, G. Neural Message Passing for Quantum Chemistry. In Proceedings of the
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.

16. Chang, J.; Gu, J.; Wang, L.; Meng, G.; Xiang, S.; Pan, C. Structure-aware convolutional neural networks. In Proceedings of the
Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018.

17. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

18. Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.; Jegelka, S. Representation learning on graphs with jumping knowledge
networks. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.

19. Ramakrishnan, R.; Dral, P.O.; Rupp, M.; Von Lilienfeld, O.A. Quantum chemistry structures and properties of 134 kilo molecules.
Sci. Data 2014, 1, 1–7. [CrossRef]

20. Schütt, K.; Kindermans, P.J.; Sauceda Felix, H.E.; Chmiela, S.; Tkatchenko, A.; Müller, K.R. Schnet: A continuous-filter
convolutional neural network for modeling quantum interactions. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

21. Lu, C.; Liu, Q.; Wang, C.; Huang, Z.; Lin, P.; He, L. Molecular property prediction: A multilevel quantum interactions modeling
perspective. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
Volume 33, pp. 1052–1060.

22. Klicpera, J.; Groß, J.; Günnemann, S. Directional message passing for molecular graphs. In Proceedings of the International
Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

23. Klicpera, J.; Giri, S.; Margraf, J.T.; Günnemann, S. Fast and uncertainty-aware directional message passing for non-equilibrium
molecules. In Proceedings of the Machine Learning for Molecules Workshop, Neural Information Processing Systems, Online,
12 December 2020.

24. Zhang, S.; Liu, Y.; Xie, L. Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures. In
Proceedings of the Machine Learning for Structural Biology Workshop at the 34th Conference on Neural Information Processing
Systems, Online, 6–12 December 2020.

25. Johnson, S.C. Hierarchical clustering schemes. Psychometrika 1967, 32, 241–254. [CrossRef]
26. Demšar, J.; Curk, T.; Erjavec, A.; Črt Gorup.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.; et al.

Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353.
27. Gold, S.; Rangarajan, A. A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 1996,

18, 377–388. [CrossRef]
28. Menke, J.; Yang, A.Y. Graduated Assignment Graph Matching for Realtime Matching of Image Wireframes. In Proceedings of the

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020;
pp. 5909–5916.

29. Wang, M.; Zheng, D.; Ye, Z.; Gan, Q.; Li, M.; Song, X.; Zhou, J.; Ma, C.; Yu, L.; Gai, Y.; et al. Deep Graph Library: A Graph-Centric,
Highly-Performant Package for Graph Neural Networks. arXiv 2019, arXiv:1909.0131.

http://dx.doi.org/10.1021/ci940128y
http://dx.doi.org/10.1109/72.572108
http://www.ncbi.nlm.nih.gov/pubmed/18255672
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1038/sdata.2014.22
http://dx.doi.org/10.1007/BF02289588
http://dx.doi.org/10.1109/34.491619

Informatics 2023, 10, 8 20 of 21

30. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907.
31. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? In Proceedings of the International

Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
32. Wu, Z.; Ramsundar, B.; Feinberg, E.N.; Gomes, J.; Geniesse, C.; Pappu, A.S.; Leswing, K.; Pande, V. MoleculeNet: A benchmark

for molecular machine learning. Chem. Sci. 2018, 9, 513–530. [CrossRef]
33. Subramonian, A. MOTIF-Driven Contrastive Learning of Graph Representations. In Proceedings of the AAAI Conference on

Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 15980–15981.
34. Zhang, Z.; Liu, Q.; Wang, H.; Lu, C.; Lee, C.K. Motif-based Graph Self-Supervised Learning for Molecular Property Prediction.

In Proceedings of the 35th Conference on Advances in Neural Information Processing Systems, Online, 6–14 December 2021;
Volume 34.

35. Landrum, G. Rdkit documentation. Release 2013, 1, 4.
36. Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.; Leskovec, J. Strategies for Pre-training Graph Neural Networks. In

Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
37. Ramsundar, B.; Eastman, P.; Walters, P.; Pande, V. Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy,

Drug Discovery, and More; O’Reilly Media: Sebastopol, CA, USA, 2019.
38. Faber, F.A.; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz, S.S.; Dahl, G.E.; Vinyals, O.; Kearnes, S.; Riley, P.F.; Von Lilienfeld,

O.A. Prediction errors of molecular machine learning models lower than hybrid DFT error. J. Chem. Theory Comput. 2017,
13, 5255–5264. [CrossRef] [PubMed]

39. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
40. Peters, D. Problem of the Lengths and Strengths of Carbon—Fluorine Bonds. J. Chem. Phys. 1963, 38, 561–563. [CrossRef]
41. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.
42. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the

24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077.
43. Grover, A.; Leskovec, J. node2vec: Scalable Feature Learning for Networks. In Proceedings of the KDD: Proceedings. International

Conference on Knowledge Discovery & Data Mining, San Francisco, CA, USA, 13–17 August 2016; Volume 2016, pp. 855–864.
44. Sun, F.Y.; Hoffman, J.; Verma, V.; Tang, J. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning

via Mutual Information Maximization. In Proceedings of the International Conference on Learning Representations, New Orleans,
LA, USA, 6–9 May 2019.

45. Velickovic, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. ICLR (Poster) 2019, 2, 4.
46. Peng, Z.; Huang, W.; Luo, M.; Zheng, Q.; Rong, Y.; Xu, T.; Huang, J. Graph representation learning via graphical mutual

information maximization. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 259–270.
47. Henderson, K.; Gallagher, B.; Eliassi-Rad, T.; Tong, H.; Basu, S.; Akoglu, L.; Koutra, D.; Faloutsos, C.; Li, L. Rolx: Structural

role extraction & mining in large graphs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 1231–1239.

