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Abstract: In this paper we study the effect that mean-reverting components in the arithmetic
dynamics of electricity spot price have on the price of a call option on a swap. Our model allows for
seasonal effects, spikes, and negative values of the price of electricity. We show that for sufficiently
large delivery periods of the swap contract, the error that one makes by neglecting some of the
mean-reverting processes affecting the spot price evolution converges to zero. The decay rate is
explicitly calculated. This is achieved by exploiting the additive structure of the electricity price
process in order to determine an explicit closed-form formula for the price of the call on a swap.
The theoretical analysis is then illustrated via a numerical example.

Keywords: electricity spot prices; multi-scale mean reversion; pricing error; jumps; delivery period;
swaps

1. Introduction

Deregulation of energy markets started in the early 1990s, with the main aim being
making energy markets more efficient and reducing costs for the consumer (see Al-Sunaidy
and Green (2006) for a detailed discussion on the history of deregulation). Today, energy
is traded under free market conditions in many countries, and energy prices show char-
acteristics that are rarely seen in other markets. These are, for example, seasonal effects,
jumps with fast mean-reversion, and negative prices, and a large number of models have
been produced in the recent years in order to capture those features and investigate their
structure; see, among many others, Borovkova and Schmeck (2017); Fanelli and Schmeck
(2019); Genoese et al. (2010); Kaminski (2013); Kiesel et al. (2009), as well as the recent
review Deschatre et al. (2021).

Considerations involving the law of demand and supply can explain the presence in
electricity prices of seasonal patters at different scales: Prices are typically higher during
the morning and evening hours of the days, and—especially in countries where heating
is performed via electricity—also in winter months. Since these seasonal patterns are
predictable, they can be well described through deterministic time-dependent functions,
such as a combination of different sinusoidal functions (Escribano et al. 2011). Energy
prices show very high volatility with jumps, which can be explained by the fact that energy
cannot be stored on a large scale, at least in an economically feasible way. Furthermore,
a large energy supply combined with a low demand leads electricity prices also to become
negative, a feature allowed since 2008 by the European Energy Exchange. As a matter of
fact, in periods of overproduction a shut down of the power plants would cost the energy
producers more than paying for getting rid of energy.

From a mathematical point of view, there are clearly various modeling choices for
electricity spot prices; see the reviews Weron (2014) and Deschatre et al. (2021) for an
outlook on the state of the art and future perspectives. Following the seminal work by
Benth et al. (2007), in this paper we choose to work with a (nowadays classical) multi-factor
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spot price model consisting of a non-stationary process and a sum of independent Ornstein-
Uhlenbeck processes, driven by a suitable stochastic jump process. Namely, we take the
spot price of electricity given by

S(t) = Λ(t) + X(t) + ∑
j∈J

Yj(t), t ≥ 0, (1)

for some index-set J. Here, Λ is a deterministic seasonality function, X is an arithmetic
Brownian motion that reflects long term expectations, e.g., of political developments,
and each Yj is a mean-reverting process, that converges back to the seasonal equilibrium
level Λ + X. On the one hand, as we shall see also in this paper, this modeling choice is
still simple enough to enable for explicit evaluations of electricity contracts (like futures
and forward contracts). On the other hand, Equation (1) allows to reproduce the well-
known stylized fact for which electricity prices exhibit large price shocks (spikes), which
mean revert very fast towards the original price level, as well as slower mean reverting
components. As a matter of fact, Meyer-Brandis and Tankov (2008) find that the majority
of European exchanges show an auto-correlating structure of the spot prices that can be
well described by a models including a sum of mean reverting processes, where the mean
reversion takes place with different rates. In particular, Meyer-Brandis and Tankov (2008)
argue that two or three mean reverting factors are suitable to reproduce prices in the EEX.

However, Ball and Torous (1983) and Knittel and Roberts (2001), among others, also
point out the difficulty of calibrating a multi-factor spot price model as in Equation (1) to
market data. Indeed, the question arises of how to filter from the observed time series
the different, themselves not observable, components. It is therefore natural to investigate
which is the error that one makes by neglecting some or all of the mean-reverting processes
in the spot price model. In particular, if such an error is shown to be relatively small,
then it might not be worth to provide the nontrivial calibration of a full jump model of
electricity prices. In this paper we interpret such a question by comparing the price of
vanilla options on swaps in two models for S. In a first one all the |J| mean-reverting
components are considered, and in a second one only |L| < |J| jump Ornstein-Uhlenbeck
processes are considered. Our main result gives an analytical estimate of the pricing error
by showing that the difference in the price of call options on swaps for the two models can
be bounded from above and below by explicitly calculated quantities. These depend on
the models’ parameters, such as the volatility parameters, the speeds of mean-reversion,
and the delivery period in the swap pricing formula. We show that when the delivery
period is sufficiently large, then the pricing error goes to zero. This is because the swap
averages out the effects that spikes have on the call option price. We thus conclude that
for sufficiently long delivery periods, considering a relatively less complex spot price
model provides a good approximation to the more complex one. Our theoretical analysis is
then illustrated by numerical examples. Here we show the effect of the mean-reverting
components and of the volatility σ of the non-stationary component on the price of call
options. In particular, we confirm that for relatively large delivery periods of the swap
contract the pricing error is negligible. Furthermore, we observe that the smaller σ is,
the larger becomes the pricing error.

Our study is related to the one performed in Benth and Schmeck (2014) and
Schmeck (2016) (see also Nomikos and Soldatos (2010) for a study of the importance
of mean reversion and spikes in the stochastic behavior of the underlying asset when
pricing options on power). The main difference between Benth and Schmeck (2014) and
Schmeck (2016) and our paper lie in the structure of the dynamics of the spot price process.
These are geometric in Schmeck (2016), while arithmetic in this work. The choice of consid-
ering an arithmetic model has essentially two main reasons. First of all, arithmetic dynamics
allow to encompass the observed negativity of spot prices of electricity. The importance of
taking into account such a stylized fact of electricity prices in the modeling is also confirmed
by the increasing interest that arithmetic models are recently obtaining in the literature
(see, e.g., Benth et al. 2019; Edoli et al. 2017; Fanone et al. 2013; Hinderks and Wagner 2020;
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Latini et al. 2019; Piccirilli et al. 2021). Second of all, using arithmetic models one can obtain
explicit closed form formulas for the price of the swap price, given by the time-average
of the spot price over the delivery period. This is not possible for geometric models, such
that Benth and Schmeck (2014) and Schmeck (2016) approximate the delivery period by
its midpoint.

The rest of this paper is organized as follows. In Section 2 we provide the spot price
dynamics and derive the dynamics of the swap price. In Section 3 we then determine the
price of the call option on the swap, which is then employed in Section 4 in order to estimate
the pricing error obtained by neglecting jump mean-reverting components in the spot price
evolution. Finally, Section 5 illustrates the theoretical analysis by numerical examples.

