
 
 

 

 
Informatics 2023, 10, 24. https://doi.org/10.3390/informatics10010024 www.mdpi.com/journal/informatics 

Article 

Fan Fault Diagnosis Using Acoustic Emission and Deep  
Learning Methods 
Giuseppe Ciaburro 1,*, Sankar Padmanabhan 2, Yassine Maleh 3 and Virginia Puyana-Romero 4,5 

1 Department of Architecture and Industrial Design, Università degli Studi della Campania Luigi Vanvitelli, 
Borgo San Lorenzo, 81031 Aversa, Italy 

2 Department of Electronics and Communication Engineering, Hindustan Institute of Technology  
and Science, 603103 Chennai, TN, India 

3 Ecole Nationale des Sciences Appliquée (ENSA) Khouribga, Sultan Moulay Slimane University,  
25000 Beni Mellal, Morocco 

4 Department of Sound and Acoustic Engineering, Universidad de Las Américas, Quito EC170125, Ecuador 
5 Laboratory of Phonetics and Acoustics, Institute of Applied Linguistics, Universidad de Cádiz,  

11002 Cádiz, Spain 
* Correspondence: giuseppe.ciaburro@unicampania.it 

Abstract: The modern conception of industrial production recognizes the increasingly crucial role 
of maintenance. Currently, maintenance is thought of as a service that aims to maintain the 
efficiency of equipment and systems while also taking quality, energy efficiency, and safety 
requirements into consideration. In this study, a new methodology for automating the fan 
maintenance procedures was developed. An approach based on the recording of the acoustic 
emission and the failure diagnosis using deep learning was evaluated for the detection of dust 
deposits on the blades of an axial fan. Two operating conditions have been foreseen: No-Fault, and 
Fault. In the No-Fault condition, the fan blades are perfectly clean while in the Fault condition, 
deposits of material have been artificially created. Utilizing a pre-trained network (SqueezeNet) 
built on the ImageNet dataset, the acquired data were used to build an algorithm based on 
convolutional neural networks (CNN). The transfer learning applied to the images of the 
spectrograms extracted from the recordings of the acoustic emission of the fan, in the two operating 
conditions, returned excellent results (accuracy = 0.95), confirming the excellent performance of the 
methodology. 
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1. Introduction 
Today, indoor air quality is a topic that is being given massive attention. The 

concentration and definition of the primary pollutants found in the built environment are 
directly related to the main issues with Indoor Air Quality (IAQ) [1]. Energy conservation 
has forced greater insulation of buildings resulting in lower ventilation rates, and the use 
of new materials and equipment: solutions that increase concentrations of pollutants [2]. 
The quality of air in the built environments has been steadily declining over the previous 
few decades. Various scientific research has shown that there are contaminants in the air 
in homes at low concentrations that are difficult to quantify and can have health impacts 
[3–5]. Environmental discomfort is decreased, and health risks result from indoor 
pollution. Chemical (organic and inorganic substances), physical (ionizing and non-
ionizing radiation), and biological contaminants can all be included in this category 
(microorganisms, molds, mites). Exposure to indoor pollution predominates in 
comparison to exposure to outdoor pollution since a substantial portion of the population 
spends their time in enclosed environments [6]. 

A growing body of research has shown that indoor pollution increases the chance of 
developing respiratory disease, most likely due to airway inflammation caused by 
oxidative stress processes [7]. In addition, the main trigger of sensitization and 
aggravation in asthma patients are indoor allergens [8]. Currently, the problem has 
assumed greater relevance due to the current COVID-19 pandemic which has highlighted 
the problems of spreading the disease [9–11]. The ways in which biological agents can 
spread in a confined environment are essentially the following: direct, indirect, and 
airborne transmission [12,13]. In airborne transmission, there is a dissemination of the 
biological agent, in the form of small particles large enough to be inhaled, which maintains 
its infective capacity over time and space. Microorganisms can be carried great distances 
by air currents and be inhaled by the host. Building Related Illness (BRI) is a 
symptomatology that comprises infectious diseases (caused by bacteria, fungi, and 
viruses) as well as allergy diseases (allergic alveolitis, asthma, and legionella), all of which 
are brought on by the cumulative long-term effects of toxic substances [14,15]. Sick 
Building Syndrome (SBS) is a symptomatology that has been statistically proven to affect 
groups of people who operate primarily in buildings with air conditioning systems. SBS 
symptoms include respiratory, ocular, cutaneous, neuropsychiatric, and unpleasant odor 
manifestations [16,17]. 

One of the most important sources of indoor pollution is from air conditioning 
systems [18]. They act as incubators for germs and receptacles for colonies of molds, yeasts 
and bacteria, whose spores cause many allergies and bronchopneumonia. This 
phenomenon also generates microbial spread within the confined environment, that is, a 
rapid and endemic increase in contagions among users of the same building, air-
conditioned in all its parts by the same system [19]. The spread of biological agents is due 
to the need for these systems to move previously conditioned air, which results in their 
transmission by air [20]. An essential element in the movement of air flows is the fan [21]. 
In addition to imposing the movement of the air, the fan can itself act as a source of 
diffusion of the biological agent [22]. This is because material deposits on the blades of the 
fan over time, which becomes an ideal place for the proliferation of infectious agents. In 
order to prevent these agents from being airborne to the occupants of the confined space 
over time, appropriate maintenance interventions must be planned to ensure that 
equipment is cleaned and sanitized [23]. 