48. Narayanan, A.; Chandramohan, M.; Chen, L.; Liu, Y.; Saminathan, S. subgraph2vec: Learning distributed representations of
rooted sub-graphs from large graphs. arXiv 2016, arXiv:1606.08928.

49. Ribeiro, L.F.; Saverese, P.H.; Figueiredo, D.R. struc2vec: Learning node representations from structural identity. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August
2017; pp. 385–394.

50. Hu, Z.; Dong, Y.; Wang, K.; Chang, K.W.; Sun, Y. Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 6–10 July 2020;
pp. 1857–1867.

51. You, Y.; Chen, T.; Wang, Z.; Shen, Y. When does self-supervision help graph convolutional networks? In Proceedings of the
International Conference on Machine Learning, Online, 13–18 July 2020; pp. 10871–10880.

52. Rong, Y.; Bian, Y.; Xu, T.; Xie, W.; Wei, Y.; Huang, W.; Huang, J. Self-Supervised Graph Transformer on Large-Scale Molecular
Data. In Proceedings of the NeurIPS, Online, 6–12 December 2020.

53. Sun, K.; Lin, Z.; Zhu, Z. Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled
nodes. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 5892–5899.

54. Qiu, J.; Chen, Q.; Dong, Y.; Zhang, J.; Yang, H.; Ding, M.; Wang, K.; Tang, J. Gcc: Graph contrastive coding for graph neural
network pre-training. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Virtual Event, 6–10 July 2020; pp. 1150–1160.

55. Hafidi, H.; Ghogho, M.; Ciblat, P.; Swami, A. Graphcl: Contrastive self-supervised learning of graph representations. arXiv 2020,
arXiv:2007.08025.

56. Hassani, K.; Khasahmadi, A.H. Contrastive multi-view representation learning on graphs. In Proceedings of the International
Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 4116–4126.

57. You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; Shen, Y. Graph contrastive learning with augmentations. Adv. Neural Inf. Process.
Syst. 2020, 33, 5812–5823.

http://dx.doi.org/10.1039/C7SC02664A
http://dx.doi.org/10.1021/acs.jctc.7b00577
http://www.ncbi.nlm.nih.gov/pubmed/28926232
http://dx.doi.org/10.1063/1.1733694

Informatics 2023, 10, 8 21 of 21

58. Xu, M.; Wang, H.; Ni, B.; Guo, H.; Tang, J. Self-Supervised Graph-Level Representation Learning with Local and Global Structure.
In Proceedings of the 38th International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 11548-11558.

59. Zhao, C.; Liu, S.; Huang, F.; Liu, S.; Zhang, W. CSGNN: Contrastive self-supervised graph neural network for molecular interaction
prediction. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Online, 19–26 August 2021;
pp. 19–27.

60. Lawler, E.L. The quadratic assignment problem. Manag. Sci. 1963, 9, 586–599. [CrossRef]
61. Sinkhorn, R. A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Stat. 1964, 35, 876–879.

[CrossRef]
62. Harris, M. Optimizing cuda. Supercomputing 2007 Tutorial, Reno, NV, USA. November 2007. Available online:

https://www.enseignement.polytechnique.fr/profs/informatique/Eric.Goubault/Cours09/CUDA/SC07_CUDA_5_Optimization_
Harris.pdf (accessed on 4 January 2023).

63. Chen, J.; Zheng, S.; Song, Y.; Rao, J.; Yang, Y. Learning Attributed Graph Representation with Communicative Message Passing
Transformer. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI), Virtual Event,
19–27 August 2021; pp. 2242–2248.

64. Lim, S.; Lee, Y.O. Predicting chemical properties using self-attention multi-task learning based on SMILES representation.
In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021;
pp. 3146–3153.

65. Sterling, T.; Irwin, J.J. ZINC 15–ligand discovery for everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [CrossRef] [PubMed]
66. Walsh, A. The dependence of the properties of carbonyl compounds upon polarity. Trans. Faraday Soc. 1947, 43, 158–163.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1287/mnsc.9.4.586
http://dx.doi.org/10.1214/aoms/1177703591
https://www.enseignement.polytechnique.fr/profs/informatique/Eric.Goubault/Cours09/CUDA/SC07_CUDA_5_Optimization_Harris.pdf
https://www.enseignement.polytechnique.fr/profs/informatique/Eric.Goubault/Cours09/CUDA/SC07_CUDA_5_Optimization_Harris.pdf
http://dx.doi.org/10.1021/acs.jcim.5b00559
http://www.ncbi.nlm.nih.gov/pubmed/26479676
http://dx.doi.org/10.1039/tf9474300158

	Introduction
	Motif-Based Graph Representation Learning
	Motif Vocabulary Construction
	ARG Similarity Measurement
	Motif Convolution
	Coupling Motif Convolution with GNNs

	Experiments and Results
	Classification on the Synthetic Dataset
	Classification on Molecular Benchmarks
	Molecule Property Prediction on QM9
	Explainability of Motif Convolution
	Efficiency of GPU Accelerated Motif Convolution

	Related Works
	Discussion
	Conclusions
	Appendix A
	GPU-Enabled ARG Matching
	ARG Matching Used in MCM
	ARG Matching
	Simplified Graduated Assignment Algorithm for ARG Matching
	GPU Accelerated ARG Matching
	Complexity Analysis

	Implementation Details and Additional Results
	Settings of ARG Matching
	Training Settings Used in the Synthetic Data Experiment
	Additional Results in the Synthetic Data Experiment
	Experimental Settings of Molecular Benchmarks
	Training Settings of MCM+MXMNet on QM9
	Efficiency of Executing MCM on QM9
	Additional Results Demonstrating MCM's Interpretability

	References