2. Setting

In this section, we define the financial setting within which we will perform our study.
In particular, in the following we will define the dynamics of the spot price of electricity
and derive the price of a swap contract and its corresponding time evolution.

2.1. Spot Price Dynamics

Consider a filtered probability space (Ω,F , {Ft}t≥0,Q), satisfying the usual condi-
tions. As we are interested in the option price, we state here the spot price dynamics
already under a suitable pricing measure Q. Then, letting J be an index set with cardinality
|J| < ∞, for any t ≥ 0 the spot price of electricity is assumed to evolve as

S(t) := Λ(t) + X(t) + ∑
j∈J

Yj(t). (2)

Here Λ is a deterministic function; X is given by

dX(t) = µdt + σ(t)dB(t), (3)

for some µ ∈ R, some deterministic function σ, and for a one-dimensional Brownian
motion B. Furthermore, for any j ∈ J, Yj(t) is a mean-reverting process with dynamics

dYj(t) = −β jYj(t)dt +
M

∑
m=1

σjm(t)dBm(t) + dQj(t), (4)

where we set

Qj(t) :=
Nj(t)

∑
k=1

Ỹjk, (5)

for a Poisson process Nj with time-dependent intensity λj(t). As in Geman and Roncoroni
(2006), a time-dependent intensity λj accounts for the seasonality in the arrival of spikes.
Furthermore, in Equation (4), {Bm}m=1,...,M are independent one-dimensional Brownian
motions. Note that, due to the presence in each Yj of all the vector of Brownian motions
{Bm}m=1,...,M, the mean-reverting processes are clearly correlated. The random variables
(Ỹjk)k∈N are all independent of each other, and for any k ∈ N they are identically distributed
with density functions f j : R → R+. The family Ỹ determines the (random) sizes of the
jumps of the compound-Poisson processes (Qj)j∈J .

An illustration of a sample path of the mean-reverting processes Yj, j ∈ J, as well of
the spot price S are provided in Figure 1 below. In the first drawing, we take |J| = 2 and,
in order to better illustrate the role of mean-reversion, the two mean-reverting processes
Y1 and Y2 are of pure-jump-type (i.e., σjm ≡ 0 for all j, m). We observe that, after each jump,
Y1—which has an higher mean-reversion speed—tends towards the equilibrium level 0
much faster than Y2. In the second drawing, we observe a sample path of the spot price
which, according to Equation (2), is given by the sum of the mean-reverting dynamics and
of the Brownian term X (for simplicity, we are taking Λ ≡ 0).
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Figure 1. A sample path of Yj, j = 1, 2 (upper), and of S (lower). The jumps’ sizes of the Yjs are
normally distributed with zero mean and variance 2, while the jumps’ frequency is set λ1 ≡ 2 ≡ λ2.
As for the plot of S, we have taken Λ ≡ 0, and, with regards to X, µ = 0 and σ ≡ 0.6.

Throughout this paper we make the following standing assumption.

Assumption 1. For any j ∈ J and k ∈ N we have that E[|Ỹjk|] < ∞. Moreover, the processes
Nj, Bj, B and the random variables Ỹjk are all assumed to be independent of each other.

In Equation (2), Λ is a deterministic seasonality function. For example, this could be
modeled as a combination of sine functions as in Escribano et al. (2011). On the other hand,
the drifted Brownian motion X simulates the randomly fluctuating long-term trend of the
spot price, while the mean-reverting processes take care of the observed mean-reverting
jump-component of the spot price. Notice that, differently to Schmeck (2016), among
others, in our specification the price process can become negative due to the arithmetic
structure of the considered dynamics. This is in line with the observation of negative prices
of electricity. Moreover, the fact that we consider a family of |J|mean-reverting processes
Yj allows us to model different mean-reversion rates for the spot price. The speeds of
mean-reversion β j, as well as the volatilities σ and σjm, are assumed to be time-dependent
in order to accommodate for possible seasonal effects. From now on we will assume that
those deterministic functions are bounded and nonnegative.

2.2. Swap-Price Value and Dynamics

Call options in the energy market are usually written on swaps that deliver the energy
over a contracted period [T1, T2] (Options Trading at EEX 2018). Here, T1 is the starting
time of the delivery period and T2 is the end of the delivery period. During this horizon,
the buyer of such a contract has to pay a fixed price per MWh. These kind of contracts
are called swap contracts and their price is usually evaluated under some measure Q,
equivalent to P. However, due to the non-storability of electricity, Q does not need to be a
martingale measure for the spot. Then, by Chapter 4 in Benth et al. (2008), we have that the
swap price at time t is given by the expected average spot price over the delivery period,
given all the information available at the current instant:

F(t, T1, T2) := E
[

1
T2 − T1

∫ T2

T1

S(u)du
∣∣∣Ft

]
. (6)
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The next result provides an explicit computation of F within our model. Its proof
easily adapts arguments from Benth et al. (2008) to our additive setting, and we provide
details in Appendix A for the sake of completeness. This preliminary result will be needed
in Section 4 below in order to derive the main result of this paper, namely the explicit error
bounds obtained in Theorem 4.

Theorem 1. Let 0 ≤ t ≤ T1 ≤ T2 and the spot price be given as in Equation (2). Then the price of
the swap is given by:

F(t, T1, T2) =
1

T2 − T1

∫ T2

T1

Λ(u)du + X(t) +
T2 + T1

2
µ− µt

+ ∑
j∈J

Yj(t)
1
β j

1
T2 − T1

(e−β j(T1−t) − e−β j(T2−t)) (7)

+
1

T2 − T1

∫ T2

T1

( ∫ u

t
λj(s)e

−β j(u−s)
( ∫ ∞

−∞
z f j(z)dz

)
ds
)

du.

The next result provides the dynamics of t 7→ F(t, T1, T2).

Theorem 2. Let the spot price be given as in Equation (2). Then, for any 0 ≤ t ≤ T1 ≤ T2,
the dynamics of the swap are given by:

dF(t, T1, T2) = σ(t)dB(t)

+ ∑
j∈J

1
β j

1
T2 − T1

(e−β j(T1−t) − e−β j(T2−t))
M

∑
m=1

σjm(t)dBm(t) (8)

+ ∑
j∈J

1
β j

1
T2 − T1

(e−β j(T1−t) − e−β j(T2−t))
∫ ∞

−∞
zÑj(dz, dt),

where

Ñj(z, t) := Qj(t)−
∫ t

0
λj(s)

( ∫ ∞

−∞
z f j(z)dz

)
ds

is a compensated Poisson process.