The concept of maintenance expresses the need to preserve and maintain equipment 
in a fully efficient state. Put in this way, maintenance activity seems to be limited to the 
simple corrective action that must be performed in case of failure [24]. In such a case, the 

(https://creativecommons.org/license
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necessary maintenance action is aimed at repairing the entity and restoring the initial 
operating conditions in the shortest possible time. Alternatively, and often to prevent 
corrective maintenance activities, other maintenance modes can then be adopted that seek 
to avoid the occurrence of the failure by predicting and correcting it before it occurs. 
However, this type of maintenance, unlike corrective maintenance, is not so intuitive; 
rather, before it can be implemented it requires a careful study of the type and cause of 
the failure to which the equipment is subjected [25]. In the present case, we are interested 
in preventing the deposition of material on the surface of the fan blades, which, as 
mentioned above, becomes a place for the proliferation of pathogens. In this sense, it is 
necessary to identify a methodology that can uniquely identify this condition. 

In an air handling system, it is the fan that emits the most noise [26]. The problem 
can be exacerbated by the superimposition of secondary noise generated by the system 
itself, such as the forced passage of air through ducts, vents, and grilles [27]. Fan noise has 
a mechanical origin and an aerodynamic origin [28]. Mechanical noise is caused by the 
structural radiation of the motor block, and other related parts, resulting from the stress 
of fluctuating forces related to both the rotating parts and the turbulence of the airflow 
[29]. Aerodynamic noise is determined by the periodic impulses that each impeller blade 
imparts to the nearby air and by the contributions originated by vortices in the turbulent 
wake of the blades [30]. The deposition of material on the blade surface results in a 
substantial change in its aerodynamics, which alters its acoustic emission. However, this 
does not result in a change that can be evaluated by common sound analysis techniques. 

Recently, techniques based on machine learning have been widely used in the 
scientific community for fault identification [31–34]: The objective is to be able to gather 
as much information as possible on the condition of machinery in the real time, often using 
sensors, and to correlate it with the rate of component deterioration or system 
performance. Algorithms based on Machine Learning automatically extract knowledge 
from data thanks to the data inputs received, without the need for specific commands 
from the developer [35–38]. As is typical of artificial intelligence, in these models the 
computer can decide for itself which patterns to follow to produce the intended outcome. 
The system gets a collection of data required for training, calculating the relationships 
between the input data and the output data, in the learning process that distinguishes 
various algorithms. These connections represent the model’s parameters that the system 
has estimated. [39–43]. Xu et al. [44] used an algorithm based on extreme machine learning 
for fan failure diagnosis. To simulate the failure, they drilled holes in the blade of an axial 
fan, thus resulting in rotor imbalance. The impeller vibration signals were collected and 
sent to the classifier to identify the rotor misalignment error. Huang et al. [45] have 
exploited four different algorithms based on Machine Learning to diagnose fan failures of 
an axial fan. ANN, SVM, KNN, and RFE were used returning different results, from their 
comparison the ANN-based classifier returned the best performance in recognizing 
failures of the artificially created fan blades. Four different types of fan failures were 
artificially induced: a hole in the blade, a break in the blade, a vertical and horizontal 
crack. Zhang et al. [46] exploited both acoustic and vibrational emission signals to train a 
one-dimensional convolutional neural network to identify damage to a centrifugal fan 
blade. The multi-source signals were first fused through a weighted methodology with 
adaptive data synchronization. CNN then extracts the characteristic from the signals and 
uses them for damage recognition. Xie et al. [47] used the vibration signals of four 
centrifugal fan blade failure states. For the feature extraction the authors adopted the 
refined generalized multiscale entropy. The features were then used as input for a Support 
Vector Machine obtaining good results in fault classification. 

A defect in a fan blade causes an imbalance that affects the rotation around its axis. 
Choudhary et al. [48] used infrared thermography coupled with ML-based algorithms to 
identify bearing failures in induction motors. The infrared thermal image of the bearings 
in use was subjected to the two-dimensional discrete wavelet transform by the authors. 
Prior to the implementation of various classifiers based on the complex decision tree, 
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linear discriminant analysis, and support vector machine for fault identification, principal 
component analysis allowed for the reduction of the dimensionality of the extracted data. 
Hsu et al. [49] have developed an automatic system for detecting wind turbine failures 
based on the data collected by the sensors for monitoring the rotation speed, temperature, 
and voltage at the nacelle. The system also provides tools for predicting plant mainte-
nance needs. Rauber et al. [50] implemented an experimental methodology to evaluate 
failures from vibration signals based on ML. The authors used one-dimensional convolu-
tional neural networks, support vector machines, nearest neighbor K classifier, random 
forests, and Case West-ern Reserve University survey data [51] to diagnose satellite faults 
using ML. Remote control of the satellites takes place based on telemetry data collected in 
real time, resulting in a quantity of data (Big Data) that is difficult to monitor, at least for 
the human eye. However, these data represent a significant source of information that can 
be extracted with the use of ML. Using the telemetry parameters of the Egyptsat-1 satellite, 
which was launched in April 2007 and unplugged because of a defect in 2010, the authors 
were able to identify the satellite’s flaws. 

In this work, a methodology for the detection of dust deposits on the blades of an 
axial fan was implemented through acoustic emission acquisition and fault identification 
based on Deep Learning. First, the data relating to the different operating conditions were 
collected. Two operating conditions have been identified: No-Fault, Fault. In the No-Fault 
condition, the fan blades are perfectly clean and there are no accumulations of material on 
the surface. In the Fault condition, on the other hand, deposits of material have been arti-
ficially created on the fan blades to simulate those normally found in the normal operation 
of the equipment. Through a dichotomous categorization, the measurements of the fan’s 
acoustic emission in the various operating circumstances have been appropriately classi-
fied (No-Fault, Fault). The gathered information was utilized to train a convolutional neu-
ral network (CNN) algorithm for the automatic recognition of the fan’s operating charac-
teristics. The paper is set up like follows: The properties of the fan and the process used 
to collect data are both covered in detail in Section 2. In addition, the approaches for fea-
ture extraction and algorithm training based on deep learning are discussed. The out-
comes of using this methodology are shown in Section 3, along with a summary of its 
advantages and a list of its drawbacks. Section 4 concludes by summarizing the findings 
of this investigation. 

2. Materials and Methods 
In this study, a procedure for the automatic identification of the operating conditions 

of a fan was developed. As a result, the system signals the state of the material deposited 
on the fan blades in order to schedule adequate maintenance (Figure 1). 
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Figure 1. Flow chart of the automated system for fan fault diagnosis. 

The procedure described in Figure 1 can signal in advance the need for maintenance 
intervention to remove the dust deposits on the fan blades. In this way we intervene only 
when necessary, avoiding interrupting production if not requested. 

2.1. Introduction to Fan Systems 
A fan is a rotating machine that employs mechanical energy to maintain an uninter-

rupted flow of air at a fixed pressure without changing its density using one or more 
blades. Therefore, the primary function of a fan is to circulate a specific volume of air at a 
pressure high enough to overcome the resistance of the system it is attached to. Different 
types and sizes of fans can be employed for a particular flow and pressure demand. 

The selection of the most appropriate fan for each case must therefore be carried out 
considering factors such as the space occupied, the type of motor with which to power it, 
the noise level, the mechanical and aerodynamic efficiency, the mechanical resistance and, 
finally, the cost [52]. 

Fans are classified into two main types, depending on their construction design: cen-
trifugal and axial fans. In the axial fans (Figure 2) the air flow passes through the fan 
blades essentially in a direction parallel to the rotation axis of the impeller, keeping the 
average flow direction unchanged, despite the onset of whirling phenomena due to the 
rotation of the blades. The major component of the force applied by the blades is in the 
axial direction from the inlet to the outlet, which causes an increase in pressure. The main 
characteristics of an axial fan strongly depend on the number of blades and on the angle 
of these with respect to the flow. These fans are more suitable for situations with a high 
ratio between flow and pressure. 
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Figure 2. Axial fan scheme (front and side view). 

Axial fans tend to rotate with a higher speed at the tip of the blades than their cen-
trifugal counterpart for the same performance, tending to be noisier. They are also more 
affected by blade stall phenomena. In contrast, they may be joined in series or parallel 
configurations of many fans, are more compact than centrifugal fans, and readily change 
the direction of flow by simply changing the direction of spin. They are also more suitable 
for handling large flow rates. Centrifugal fans, on the other hand, have greater perfor-
mance for high operating pressures. In this work, an axial fan was studied, a very common 
type in the ventilation of confined spaces. 

2.2. The Noise Made by a Fan 
The noise produced by the fans can essentially be divided into two main contribu-

tions: mechanical and aerodynamic. Mechanical noise is produced by the structural radi-
ation of the engine block, and of other connected parts, resulting from the solicitation of 
fluctuating forces linked both to the rotating parts and to the turbulence of the air flow 
[26]. The acoustic emission due to mechanical noise can be attenuated by using joints and 
anti-vibration supports and by adding foundation weights to reduce the vibrations of the 
structure. Aerodynamic noise is due to the periodic impulses that each blade conveys to 
the air and by contributions due to vortices in the turbulent wake of the air flow near the 
blades. The first contribution is produced by the rotation of the blades that make up the 
fan and is the result of the pressure fluctuations caused by the periodic variations of the 
forces in the fluid. This type of noise is caused by the thrust and drag forces present on 
the blades moving in the air, by the impulsive interaction of the blades with the incoming 
flow that is not perfectly straight, and by the interaction with any nearby obstacles [27]. 
Given the regularity of the passage of the blades near the obstacles, the noise emitted is a 
tonal noise, with a single frequency (Blade Passing Frequency—BPF) described by Equa-
tion (1). 𝐵𝑃𝐹 = 𝑧 × 𝑛, (1) 

In the Equation (1) the terms have the following meaning: 
• z = number of blades 
• n = rotation frequency of the fan shaft. 

The contribution to aerodynamic noise due to vortices is caused by a series of random 
forces caused by non-stationary fluid fields, by turbulence and by its interaction with rigid 
structures encountered by the flow. These forces may be due to the widening and narrow-
ing of the passages where the fluid flows, asymmetries of the system, the impact of the 
flow on obstacles such as blades, and the respective formation of vortices. This type of 
noise is caused by the fluctuation of fluid forces in the time and frequency domains, and 
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depends mainly on the flow velocity, the fan design, and the size and roughness of the 
sections [28]. 