The proof can be found in Appendix A.

3. Pricing a Call Option on the Swap

In this section, we are going to calculate the fair price of a call option that is written on
a swap. Notice that such a pricing can be performed under the measure Q used for pricing
the swaps. Indeed, from the very definition Equation (6), as well as from the fact that the
compensated jump process Ñj in Equation (8) is a Q-martingale, we can see that the swap
price is a Q-martingale.

Because in Section 4 we shall study the effect of mean-reversion components on a call
option price that is written on a swap F, it is useful from now on to stress that the spot and
swap prices depend on these mean-reverting components. This is done in the following
way: For any index set L ⊆ J, with cardinality |L|, we parametrize the swap price and spot
price by L by assuming that only |L| ≤ |J| of the mean-reverting components (Yj)j∈J in
Equation (2) affect the dynamics of the spot price, and we write

SL(t) := Λ(t) + X(t) + ∑
l∈L

Yl(t). (9)

Then, we define accordingly

FL(t, T1, T2) := E
[

1
T2 − T1

∫ T2

T1

SL(u)du
∣∣∣Ft

]
, (10)
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and the fair price at time t ≤ τ of a call option with maturity τ, underlying FL, and strike
price K > 0, is

CL(t, τ, T1, T2) := e−r(τ−t)E
[(

FL(τ, T1, T2)− K
)
+

∣∣∣Ft

]
. (11)

Here r > 0 is a given and fixed interest rate. Clearly, FJ(t, T1, T2) = F(t, T1, T2) as in
Equation (6) and SJ = S as in Equation (2).

By using the dynamics of the swap Equation (8) and Itô’s lemma, we can simply
rewrite FL(τ, T1, T2) as

FL(τ, T1, T2) =FL(t, T1, T2) +
∫ τ

t
σ(s)dB(s) + ∑

l∈L

M

∑
m=1

∫ τ

t
σ̃lm(t, T1, T2)dBm(s)

+ ∑
l∈L

1
βl

1
T2 − T1

(e−βl T1 − e−βl T2)
∫ τ

t
eβl s

∫ ∞

−∞
zÑl(dz, ds), (12)

with
σ̃lm(t, T1, T2) :=

1
βl

1
T2 − T1

(e−βl(T1−t) − e−βl(T2−t))σlm(t). (13)

From Equation (12) FL can be decomposed as

FL(τ, T1, T2) = FCL (τ, T1, T2) + FJL (τ, T1, T2),

where the continuous part FCL is defined as

FCL (τ, T1, T2) := FL(t, T1, T2) +
∫ τ

t
σ(s)dB(s) + ∑

l∈L

M

∑
m=1

∫ τ

t
σ̃lm(s, T1, T2)dBm(s), (14)

while the jump component is

FJL (τ, T1, T2) := ∑
l∈L

1
βl

1
T2 − T1

(e−βl T1 − e−βl T2)
∫ τ

t
eβls

∫ ∞

−∞
zÑl(dz, ds). (15)

It is clear that E[FCL (τ, T1, T2)] = FL(t, T1, T2). On the other hand, by Itô’s isometry
and the independence of the Brownian motions one obtains

Var
(

FCL (τ, T1, T2)
)
=
∫ τ

t
σ2(s)ds + ∑

l∈L

M

∑
m=1

∫ τ

t
σ̃2

lm(s, T1, T1)ds

=
∫ τ

t
σ2(s)ds

+ ∑
l∈L

M

∑
m=1

1
β2

l (T2 − T1)2
(e−βl T1 − e−βl T2)2

∫ τ

t
σ2

lm(s)e
2βl sds (16)

=
∫ τ

t
σ2(s)ds + ∑

l∈L
cl

1
(T2 − T1)2 (e

−βl T1 − e−βl T2)2

=: σ̂2
L(t, τ, T1, T2) =: σ̂2

L,

where we have set

cl :=
M

∑
m=1

1
β2

l

∫ τ

t
σ2

lm(s)e
2βlsds, l ∈ L. (17)

These distributional properties of FCL will be used in the next theorem, which provides
a formula for the fair price of the considered call option. Throughout the rest of this paper,
Φ denotes the cumulative standard normal distribution function.
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Theorem 3. Let 0 ≤ t ≤ τ ≤ T1 ≤ T2 and L ⊆ J. Let the spot price be given as in Equation (9)
and the swap be defined by Equation (10). Then, the fair price of the call option as in Equation (11)
is given by

CL(t, τ, T1, T2) = e−r(τ−t)
(
(FL(t, T1, T2)− K)E[Φ(d1)]

+E
[
Φ(d1) ∑

l∈L

1
βl

γl

∫ τ

t
eβls

∫ ∞

−∞
zÑl(dz, ds)

]
+ σ̂LE[Φ′(d1)]

)
, (18)

where

d1(t, τ, T1, T2) := d1 :=
FL(t, T1, T2) + ∑l∈L

1
βl

γl
∫ τ

t eβls
∫ ∞
−∞ zÑl(dz, ds)− K

σ̂L(t, τ, T1, T2)
(19)

and
γl(T1, T2) := γl :=

1
T2 − T1

(e−βl T1 − e−βl T2). (20)

Proof. By combining Equations (11) and (12), we find

CL(t, τ, T1, T2) =e−r(τ−t)E
[(

F(t, T1, T2) +
∫ τ

t
σ(s)dB(s)

+ ∑
l∈L

M

∑
m=1

∫ τ

t
σ̃lm(s, T1, T2)dBm(s) (21)

+ ∑
l∈L

1
βl

γl

∫ τ

t
eβls

∫ ∞

−∞
zÑl(dz, ds)− K

)
+

∣∣∣Ft

]
,

with γl given as in Equation (20) and σ̃lm(t, T1, T2) defined through Equation (13). Because
the stochastic integrals are independent of Ft we obtain from the latter

CL(t, τ, T1, T2) =e−r(τ−t)E
[(

FL(t, T1, T2) +
∫ τ

t
σ(s)dB(s)

+ ∑
l∈L

M

∑
m=1

∫ τ

t
σ̃lm(s, T1, T2)dBl(s) (22)

+ ∑
l∈L

1
βl

γl

∫ τ

t
eβls

∫ ∞

−∞
zÑl(dz, ds)− K

)
+

]
.