Aerodynamic noise has the greatest influence on total noise. In very large machines, 
however, mechanical noise becomes more significant. The main mechanisms of aerody-
namic noise generation can be summarized as follows: 
• Vortex shedding noise: due to the diffusion of vortices, a solid’s time-varying circu-

lation creates a fluctuating force that is transferred to the fluid and propagates as 
sound; 

• Interaction between turbulence and the solid structure: the presence of vortices in 
contact with a solid body induces oscillating forces acting on the surface of the same, 
due to the time-varying nature of the vortices. These are transferred to the fluid and 
propagated in the form of pressure waves and therefore noise; 

• Trailing edge noise: it results from the interaction between the boundary layer insta-
bilities and the blade edges, which is typical of rotating devices. 
It follows that the shape of the blades in a fan significantly influences the acoustic 

emissions and characterizes its noise. The deposit of material on the blades of a fan, effec-
tively changing its shape, therefore determines a variation of its acoustic emission. The 
purpose of this work is to acoustically characterize this operating condition of the fan to 
be able to identify it automatically. 

2.3. Maintenance of a Fan 
The fan blades act as attractors of dust and more generally of all the substances with 

which they come into contact. As they move, the blades are charged with static electricity 
due to the friction created by the cutting of the air. In this way, the dust particles present 
in the environment accumulate on the surfaces of the blades. The location of the fan de-
termines the amount of dust that can settle on the fan blades. The deposit is greatest at the 
leading edges of the fan blade, as this is where static electricity generation is greatest. 
These accumulated dust particles attract even more dust particles as they remain there 
over time, this therefore increases the time the dust stays on the fan blades [53]. 

The blades of a fan not only accumulate dust but can later also spread it. Dusty and 
dirty fans can expel dust and biological agents in general into the air. Regular cleaning of 
the fan not only ensures dust-free blades, but also keeps the equipment in good working 
order. An excessive accumulation of dust can in fact affect the performance and efficiency 
of the fan. Particles of dust can in fact penetrate the mechanism of the fan motor and dam-
age it: Improperly functioning fans can consume more energy and reduce the flow of 
treated air, furthermore the continuous interruption of the fan mechanisms could lead to 
the final break [54]. 

For proper operation of the device, it is therefore necessary to remove the deposit of 
material on the blades of a fan. Periodic cleaning of the impeller avoids vibrations caused 
by any deposits of dust accumulated during fan operation. If the fan is intended for the 
treatment of even slightly dusty fluids, containing abrasive powders, it is necessary to 
periodically inspect the state of cleanliness and/or wear of the impeller. This operation can 
be carried out, after a prior visual inspection which reveals the need, with a thorough 
cleaning carried out with suitable detergents. Or it can be programmed through the adop-
tion of a maintenance plan which carries out the interventions to remove the deposits, at 
a time interval calculated based on the technical information available on the accumula-
tion capacity of the material on the blades. However, problems arise when such infor-
mation is not available, or when the characteristics of the fluid to be treated are not con-
stant over time [55]. Furthermore, cleaning the blades is not always an easy operation. 
Think of the case in which the fan is not immediately visible in the system, and in the case 
in which to access it is necessary to provide for the temporary shutdown of the system 
and the disassembly of its components: In these cases, not even a visual inspection is 
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guaranteed. In these cases, it is necessary to develop an automated procedure which 
makes it possible to identify the state of cleanliness and/or wear of the impeller. 

2.4. Measurements of the Acoustic Emission of the Fan Blades 
Dust deposits on the fan blades determine a variation in the aerodynamic profile with 

consequent modification of the noise produced. In this work, measurements of the acous-
tic emission of a three-blade axial fan have been carried out, to identify the different op-
erating conditions. 

Two operating conditions have been made: 
• No-Fault: the fan blades have been perfectly cleaned and no accumulations of mate-

rial have been foreseen on the surface; 
• Fault: deposits of material have been artificially made on the fan blades to simulate 

those that normally occur in the normal operation of the equipment. 
Acoustic tests were made in an anechoic chamber (4.40 m 4.40 m 4.50 m) for each of 

the two designs, with fiber-glass absorbing wedges and a cutoff frequency of 100 Hz: Con-
sequently, there is a large reduction in the signals’ reflection off of the walls (Figure 3). 
This method of measurement has no issues in the case of rotating blades because it does 
not necessitate physical contact between the sensor and the moving object, as is necessary 
for the detection of vibrations. The fan was positioned in the center of the anechoic cham-
ber to produce a fixed source-receiver system, eliminate positioning error, and achieve 
good signal capture in order to simulate the operational conditions. 

 
Figure 3. Set up of measurements in an anechoic chamber. The decision to place the sound level 
meter behind the fan was made to avoid the influence of the air flow on the measurement. 

The Class 1 integrated sound level meter model 01 dB Black Solo that complies with 
UNI EN ISO 3745:2012 was used to conduct the acoustic measurements [56]. The sound 
level meter was placed on a tripod at the same height as the fan in three positions with a 
radius of 1.2 m, the fan in the middle, and the positions set at staggered angles of 90 de-
grees to accurately characterize the acoustic emission of the fan (Figure 2). The data col-
lected was used to train an algorithm based on CNNs for the automatic identification of 
the fan operating conditions. 
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2.5. Feature Extraction 
To extract the features that could be used to determine the damage, the recorded 

audio signals were analyzed. This is an essential phase for the identification of damages; 
in fact, the extracted descriptors will be exploited as input both in the training phase of 
the classifier and in the subsequent testing phase [57]. We have already highlighted that 
the discrimination between state of health and state of damage in a fan is a complex task 
that cannot be treated simply with the identification of sound triggers that can identify 
the two operating conditions. An analysis in the time domain would prove inadequate to 
discriminate between the two states of the fan. To assess the energy levels in the various 
frequencies, we must consequently move our study into the frequency domain. To accom-
plish this, we can use the Fourier operator, which allows us to move from the time domain 
to the frequency domain by projecting the signal measured over time on an orthonormal 
basis of complex expressions [58]. In order to accurately complete the transition from the 
time domain to the frequency domain, the discrete Fourier transform (DFT) takes into 
account a sample of the signal over time located in a time window, we can calculate the 
complex component in the frequency domain with the Equation (2): 𝑥௞ = 1𝑁 ෍ 𝑥௡𝑒ଶ௡௞௡ேேିଵ௡ୀ଴          (2)

Here, 
• 𝑥௡ nth sample of the signal 
• N is the number of samples contained in the window 
• k is the index of discrete frequencies. 