Define now
N̂L := ∑

l∈L

1
βl

γl

∫ τ

t
eβls

∫ ∞

−∞
zÑl(dz, ds), (23)

and, recalling Equation (14)

ψ(q) := E
[(

FCL (τ, T1, T2) + q− K
)
+

]
, q ∈ R. (24)

Then, by the tower property and the assumed independence of the Brownian motions
with respect to the Poisson processes, we can write from Equation (22)

CL(t, τ, T1, T2) = e−r(τ−t)E
[
ψ(N̂L)

]
. (25)
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In order to complete the proof it thus remains only to evaluate ψ(q) of Equation (24).
Denoting by Z a random variable with standard Normal distribution, and recalling that
FCL (τ, T1, T2) ∼ Φ(FL(t, T1, T2), σ̂2

L(t, τ, T1, T2)) (Equations (14) and (16)) we find

ψ(q) = E
[(

FL(t, T1, T2) + σ̂LZ + q− K
)
+

]
, q ∈ R.

Then, standard calculations lead for any q ∈ R to

ψ(q) = (FL(t, T1, T2) + q− K)Φ(d1(q)) + σ̂LΦ′(d1(q)), (26)

where we have set

d1(q) :=
FL(t, T1, T2) + q− K

σ̂L(t, τ, T1, T2)

By feeding Equation (26) back into Equation (25) and rearranging terms, one easily
derives Equation (18).

Considerations on the Effect of the Jump Components’ Volatilities

Notice that the expression of the call price in Equation (18) is consistent with the clas-
sical fair pricing formula in the Bachelier model, as expected (see Musiela and Rutkowski
(1997) for a review of the Bachelier model). The main difference lies in the fact that the
coefficient d1 in Equation (18) depends on the jump-components of the spot price dynam-
ics. However, from Equation (18) it is not clear how those jump factors affect the pricing
formula. In order to get a feeling for that, we now perform a Taylor expansion of the term
Φ(d1) around the point

d2 := d2(t, τ, T1, T2) :=
F(t, T1, T2)− K
σ̂L(t, τ, T1, T2)

. (27)

That is, we are assuming that the term N̂L = ∑l∈L
1
βl

γl
∫ τ

t eβls
∫ ∞
−∞ zÑl(dz, ds) is suffi-

ciently small. Then

Φ(d1) = Φ(d2) + Φ′(d2)(d1 − d2) +R(d1, d2)

= Φ(d2) + Φ′(d2)
N̂L
σ̂L

+R(d1, d2), (28)

where the remainder is given by

R(d1, d2) :=
∫ d1

d2

(d1 − y)Φ′′(y)dy. (29)

Such an approximation gives

E[N̂LΦ(d1)] = E[N̂L]Φ(d2) +E[N̂2
L]

1
σ̂L

Φ′(d2) +E[N̂LR(d1, d2)]

= E[N̂2
L]

1
σ̂L

Φ(d2) +E[N̂LR(d1, d2)]. (30)

Here, we have used the martingale property of N̂L to have E[N̂L] = 0.
Furthermore, defining

σ̃2
Ñl

:= Var
[ 1

βl

∫ τ

t
eβl s

∫ ∞

−∞
zÑl(dz, ds)

]
, (31)
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and employing Equation (20) we have calculated

E[N̂2
L] = Var[N̂L] = ∑

l∈L
γ2

l Var
[ 1

βl

∫ τ

t
eβl s

∫ ∞

−∞
zÑl(dz, ds)

]
= ∑

l∈L
γ2

l σ̃2
Ñl

= ∑
l∈L

1
(T2 − T1)2 (e

−βl T1 − e−βl T2)2σ̃2
Ñl

=: σ̂2
N̂L

. (32)

By inserting Equation (30) into Equation (18), we find

CL(t, τ, T1, T2) = e−r(τ−t)
((

F(t, T1, T2)− K
)
E[Φ(d1)]

+ σ̂2
N̂L

1
σ̂L

Φ′(d2) + σ̂LE[Φ′(d1)]

)
+ e−r(τ−t)E[N̂LR(d1, d2)]. (33)

By a rough consideration that does not take into account the remainder, the last
formula shows that a larger volatility of the jump components of the spot price (i.e., a larger
σ̂N̂L

) implies a larger call price. From Equation (32) we also observe that the more jump-
components are considered (i.e., the larger |L| is), the larger is σ̂N̂L

, and therefore the larger
is the call option’s price. This argument will be made precise in the next section, where we
investigate how the call option’s price is affected by the number of mean-reverting jump
processes in the spot and the swap price.

4. The Effect of Mean-Reverting Jump Processes on the Call Option Price

In this section, we push forward the discussion made at the end of the previous
section and we study in detail the role that the mean-reverting components of the spot
price play on the price of the call option. We start from the implicit assumption that the
call option price CJ(t, τ, T1, T2) (defined as in Equation (11) with J instead of L) provides
the most precise representation of the actual price of the contingent claim. By considering
in Equation (2) only |L| < |J| of the mean-reverting processes, our model becomes less
accurate but at the same time easier to handle (e.g., for parameter estimation). To quantify
the resulting pricing error, we are going to estimate from above and below the difference
CJ(t, τ, T1, T2)− CL(t, τ, T1, T2).

Before doing that we need the following simple lemma, whose proof is immediate.

Lemma 1. Recall Equations (16) and (17). Then for any subset L ⊆ J we have that

σ̂2
L(t, τ, T1, T2)

T2→∞→
∫ τ

t
σ2(s)ds =: σ2

B(t, τ) =: σ2
B. (34)

Furthermore, for T2 − T1 ≥ 1,

σ2
B ≤ σ̂2

L(t, τ, T1, T2) ≤ σ̂2
J (t, τ, T1, T2) ≤ σ2

B + ∑
j∈J

cj. (35)

Hence, for delivery periods that are sufficiently large (i.e., T2 − T1 ≥ 1), the previous
lemma provides simple bounds on the volatility arising in the continuous part of the swap
price. The following result provides an upper and a lower bound for the pricing error
CJ − CL, and for its proof Equation (35) will be used. We shall also assume that at the
initial time t the swap price is observed, and it is equal for both models with |L| or |J|
mean-reverting components; that is, FL(t, T1, T2) = FJ(t, T1, T2) = F(t, T1, T2). Moreover,
following Schmeck (2016), we require that δ := F(t, T1, T2)− K is constant, meaning that
K = K(T1, T2) has to be chosen accordingly in a delivery-period-dependent form. This
condition enforces that call options with different delivery periods are comparable.
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Theorem 4. Let 0 ≤ t ≤ τ ≤ T1 ≤ T2 and assume that T2 − T1 ≥ 1. Furthermore, let L ⊆ J
and suppose also that δ := F(t, T1, T2)− K(T1, T2) is constant for all delivery periods. Recall
cl = cl(t, τ), σ̃2

Ñl
, and σ2

B = σ2
B(t, τ) as defined in Equations (17), (31) and (34) respectively,

and define

Θup
l := Θup

l (t, τ) :=

e−r(τ−t) 1
σB
√

2π

(
7σ̃2

Ñl
+ cl

)
, for l ∈ J \ L

e−r(τ−t) 1
σB
√

2π
4σ̃2

Ñl
, for l ∈ L

and

Θlow,1
l := Θlow,1

l (t, τ) := e−r(τ−t) e
− 1

2σ2
B

δ2

2
√

2π(σ2
B + ∑j∈J cj)

cl ,

Θlow,2
l := Θlow,2

l (t, τ) :=
1

2σ2
B

σ̃2
Ñl

.