The consequence of the DFT is a vector of complex numbers. The DFT assumes that 
the signal is stationary, but most of the signals change continuously, the audio signal is 
split into parts with a particular amount of overlap to get around this restriction, each of 
which is multiplied with the Hanning window such as to attenuate the beginning and end 
of segment. In this way, a the Short-Time Fourier Transform (STFT) is obtained which 
consists in dividing the signal into partially overlapping segments through a windowing 
operation and calculating the DFT of each segment. The STFT can be represented as a 
matrix of coefficients by arranging the DFT coefficients of each segment in different col-
umns of a matrix, where the column index denotes time, and the row index denotes the 
frequency of the corresponding coefficient. The resulting matrix, known as a spectrogram, 
can be viewed as an image and displays the evolution of the signal in the time-frequency 
domain by computing the modulus of each coefficient. The spectrogram resulting from 
the STFT is also called linear spectrum because the amplitude varies linearly with fre-
quency [59]. 

2.6. Fan Fault Diagnosis Based on CNN Model 
A frequency domain study is necessary because ambient noise exhibits a wide variety 

of frequencies at various levels. The results of the frequency analysis are the energy levels 
in the various frequency bands, or the so-called signal spectrum, which is a Cartesian di-
agram of the sound’s frequencies in relation to its energy content. [60]. The signals de-
tected by the operation of the fan in the anechoic chamber were previously treated for the 
extraction of the characteristics. The choice fell on the spectrogram which relates three 
essential variables in the representation of a sound: frequency, time, and intensity of the 
signal. To show these three variables in a two-dimensional diagram, a color map is used: 
Time is measured by the abscissa, frequency by the ordinate, and sound intensity by colors 
[61]. Dark colors on the color map denote low sound intensity, while light colors denote 
high sound intensity. [61]. Dark colors on the color map denote low sound intensity, while 
light colors denote high sound intensity. To define the acoustic emission of the fan and 
find specific trends capable of differentiating between the two activities, it is important to 
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employ the spectrogram to emphasize the instances of time in which frequency fluctua-
tions occur.  

A classifier based on CNNs was fed with the retrieved features (spectrogram of the 
two operating conditions) as input: due to their ability to recognize adjacency patterns 
through adaptive learning that progresses from the bottom level to the top level, CNNs 
have proven successful at characterizing data with a grid topology. They are highly help-
ful for object recognition in computer vision thanks to their characteristics. [62]. The CNNs 
operate on raster images characterized by two-dimensional arrays in which each pixel 
assumes values in the range of 0 to 255: the adjacent pixels are interlaced with each other 
in defining a pattern that the CNNs associate with the weights of the network. 

Technology name contains the essential feature of this type of Artificial Neural Net-
work (ANN), the convolution operation, that is, the dot product between two matrices, a 
weight grid structure, and discover a comparable structure in the input [63]. Two-dimen-
sional CNNs are therefore multilayer ANNs with at least one convolutional layer, to 
which an image is presented as input. RGB (RED, GREEN, BLUE) images are composed 
of a number of matrices that track the intensity of the basic colors in correspondence with 
each pixel. In this way, the traditional dimensions of an image (height and width) are now 
combined with a third: depth. The input layer will have these three dimensions and fol-
lowing layers with a multidimensional structure will be consistent with the independent 
features important for classification. 

A CNN is a tightly connected ANN with convolution operation performed in the first 
layer: It works with grid structures with spatial relationships between cells, which identify 
small local regions passed from one layer to another. The results of the convolution oper-
ations carried out by the first layers define information matrices called activation, or char-
acteristics map while the network’s trainable parameters are tensors referred to as kernels. 

The architecture of a CNN includes a sequence of the ensuing layers (Figure 4): 
• Convolutional layer; 
• Activation layer; 
• Pooling layer; 
• Densely connected layer. 

 
Figure 4. CNN architecture for classification. 

The convolution layer places a filter (kernel) in critical areas of the image and returns 
the scalar product of the kernel and the input matrix, or the “receptive field,” which is a 
portion of the image that has the same proportions as the kernel [64]. The filter is moved 
by an amount equal to the stride until it hits the edge, at which point it convolves the 
entire image. Another matrix, known as a feature map, is created at the conclusion of the 
scan and it focuses on a specific aspect of the image. Therefore, multiple filters are used 
simultaneously to perform the recognition, this will result in an output tensor whose 
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depth equals the quantity of filters utilized. The activation operation that is nonlinear 
must be provided right after the convolution process. Each convolutional layer’s activa-
tion function processes a layer of identical size with values constrained by thresholds. [65]. 

The pooling level’s objective is to resize the feature maps while maintaining the im-
portant properties. A filter of size 2 2 is typically employed in max pooling, and it moves 
on the feature map with steps that are the same size. The receptive fields are located by 
the pooling filter, which also determines the maximum value for each. 

Finally, fully connected layers are subsequently added, which do the classification 
and produce the CNN output. The matrix that was altered by the levels before is fed into 
this layer of levels, which creates a vector of dimension N that equals the number of clas-
ses that need to be predicted. 

2.7. Data Augmentation 
Convolutional networks need many input data during training to give greater accu-

racy: Few images cause a more frequent analysis of the same during training, causing 
what is known as overfitting. Indicatively, a convolutional network begins to have an ac-
ceptable accuracy starting from a thousand images used for training. In cases where the 
acquisition of a large training dataset is complicated, there are techniques that allow to 
extract variations through artificial transformations of the images [66]. To enhance the 
quantity of training instances available we can apply the following transformations: 
• Flipping; 
• Cropping; 
• Rotation; 
• Translation; 
• Distortion; 
• Brightness change; 
• Contrast adjustment. 

These transformations must be chosen according to the images they must transform, 
this because the transformation must add information and must not introduce distortions 
[67]. For example, it is evident that the crop in our case is to be excluded as it would have 
stolen useful information, eliminating part of the spectrogram which instead represents 
the source of the features [68]. The general rule to consider is to maximize the variation of 
object transformations within each class and minimize the variation of transformations 
between different classes. The use of Data Augmentation causes slower model training 
convergence, which is irrelevant in the face of greater accuracy in testing [69]. 

2.8. Transfer Learning 
A network initialized starting from random values requires some training time: The 

underlying principle of Transfer Learning is to reduce training times by exploiting net-
works that have already been trained for the recognition of objects with generic features 
[70]. The term Transfer Learning (TR) precisely means the possibility of adapting and 
transferring weights, to be able to use knowledge again to pursue many different objec-
tives. Nearly all layers of the neural network are trained on a very large, generic dataset 
initially, allowing for the acquisition of global conceptions; thereafter, the specific dataset 
is utilized to train the remaining layers, and whether to propagate the errors through fine 
tuning is decided. [71]. 

If on the one hand it is possible to reuse the knowledge of a neural network, it is still 
necessary to understand its specificity, above all in the case in which the final problem is 
not very similar to the starting one. The initial levels of a CNN deal with recognizing very 
generic features while those resulting from the final levels are more specialized and re-
lated to the dataset [72]. Furthermore, under some conditions, the transfer of weights can 
lead to a great improvement in the ability to generalize, increasing the overall accuracy of 
the CNN. 
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Pre-trained models are available from which specialized training can be continued. 
For small datasets it is advisable to allow modification of the final fully linked layers’ 
properties, while for bigger datasets it is acceptable to modify the weights of the highest-
level convolutional layers. The basic layers of the mesh usually extract features common 
to all objects, such as edges [73]. 

3. Results and Discussion 
3.1. Characterization of the Acoustic Emission of the Fan 

Beginning with an anechoic chamber (4.40 m 4.40 m 4.50 m), coated in absorbent glass 
fiber wedges, measurements of the fan’s acoustic emission were made. The structure of 
the chamber’s walls makes it feasible to minimize the reflection of signals on the walls: 
The chamber’s cutoff frequency is 100 Hz. 

The sound level meter was set up on a tripod at the same height as the fan and put 
on a pedestal in the middle of the room. The measurements were performed at three po-
sitions on a semicircle with a radius of 1.2 m, staggered at 90-degree angles, with the fan 
placed in its center [56]. There were three measurement sessions that were related to the 
three fan operating circumstances that corresponded to the three different fan speeds. 

The diagram in Figure 5 shows that the acoustic emission levels measured in the lat-
eral microphone positions are comparable to each other, while the measurements carried 
out in the microphone position at 270° show higher emission levels: As a result, this role 
is better suited to spotting any operational irregularities. The sound pressure levels (dB 
Lin) for the three fan speeds recorded at the three microphone sites are displayed in Table 
1. 

Table 1. Sound pressure level (dB Lin) measured. 

Microphone Position Min. Velox Med. Velox Max. Velox 
180° 40.0 42.9 44.4 
270° 47.1 49.2 51.6 
360° 40.0 43.3 44.3 

 
Figure 5. Sound pressure level (dB Lin) measured in the three microphone positions (180°, 270°, 
360°) for the three operating conditions. The fan is positioned at the center with the airflow in the 
opposite direction to the microphone position 270°. The * represents the value of SPL at different 
microphone positions for the three operating conditions.   

To describe how the fan functions, one must first step inside the frequency domain 
through a spectral analysis of the acoustic emission levels. Figure 6 shows the 1/3-octave 
average spectral levels in the range of 20 Hz and 16 kHz for the three fan speeds and three 
measurement positions. 
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Figure 6. Spectral levels in a range spanning a third of an octave, 20 Hz to 16 kHz, for the three 
operating scenarios used in the measurement session at the three microphone placements (dB Lin). 
((a): 180°, (b): 270°, (c): 360°). 

Figure 6 shows that the energy content emitted at low frequencies characterizes the 
operation of the fan. We can also note, as already highlighted above, that the 270° micro-
phone position shows the greatest energy content at both low and medium frequencies. 
On the other hand, as already foreseen, the maximum speed of the fan determines a 
greater acoustic emission, and this occurs both at low and medium frequencies. 