Then, we have

CJ − CL ≤ ∑
l∈J

Θup
l

(
e−βl T1 − e−βl T2

)2

(T2 − T1)2 (36)

and

CJ − CL ≥

 ∑
l∈J\L

Θlow,1
l

(
e−βl T1 − e−βl T2

)2

(T2 − T1)2

 exp

 ∑
l∈J\L

Θlow,2
l

(
e−βl T1 − e−βl T2

)2

(T2 − T1)2

 . (37)

Note that we aim at determining a lower and upper error depending on the delivery
period [T1, T2]. Therefore, for fixed time t and exercise time of the option τ the expressions
Θup

l (t, τ) can indeed be interpretated as constants Θup
l .

Proof. The proof is organized in several steps. Throughout this proof, we let t ∈ [0, τ],
τ ≥ 0, and T1 and T2 be given and fixed times satisfying 0 ≤ t ≤ τ ≤ T1 ≤ T2 and
T2 − T1 ≥ 1. Furthermore, when needed, I denotes an index set such that I ∈ {L, J}.

Step 1. For x ∈ R, and y > 0 let

d1(x, y) :=
δ + x
√

y
,

and define

C(x, y) := e−r(τ−t)
(

δΦ(d1(x, y)) + xΦ(d1(x, y)) +
√

yΦ′(d1(x, y))
)

. (38)

Then, for

N̂I := ∑
m∈I

1
βm

γm

∫ τ

t
eβms

∫ ∞

−∞
zÑm(dz, ds),

with γm as in Equation (20), we have

CJ(t, τ, T1, T2) = E[C(N̂J , σ̂J)]

and
CL(t, τ, T1, T2) = E[C(N̂L, σ̂L)].
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Step 2. We now want to evaluate the derivatives of C with respect to its arguments.
By explicit computations using that

∂Φ(d1(x, y))
∂x

=
1
√

y
Φ′(d1(x, y))

and
Φ′(d1(x, y))

∂x
= − 1
√

y
d1(x, y)Φ′(d1(x, y))

one obtains

∂C
∂x

(x, y) = e−r(τ−t)
(
(x + δ)

1
√

y
Φ′(d1(x, y)) + Φ(d1(x, y))− d1(x, y)Φ′(d1(x, y))

)
.

(39)

Recalling also that 1√
y (x + δ) = d1(x, y), one finally finds

∂C
∂x

(x, y) = e−r(τ−t)Φ(d1(x, y)). (40)

Similar computations employing that

∂Φ(d1(x, y))
∂y

= −1
2
(x + δ)

y
3
2

Φ′(d1(x, y))

and

∂Φ′(d1(x, y))
∂y

=
1
2
(x + δ)

y
3
2

d1(x, y)Φ′(d1(x, y))

also yield

∂C
∂y

(x, y) = e−r(τ−t) 1
2
√

y
Φ′(d1(x, y)) (41)

Since C is clearly a continuously differentiable function for all x ∈ R and y > 0, we can
apply the mean value theorem and find an η ∈ (0, 1) such that

CJ(t, τ, T1, T2)− CL(t, τ, T1, T2) = E
[ ∂C

∂x
(ξ1, ξ2)(N̂J − N̂L) +

∂C
∂y

(ξ1, ξ2)(σ̂
2
J − σ̂2

L)
]

= E
[ ∂C

∂x
(ξ1, ξ2)N̂J\L +

∂C
∂y

(ξ1, ξ2)(σ̂
2
J − σ̂2

L)
]
, (42)

where ξ := (ξ1, ξ2) has components

ξ1 := (1− η)N̂L + ηN̂J = N̂L + ηN̂J\L and

ξ2 := (1− η)σ̂2
L + ησ̂2

J = σ̂2
L + η(σ̂2

J − σ̂2
L),

Note that per definition (σ̂2
J − σ̂2

L) 6= σ̂2
J\L (see Equation (16)).

Step 3. With regards to Equation (42), we here determine bounds for E[ ∂C
∂x (ξ1, ξ2)N̂J\L].
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Notice that, given the independence of N̂L and N̂J\L, by the “freezing lemma” of
conditional expectations, we can write

E
[∂C

∂x
(ξ1, ξ2)N̂J\L

]
= E

[∂C
∂x

(N̂L + ηN̂J\L, ξ2)N̂J\L

]
= e−r(τ−t)E

[
Cov(Φ(d1((z + ηN̂J\L, ξ2))), N̂J\L)

∣∣
z=N̂L

]
. (43)

However, (Φ ◦ d1)(·, ξ2) is an increasing function and it is well known that two
comonotonic random variables have nonnegative covariance. Hence, we obtain from
Equation (43)

E
[∂C

∂x
(ξ1, ξ2)N̂J\L

]
≥ 0 (44)

In order to determine an upper bound for E
[

∂C
∂x (ξ1, ξ2)N̂J\L

]
we perform a Taylor

expansion. To this end, recall d2(y) = δ√
y , so that

E
[ ∂C

∂x
(ξ1, ξ2)N̂J\L

]
= E

[
e−r(τ−t)Φ(d1(ξ1, ξ2))N̂J\L

]
= e−r(τ−t)

(
E
[
Φ′(d2(ξ2))(d1(ξ1, ξ2)− d2(ξ2))N̂J\L

]
+E

[
N̂J\LR(d1(ξ1, ξ2), d2(ξ2))

])
(45)

= e−r(τ−t)
(
E
[
Φ′(d2(ξ2))

ξ1√
ξ2

N̂J\L
]
+E

[
N̂J\LR(d1(ξ1, ξ2), d2(ξ2))

])
,

for some restR.
From Equation (35) we know that

σ2
B ≤ σ̂2

L(t, τ, T1, T2) ≤ σ̂2
J (t, τ, T1, T2) ≤ σ2

B + ∑
j∈J

cj, (46)

for T2 − T1 ≥ 1. Now, because ξ1 = N̂L + ηN̂J\L, N̂L and N̂J\L are independent, and
E[N̂J\L] = 0, we obtain that

E[Φ′(d2(ξ2))
ξ1√
ξ2

N̂J\L] = E[Φ′(d2(ξ2))
ηN̂2

J\L√
ξ2

]

≤ 1
σB

σ̂2
N̂J\L

Φ′(d2(ξ2)) (47)

≤ 1
σB

σ̂2
N̂J\L

1√
2π

.