3.2. Simulation of Dust Deposits on the Blades of an Axial Fan 
As previously said, the goal of this study is to identify the defect using deep learning 

to identify dust deposits on the blades of an axial fan by the acquisition of the acoustic 
emission. Two operating conditions have been foreseen: No-Fault, Fault. In the No-Fault 
condition, the fan blades are perfectly clean and there are no accumulations of material on 
the surface. In the Fault condition, on the other hand, deposits of material have been arti-
ficially created on the fan blades to simulate those which normally deposit over time in 
the normal operation of the equipment. To simulate the deposits of dust on the fan blades, 
fine-grained sand (0.1–2 mm) was used, which was made to adhere to the surface of the 
blades with the use of a thin layer of vinyl glue. The choice of using this granulometry is 
justified by the need to provide operating conditions in harsh environments such as in-
dustrial ones, in which dusty fluids containing abrasive powders are treated. Since it was 
found that the deposit is greatest on the leading edges of the fan blade, this aspect was 
considered in the application of the thin layer of sand. 

Figure 7 compares the thermal pictures collected in the two operating situations with 
the two states of the fan blades. 
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Figure 7. Axial fan in the two operating conditions; (a) No-Fault: the fan blades are perfectly clean 
and there are no accumulations of material on the surface; (b) Thermal image of the fan in No-Fault 
operating conditions; (c) Fault: there are deposits of artificially created material on the fan blades; 
(b) Thermal image of the fan in Fault operating conditions. 

From the comparison between the thermal images of the fan in the two operating 
conditions (No-Fault—Figure 7b, Fault—Figure 7d), we can see that the central part of the 
fan where the rotation axis of the impeller is located shows at higher temperatures due to 
the heat developed by the frictional forces. In Figure 7d, the axis of rotation appears hotter 
because of greater friction due to the imbalance caused by deposits of material on the 
blades. This unbalancing creates additional vibrations on the impeller axis which generate 
different acoustic emissions compared to normal operating conditions. 
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3.3. Features Extraction for Acoustics Emissions 
For the classification of the operating conditions of the fan we used an algorithm 

based on 2D CNN: As input we chose to extract spectrograms from the recordings made 
in the anechoic chamber, for the two operating conditions. This is because CNNs have 
proven effective in image processing. The abscissa, which measures time, the ordinate, 
which measures frequency, and the colors, which depict sound intensity, make up the 
spectrogram. Dark colors depict low-intensity sound in the resulting image, while light 
hues depict high-intensity sound. The frequency content of a signal’s time progression in 
frequency is returned by the spectrogram. 

To ensure there were enough samples for the training and testing phases, each re-
cording was initially divided into segments lasting 5 s. In this manner, 120 samples were 
removed and divided equally between the two proof of identity classes (No-Fault, Fault). 
For each sample the spectrogram was calculated, as shown in Figure 7 in which two spec-
trograms relating to the two operating conditions are compared. 

Let us examine two spectrograms for two signals to see how they might be used to 
determine the fan’s operating state. The fan’s acoustic emission spectrogram with abso-
lutely clean blades is displayed in the first signal (Figure 8a), which was created using a 
sample of the 5 min audio recording. To highlight the frequencies that can discriminate 
between operating conditions, we have narrowed the frequency range to the 20 Hz–20 
kHz range. The second signal shows the spectrogram of the acoustic emission of the fan 
with blades with artificially created deposits of material (Figure 8b). We can verify that 
the second signal shows a higher frequency content particularly at low frequencies, rep-
resentative of the unbalancing of the axis of rotation caused by material deposits. A spec-
trogram was created for each sample and then saved as an 800 × 800-pixel png picture. 

 
Figure 8. Spectrograms of the two signals: (a) No-Fault: the fan blades are perfectly clean and there 
are no accumulations of material on the surface; (b) Fault: there are deposits of artificially created 
material on the fan blades. 

3.4. Fan Fault Diagnosi Using Convolutional Neural Network 
To enhance the number of samples to be used in the model training phase, the seg-

mented signal spectrograms were subsequently converted. The transformations have 
been chosen according to the available samples with the aim of adding information and 
must not introduce distortions. In this sense, the crop was excluded a priori as it would 
have stolen useful information, eliminating part of the spectrogram. The objective of this 
preliminary operation was to maximize the variation of the transformations of the objects 
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within each class and to reduce variance in the same among classes as much as possible. 
Transformations such as rotation, resizing, and reflection have been made. 

Figure 9 shows an example of Image Augmentation application performed on two 
spectrogram samples relating to the two operating conditions. Data Augmentation en-
riched the original dataset from 120 samples to 840 samples. The use of Data Augmenta-
tion resulted in a slower convergence of the algorithm in the model training phase but 
returned greater accuracy in the testing phase. 

It was decided to use transfer learning by utilizing a pre-trained network for the 
recognition of images to take advantage of the small number of samples to be used in the 
training phase and to shorten the training times required in the case of a network initial-
ized starting from random values. 

 
Figure 9. Image augmentation example: In line (a), starting from the left, the starting image relating 
to the No-Fault condition is shown and alongside six transformations of the first image by applying 
rotation, shift, zoom, horizontal and vertical flip. Line (b) shows the starting image relating to the 
Fault condition and alongside six transformations of the first image by applying rotation, shift, 
zoom, horizontal and vertical flip. 