Then, plugging Equation (47) into Equation (45), yields

E
[∂C

∂x
(ξ1, ξ2)N̂J\L

]
≤ e−r(τ−t)

[ 1
σB
√

2π
σ̂2

N̂J\L
+E

[
N̂J\LR(d1(ξ1, ξ2), d2(ξ2))

]]
(48)

Hence, to conclude with the estimate of the left-hand side of the latter, we need to
control for the expectation involving the remainder termR. In order to accomplish that,
observe that

R(d1(ξ1, ξ2), d2(ξ2)) = −
∫ d1(ξ1,ξ2)

d2(ξ2)
(d1(ξ1, ξ2)− y)yΦ′(y)dy

≤
∫ ∞

−∞

(
|d1|(ξ1, ξ2) + |y|

)
|y|Φ′(y)dy

≤ 1 +
2√
2π

( δ + |ξ1|√
ξ2

)
.
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Then, since E[N̂J\L] = 0, the definition of ξ1 and the fact that ab ≤ 2(a2 + b2), yield

E
[
N̂J\LR(d1(ξ1, ξ2), d2(ξ2))

]
≤ 2√

2πξ2
E
[
|N̂L + ηN̂J\L|N̂J\L

]
≤ 2√

2πξ2

(
2σ̂2

N̂L
+ 3σ̂2

N̂J\L

)
≤ 2

σB
√

2π

(
2σ̂2

N̂L
+ 3σ̂2

N̂J\L

)
, (49)

where we have used that ξ2 ≥ σ2
B in the last step.

By combining Equations (48) and (49), it follows that

E[∂C
∂x

(ξ1, ξ2)N̂J\L] (50)

≤ e−r(τ−t) 1√
2πσB

[
σ̂2

N̂J\L
+ 2
(
2σ̂2

N̂L
+ 3σ̂2

N̂J\L

)]
.

Step 4. With regards to Equation (42), we here determine bounds for
E[ ∂C

∂y (ξ1, ξ2)(σ̂
2
J − σ̂2

L)]. By employing Equation (41) we have

E
[∂C

∂y
(ξ1, ξ2)(σ̂

2
J − σ̂2

L)
]
= e−r(τ−t)E

[ 1
2
√

ξ2
Φ′(d1(ξ1, ξ2))(σ̂

2
J − σ̂2

L)
]

= e−r(τ−t) 1
2
√

2πξ2
E
[
e−

1
2 d2

1(ξ1,ξ2)(σ̂2
J − σ̂2

L)
]

(51)

= e−r(τ−t) (σ̂
2
J − σ̂2

L)

2
√

2πξ2
E
[
e−

1
2ξ2

(δ+N̂L+ηN̂J\L)
2]

.

By using Equation (35) we then find

(σ̂2
J − σ̂2

L)

2
√

2πξ2
E
[
e−

1
2ξ2

(δ+N̂L+ηN̂J\L)
2]
≤

(σ̂2
J − σ̂2

L)

2σB
√

2π
. (52)

On the other hand, Equation (35), Jensen’s inequality, the independence of N̂L and
N̂J\L, and the fact that E[N̂L] = 0 = E[N̂J\L], give

(σ̂2
J − σ̂2

L)

2
√

2πξ2
E
[
e−

1
2ξ2

(δ+N̂L+ηN̂J\L)
2]
≥

(σ̂2
J − σ̂2

L)

2
√

2π(σ2
B + ∑j∈J cj)

e
− 1

2σ2
B
(δ2+σ̂2

N̂L
+σ̂2

N̂J\L
)
. (53)

Hence, from the previous estimates we obtain

(σ̂2
J − σ̂2

L)

2
√

2π(σ2
B + ∑j∈J cj)

e−r(τ−t)e
− 1

2σ2
B
(δ2+σ̂2

N̂L
+σ̂2

N̂J\L
)
≤ E

[∂C
∂y

(ξ1, ξ2)(σ̂
2
J − σ̂2

L)
]

≤ e−r(τ−t) (σ̂
2
J − σ̂2

L)

2σB
√

2π
, (54)

where we recall that

σ̂2
J − σ̂2

L = ∑
j∈J\L

cj
1

(T2 − T1)2 (e
−β jT1 − e−β jT2)2. (55)

Step 5. By Equations (44), (50) and (54), the claimed result follows from Equation (42),
upon using σ̂2

L and σ̂2
N̂L

as in Equations (16) and (32), respectively, and defining analogously

σ̂2
J and σ̂2

N̂J\L
.
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The previous theorem shows that for sufficiently large delivery periods the pricing
error becomes smaller. As a matter of fact,

CJ(t, τ, T1, T2)− CL(t, τ, T1, T2)
(T2−T1)→∞→ 0. (56)

This means that for long delivery periods, considering a simpler model with only a few
of the mean-reverting jump components leads to a negligible error. Clearly, such a result is
consistent with the fact that the swap price averages out the effect of the jump processes
affecting the spot price. Since on the European Energy Exchange (Options Trading at
EEX 2018), delivery periods are usually at least one month long—i.e., T2 − T1 ≥ 30 in
our framework—Theorem 4 provides a quantitative estimate that might be useful also for
practical purposes.

It is also interesting to notice that large values of σB reduce the pricing error. This can
be explained by noticing that a large σB makes the jump spikes relatively not influential,
as the Brownian process B plays then the role of the leading factor for the evolution of the
spot and swap prices.

5. Numerical Illustration

In this section, we provide an illustration of the theoretical findings collected in
Theorem 4. We consider the simplest example possible, by taking |J| = 2 and |L| = 1,
we plot the error bounds obtained in Theorem 4 as functions of the delivery period, and
we show the convergence of CJ − CL to zero when the delivery period becomes suffi-
ciently large.

Bearing in mind the spot price model from Section 2, we now compare two specifi-
cations of this model. In the first model, we set J = {1, 2}, meaning that the spot price is
described by

S(t) = Λ + X(t) + Y1(t) + Y2(t), (57)

with the drifted Brownian Motion

dX(t) = µdt + σdB(t), (58)

and two Brownian Ornstein-Uhlenbeck processes

dYj(t) = −β jYj(t)dt + σjdBj(t). (59)

Furthermore, for the second model, set L = {1}; that is, we consider the first Ornstein-
Uhlenbeck process only.

The parameters Λ, σ, σj, λj are all constant, and given by Λ = 0.1, σ = 0.1, σj = 0.1 for
all j ∈ J. The values of β1 and β2 are chosen as in Schmeck (2016); that is, β1 = 0.3466 is the
fast mean-reversion rate, while β2 = 0.0495 is the slower one. We consider options at the
money, that is δ = F(t, T1, T2)− K = 0. Finally, we set r = 0, for simplicity, the maturity of
the option is τ = 1, and the delivery period starts four days later (see Options Trading at
EEX 2018). Figure 2 shows the pricing error that is made by using the above parameters. As
our theoretical analysis proved, the error vanishes for long delivery periods. Here, we can
see that the upper bound better fits the actual pricing error. However, the lower bound is
quite far away from the actual error.
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Figure 2. The pricing error with σ = 0.1 and without jumps.

On the other hand, if we reduce σ to the value 0.01, we observe from Figure 3 that the
situation reverse; i.e., the lower bound on the pricing error becomes closer to the actual
difference CJ − CL than the upper bound. Overall, these numerical exercises illustrate that,
depending on the model’s parameters, either the upper or the lower bound deliver better
information about the real difference between the call options’ prices.
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#10-3 Pricing Error with <  = 0.01

C
J
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Figure 3. The pricing error with σ = 0.01 and without jumps.

6. Conclusions

It is well known that price series in electricity markets exhibit several features such as
jumps and multi-scale mean reversion. On one hand, multi-factor models can incorporate
these stylized facts into a theoretical model framework. On the other hand, the more factors
the more complex becomes estimation or calibration of the model to data. Not only the
number of parameters increases, it is also not obvious to decide, e.g., what movements
are due to a jump component, and what movements are best described to originate from
a Brownian component. Therefore it is important to explore the role of the single factors
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when it comes to pricing of derivatives. In this paper, we have determined upper and
lower error bounds for option prices when neglecting some factors of the original model.
We place ourselves into an arithmetic setting, having the advantage of the possibility to
include the delivery period explicitly. This is the main difference to the connected articles
Benth and Schmeck (2014) and Schmeck (2016), that work in a geometric setting, and thus
have to approximate the delivery period. Indeed, the length of the delivery period plays a
crucial role, the longer the period the smaller the error when neglecting mean-reverting
components. We illustrate our findings numerically and find that already for monthly
delivery periods, the error one makes is typically very small, when neglecting fast mean
reverting factors. Furthermore, the volatility of the non-stationary factor influences the
quality of the error bounds. For small values, the pricing error is closer to the lower
bound, while for higher values the upper error bound turns out to be more precise. Thus,
for recently traded shorter delivery periods, e.g., on a weekly base, the error can be
substantial, especially for smaller base volatility.
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Appendix A

Appendix A.1. Proof of Theorem 1

Proof. By combining Equations (2) and (6), we get:

F(t, T1, T2) = E
[

1
T2 − T1

∫ T2

T1

(
Λ(u) + X(u) + ∑

j∈J
Yj(u)

)
du
∣∣∣Ft

]
. (A1)

Plugging

X(u) = X(t) + µ(u− t) +
∫ u

t
σ(s)dB(s),

Yj(u) = Yj(t)e
−β j(u−t) +

M

∑
m=1

∫ u

t
σjm(s)e

−β j(u−s)dBm(s) +
∫ u

t
e−β j(u−s)dQj(s)

into Equation (A1), noticing that Λ is deterministic, that X(t) and Yj(t) are Ft-measurable,
and that the stochastic integrals are independent of Ft, we obtain from Equation (A1)

F(t, T1, T2) =
1

T2 − T1

∫ T2

T1

(
Λ(u) + X(t) + µ(u− t) +E

[ ∫ u

t
σ(s)dB(s)

]
+ ∑

j∈J
Yj(t)e

−β j(u−t) + ∑
j∈J

M

∑
m=1

E
[ ∫ u

t
σjm(s)e

−β j(u−s)dBm(s)
]

+ ∑
j∈J

E
[ ∫ u

t
e−β j(u−s)dQj(s)

])
du.
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Here, we have also employed Fubini’s theorem, whose use is justified by the fact that
λj, σ and σj are bounded, and E[|Ỹjk|] < ∞, by assumption.

Because the expectations of the Brownian stochastic integrals clearly vanish, by simple
computations we obtain

F(t, T1, T2) =
1

T2 − T1

∫ T2

T1

Λ(u)du + X(t) +
T2 − T1

2
µ− µt

+ ∑
j∈J

Yj(t)
1
β j

1
T2 − T1

(e−β j(T1−t) − e−β j(T2−t)) (A2)

+
1

T2 − T1

∫ T2

T1

E
[ ∫ u

t
e−β j(u−s)dQj(s)

]
du.

Finally, we conclude by using that

E
[ ∫ u

t
e−β j(u−s)dQj(s)

]
=
∫ u

t
λj(s)e

−β j(u−s)
( ∫ ∞

−∞
z f j(z)dz

)
ds.

Appendix A.2. Proof of Theorem 2

Proof. From Equation (7) we obtain

dF(t, T1, T2) = dX(t)− µdt

+ ∑
j∈J

1
β j

1
T2 − T1

(
d(Yj(t)e

−β j(T1−t))− d(Yj(t)e
−β j(T2−t))

)
(A3)

+ ∑
j∈J

1
T2 − T1

d
(∫ T2

T1

∫ u

t
λj(s)e

−β j(u−s)
∫ ∞

−∞
z f j(z)dzdsdu

)
.

Now, recalling that, for any j ∈ J, Yj(t) evolves as in Equation (4), we have for
i ∈ {1, 2}:

d(Yj(t)e
−β j(Ti−t)) = β jYj(t)e

−β j(Ti−t)dt + e−β j(Ti−t)dYj(t)

= β jYj(t)e
−β j(Ti−t)dt + e−β j(Ti−t)(−β jYj(t)dt +

M

∑
m=1

σjm(t)dBm(t) + dQj(t)) (A4)

= e−β j(Ti−t)
M

∑
m=1

σjm(t)dBm(t) + e−β j(Ti−t)dQj(t).