Several pre-trained models are available in the MATLAB environment from which 
specialized training can be continued. In this study we used the SqueezeNet model [74], 
which is a CNN level 18, More than a million photos from the ImageNet database were 
used to train the network [75]. A picture database called ImageNet is organized using the 
WordNet hierarchy [76], with thousands of photos serving as representations for each 
node of the hierarchy. The database has helped deep learning and computer vision re-
search advance. For non-commercial use, the data are freely available to researchers [77]. 
The pre-trained network has acquired rich representation of features for a variety of pho-
tos and can categorize images into 1000 different item categories. The network works on 
images of dimensions 227 × 227. To be able to adapt it to our problem the settings of the 
input layer have been modified which has been set to receive images of dimensions 800 × 
800, in the queue of the network the Classification layer has been modified to return out-
put with only two classes (No-Fault, Fault). 

The use of a pre-trained network allowed us to adapt and transfer the weights of the 
network to the new data that refer to the acoustic emission detected in the different oper-
ating conditions of the fan. Training set and test set were created from the spectrograms 
that were extracted from the anechoic chamber recordings after being appropriately en-
hanced. The training set was used to develop the classification model, and the test set was 
used to assess how well it performed. We have reserved 70% of the available samples (588 
spectrograms) equally distributed between No-Fault and Fault events for the training 
phase. The model performance was evaluated using the remaining 30%, or 252 spectro-
grams, which were equally split between Fault and No-Fault occurrences. 

Table 2 shows the training parameters set. 
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Table 2. Pre-trained CNN training option. 

Solver Basic Advanced 
sgdm MaxEpochs = 30 L2Reg = 0.0001 

Initial learning rate = 0.01 MiniBatchSize = 1 
Grad Threshold Methods = 

l2norm 

The learning phase first involves the initialization of the filters, parameters, and 
weights; in this phase all the various training options are set also in accordance with the 
specifications of the available GPU [78]. 

Then it will be possible to start training the net with the chosen training set. This is a 
very expensive operation at a computational level: The training phase, as already men-
tioned, can be omitted as the neural networks offer us different usage scenarios; in fact, in 
some circumstances it is possible to avoid a computationally expensive training of the 
network through a Transfer Learning operation with the use of a pre-trained network [79–
81]. Using the weights modified during the earlier training and transferred to test a related 
model, the already trained network is employed for the next job. When utilized as a fea-
ture extractor on the data set collected from the ventilator acoustic emission recordings, 
the pre-trained network (Squeeze Net) was reused after the last layer (completely con-
nected) was removed. The patterns of network accuracy and loss during the training and 
validation procedure are shown in Figure 10. 

To avoid over-dimensioning issues, the model has been tested using the residual 30% 
of the data after the network had been trained with 70 percent of the overall of the avail-
able data. This ensured that in the test phase the data used had never been seen by the 
model previously. The model’s performance was assessed using accuracy because accu-
racy is a gauge of how effectively our model works. If our model is accurate, it ought to 
be nearer to one. The convolutional neural network model produced an accuracy of 0.95, 
proving the viability of the method for determining the fan’s operating settings. 

 
Figure 10. Accuracy and loss in the training and validation phase. 

Accuracy provides us with a measure of the correlation between an expected value 
and a real value, an accurate result means fewer errors in the prediction. Thus, the 
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accuracy of a prediction tells us how close the expected value is to the true value of that 
quantity. Table 3 shows a comparison between the results obtained in this study and oth-
ers published by other authors. 

Table 3. Machine Learning-based methods for fault diagnosis. 

Reference ML Algorithm Accuracy 
This study Deep Learning 0.95 

[45] Deep Learning 0.98 
[44] CS-ELM 0.97 
[46] Deep Learning 0.99 

Table 3 shows that the results obtained with the present study are in line with those 
obtained by other researchers. In all the references compared, an accuracy of the method 
very close to unity is recorded, indicating that the methodology adopted can effectively 
identify the operating conditions of the fan. The slightly higher accuracy shown by the 
other studies is essentially because the artificially operated damages to the fan were of 
greater consistency. These are, in fact, holes made in the blade, injuries or breakage of a 
blade, conditions that are much more critical than the operating conditions hypothesized 
in this study. 

4. Conclusions 
In this study, a new methodology for automating ventilator maintenance procedures 

was developed. For the detection of dust deposits on the blades of an axial fan, a method-
ology based on the assessment of the malfunction utilizing deep learning and the collec-
tion of the auditory emission was tested. Data relating to the various operating conditions 
were first collected. Two operating conditions have been identified: No-fault, Fault. In the 
No-Fault condition, the fan blades are perfectly clean and there are no accumulations of 
material on the surface. In the Fault condition, on the other hand, deposits of material 
have been artificially created on the fan blades to simulate those normally found in the 
normal operation of the equipment. Through a dichotomous classification, the measure-
ments of the fan 660’s acoustic emission in the various operating circumstances have been 
appropriately identified (No-Fault, Fault). The gathered information was utilized to train 
a convolutional neural network (CNN) algorithm for the automatic recognition of the 
fan’s operating characteristics. 

The network was trained using a pre-trained network (Squeeze Net) that was trained 
on the ImageNet dataset and can categorize objects into up to 1000 different categories. 
Excellent results were obtained from the Transfer Learning performed on the visuals of 
the spectrograms obtained from the recording of the fan’s sound emission under the two 
operating conditions. The accuracy of the model tested on the test set returned values very 
close to unity (0.95) confirming the excellent performance of the methodology. This meth-
odology can be used to automate the maintenance procedures of fans, inserted in indus-
trial processes that deal with dirty fluids, and which have direct access difficulties. 
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