Using now that dX(t) − µdt = σ(t)dB(t) and plugging Equation (A4) into
Equation (A3) leads to:

dF(t, T1, T2) = σ(t)dB(t)

+ ∑
j∈J

1
β j

1
T2 − T1

(e−β j(T1−t) − e−β j(T2−t))
M

∑
m=1

σjm(t)dBm(t)

+ ∑
j∈J

1
β j

1
T2 − T1

(e−β j(T1−t) − e−β j(T2−t))dQj(t) (A5)

+ ∑
j∈J

1
T2 − T1

d
(∫ T2

T1

∫ u

t
λj(s)e

−β j(u−s)
∫ ∞

−∞
z f j(z)dzdsdu

)
.
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Because
∫ ∞
−∞ z f j(z)dz < ∞ an λj(s) is bounded, by assumption, by the dominated

convergence theorem to exchange derivative and integral we find

1
T2 − T1

d
(∫ T2

T1

∫ u

t
λj(s)e

−β j(u−s)
∫ ∞

−∞
z f j(z)dzdsdu

)
=

1
T2 − T1

∫ T2

T1

d
(∫ u

t
λj(s)e

−β j(u−s)
∫ ∞

−∞
z f j(z)dzds

)
du

= − 1
T2 − T1

∫ T2

T1

λj(t)e
−β j(u−t)

∫ ∞

−∞
z f j(z)dzdu (A6)

=
1
β j

1
T2 − T1

(e−β j(T1−t) − e−β j(T2−t))λj(t)
∫ ∞

−∞
z f j(z)dzdt,

which combined with Equation (A5) provides the claim.
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Benth, Fred E., Jūratė Šaltytė Benth, and Steen Koekebakker. 2008. Stochastic Modeling of Electricity and Related Markets. Singapore:

World Scientific.
Benth, Fred E., Marco Piccirilli, and Tiziano Vargiolu. 2019. Mean-reverting additive energy forward curves in a Heath-Jarrow-Morton

framework. Mathematics and Financisl Econonics 13: 543–77. [CrossRef]
Borovkova, Svetlana, and Maren D. Schmeck. 2017. Electricity price modeling with stochastic time change. Energy Economics 63: 51–65.

[CrossRef]
Deschatre, Thomas, Olivier Féron, and Pierre Gruet. 2021. A survey of electricity spot and futures price models for risk management

applications. arXiv arXiv:2103.16918.
Edoli, Enrico, Marco Gallana, and Tiziano Vargiolu. 2017. Optimal intra-day power trading with a Gaussian additive process. Journal

Energy Markets 10: 23–42.
Escribano, Alvaro, Juan Ignacio Pena, and Pablo Villaplana. 2011. Modeling electricity prices: International evidence. Oxford Bulletin

Economics Statistics 73: 622–50. [CrossRef]
Fanelli, Viviana, and Maren D. Schmeck. 2019. On the seasonality in the implied volatility of electricity options. Quantitative Finance 19:

1321–37. [CrossRef]
Fanone, Enzo, Andrea Gamba, and Marcel Prokopczuk. 2013. The case of negative day-ahead electricity prices. Energy Economics 35:

22–34. [CrossRef]
Geman, Helyette, and Andrea Roncoroni. 2006. Understanding the fine structure of electricity prices. Journal Business 79: 1225–61.

[CrossRef]
Genoese, Fabio, Massimo Genoese, and Martin Wietschel. 2010. Occurrence of negative prices on the German spot market for electricity

and their influence on balancing power markets. Paper presented at 2010 7th International Conference on the European Energy
Market, Madrid, Spain, June 23–25; pp. 1–6.

Hinderks, Wieger J., and Andreas Wagner. 2020. Factor models in the German electricity market: Stylized facts, seasonality, and
calibration. Energy Economics 85: 104351. [CrossRef]

Kaminski, Vincent. 2013. Energy Markets. London: Risk Books.
Kiesel, Rüdiger, Gero Schindlmayr, and Reik H. Börger. 2009. A two-factor model for the electricity forward market. Quantitative

Finance 9: 279–87. [CrossRef]
Knittel, Christopher R., and Michael R. Roberts. 2001. An Empirical Examination of Deregulated Electricity Prices. Boston: Boston

University. Power Working Paper No. PWP-087.
Latini, Luca, Marco Piccirilli, and Tiziano Vargiolu. 2019. Mean-reverting no-arbitrage additive models for forward curves in energy

markets. Energy Economics 79: 157–70. [CrossRef]
Meyer-Brandis, Thilo, and Peter Tankov. 2008. Multi-factor jump-diffusion models of electricity prices. International Journal of Theortical

and Applied Finance 11: 503–28. [CrossRef]
Musiela, Marek, and Marek Rutkowski. 1997. Martingale Methods in Financial Modelling. Berlin: Springer.

http://doi.org/10.1016/j.energy.2005.02.017
http://dx.doi.org/10.2307/2330804
http://dx.doi.org/10.21314/JEM.2014.114
http://dx.doi.org/10.1080/13504860600725031
http://dx.doi.org/10.1007/s11579-019-00237-x
http://dx.doi.org/10.1016/j.eneco.2017.01.002
http://dx.doi.org/10.1111/j.1468-0084.2011.00632.x
http://dx.doi.org/10.1080/14697688.2019.1582792
http://dx.doi.org/10.1016/j.eneco.2011.12.006
http://dx.doi.org/10.1086/500675
http://dx.doi.org/10.1016/j.eneco.2019.03.024
http://dx.doi.org/10.1080/14697680802126530
http://dx.doi.org/10.1016/j.eneco.2018.03.001
http://dx.doi.org/10.1142/S0219024908004907


Risks 2021, 9, 100 19 of 19

Nomikos, Nikos K., and Orestes A. Soldatos. 2010. Analysis of model implied volatility for jump diffusion models: Empirical evidence
from the Nordpool market. Energy Economics 32: 302–12. [CrossRef]

Options Trading at EEX. 2018. Available online: https://www.eex.com/blob/57714/b2b2e9d0dfd4b2895735f3ff8e53b915/20160914-
eex-presentation-milan-event-1-data.pdf (accessed on 29 January 2018).

Piccirilli, Marco, Maren D. Schmeck, and Tiziano Vargiolu. 2021. Capturing the power options smile by an additive two-factor model
for overlapping futures prices. Energy Economics 95: 105006. [CrossRef]

Schmeck, Maren D. 2016. Pricing Options on Forwards in Energy Markets: The Role of Mean Reversion’s Speed. International Journal of
Theortical and Applied Finance 19: 1650053. [CrossRef]

Weron, Rafal. 2014. Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of
Forecasting 30: 1030–81. [CrossRef]

http://dx.doi.org/10.1016/j.eneco.2009.10.011
https://www.eex.com/blob/57714/b2b2e9d0dfd4b2895735f3ff8e53b915/20160914-eex-presentation-milan-event-1-data.pdf
https://www.eex.com/blob/57714/b2b2e9d0dfd4b2895735f3ff8e53b915/20160914-eex-presentation-milan-event-1-data.pdf
http://dx.doi.org/10.1016/j.eneco.2020.105006
http://dx.doi.org/10.1142/S0219024916500539
http://dx.doi.org/10.1016/j.ijforecast.2014.08.008

	Introduction
	Setting
	Spot Price Dynamics
	Swap-Price Value and Dynamics

	Pricing a Call Option on the Swap
	The Effect of Mean-Reverting Jump Processes on the Call Option Price
	Numerical Illustration
	Conclusions
	
	Proof of Theorem 1
	Proof of Theorem 2

	References

