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Abstract: In this paper, we consider a company that wishes to determine the optimal reinsurance
strategy minimising the total expected discounted amount of capital injections needed to prevent
the ruin. The company’s surplus process is assumed to follow a Brownian motion with drift,
and the reinsurance price is modelled by a continuous-time Markov chain with two states. The
presence of regime-switching substantially complicates the optimal reinsurance problem, as the
surplus-independent strategies turn out to be suboptimal. We develop a recursive approach that
allows to represent a solution to the corresponding Hamilton–Jacobi–Bellman (HJB) equation and
the corresponding reinsurance strategy as the unique limits of the sequence of solutions to ordinary
differential equations and their first- and second-order derivatives. Via Ito’s formula, we prove the
constructed function to be the value function. Two examples illustrate the recursive procedure along
with a numerical approach yielding the direct solution to the HJB equation.

Keywords: reinsurance; regime-switching; Brownian motion; Markov chain; optimal control; HJB
equation; ordinary differential equations; boundary value problem

MSC: 60K10; 91B30; 60J65; 49K15

1. Introduction

Writing red numbers is generally considered a bad sign for the financial health of
a (insurance) company. An old but also highly criticised concept to measure company’s
riskiness is the ruin probability, i.e., the probability that the company’s surplus will become
negative in finite time. There is a vast of literature on ruin probability in different settings
and under various assumptions, see, for instance, Rolski et al. (1999); Asmussen and
Albrecher (2010) and further reference therein.

As ruin probabilities do not take into account the time and the severity of ruin, the
related concept of capital injections incorporating both features has been suggested in
Pafumi (1998) in the discussion of Gerber and Shiu (1998). The risk is measured by the
expected discounted amount of capital injections needed to keep the surplus non-negative.
If the discounting rate, or rather the preference rate of the insurer, is positive, then the
amount of capital injections is minimised if one injects just as much as it is necessary to shift
the surplus to zero (but not above) and to inject just when the surplus becomes negative (but
not before, anticipating a possible ruin), see, for instance, Eisenberg and Schmidli (2009).

A well-established way to reduce the risk of an insurance portfolio is to buy reinsur-
ance. Finding the optimal or fair reinsurance in different settings is a popular and widely
investigated topic in insurance mathematics, see, for instance, Azcue and Muler (2005); Ben
Salah and Garrido (2018); Brachetta and Ceci (2020) and the references therein. However,
the reinsurance premia are usually higher than the premia of the first insurer. Otherwise,
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it would create an arbitrage opportunity for the first insurer, who could transfer the entire
risk to the reinsurer (i.e., the amount of the necessary capital injection is zero) and still
receive a risk-free gain in from of the remaining premium payments. If we consider a
model including both capital injections and reinsurance, the capital injection process will
naturally depend on the chosen reinsurance strategy. That is, one can control the capital
injections—representing the company’s riskiness—by reinsurance. In this context, the
problem of finding a reinsurance strategy leading to a minimal possible value of expected
discounted capital injections has been solved in Eisenberg and Schmidli (2009). There, the
optimal reinsurance strategy is given by a constant, meaning that the insurance company
is choosing a retention level once and forever. This result has been obtained under the
assumption that the parameters describing the evolution of the insurer’s and reinsurer’s
surplus never change. However, the reality offers a contrary picture. The state of economy
has an enormous impact on the insurance/reinsurance companies, adding an exogeneously
given source of uncertainty.

In financial literature, regime-switching models have become very popular because they
take into account possible macroeconomic changes. Originally proposed by Hamilton to
model stock returns, this class of models has been adopted also in insurance mathematics, see,
e.g., Asmussen (1989); Bargès et al. (2013); Bäuerle and Kötter (2007); Gajek and Rudź (2020);
Jiang and Pistorius (2012). In this connection, one should not forget the models containing
hidden information. Reinsurance companies deciding over the price of their reinsurance
products have to take into account the competition on the market and the consequences of
adverse selection, see, for instance, Chiappori et al. (2006) and references therein.

In the present paper, we model the surplus of the first insurer by a Brownian motion
with drift. The insurer is obligated to inject capital if the surplus becomes negative and
is allowed to buy proportional reinsurance. In order to account for the macroeconomic
changes that are assumed to happen in circles, we allow the price of the reinsurance—
represented through a safety loading—to depend on the current regime of the economy.
A continuous-time Markov chain with two states describes the length of the regimes and
the switching intensity from one state into another. We target to find a reinsurance strategy
that minimises the value of expected discounted capital injections where the discounting
rate is a positive regime-independent constant. If the discounting rate would be assumed
to be negative in one of the states, it might become optimal to inject capital even if the
surplus is still positive (see, for instance, in Eisenberg and Krühner (2018)), which would
substantially complicate the problem. For the same reason, we do not incorporate hidden
information or moral hazard into this model

We solve the optimisation problem via the Hamilton–Jacobi–Bellman (HJB) equation,
which is in this case a system of equations. Differently than it has been done in the one-
regime case, we cannot guess the optimal strategy and prove the corresponding return
function to solve the HJB equation. Instead, we solve the system of HJB equations recursively.
First of all, the system of HJB equations is rewritten as a system of ordinary differential equa-
tions. Then, we assume that the value function, say in the second regime, is an exponential
function and solve the corresponding ordinary differential equation for the first regime. The
obtained solution is inserted into the ordinary differential equation for the second regime.
Proceeding in this way, we obtain a monotone uniformly converging sequence of solutions,
whose limit functions solve the original HJB equation. Here, it is of crucial importance to
choose correctly the exponential of the starting function in the recursion. We present an
equation system providing the only correct choice of the starting function.

The aim of the present paper is to develop an algorithm for finding a candidate for
the value function. Like in the case with just one regime, the HJB equation is rewritten as
a differential equation with boundary conditions. Here, we are facing a boundary value
problem, i.e., the conditions are specified at different boundaries, with one boundary being
even infinity. Therefore, using Volterra-type representations and comparison theorems,
we prove the existence and uniqueness of a solution to the HJB equation. Ito’s formula
allows one to show that the constructed solution is indeed the value function. We show
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that the optimal reinsurance strategies are increasing in one regime and decreasing in the
other, depending on the parameters. This fact reflects the dependence of the strategies on
the reinsurance prices along with the switching intensities. For instance, being in a regime
with a low reinsurance price and a relative high switching intensity into a state with a high
reinsurance price would produce a decreasing proportion of the self-insured risk.

As we do not get a closed form expressions for the value function and for the optimal
strategies, we give a numerical illustration of both the algorithm and the value function.
Here, we follow the approach of Auzinger et al. (2019).

The remainder of the paper is structured as follows. In Section 2, we give a mathe-
matical formulation of the problem and present the Hamilton–Jacobi–Bellman equation.
In Section 3, we shortly revise the case of constant controls and prove that those cannot be
optimal except for the case when it is optimal to buy no reinsurance. In Sections 4 and 5 we
recursively construct a function solving the HJB equation and prove it to be the value func-
tion. Finally, we explore the problem numerically in Section 6 and conclude in Section 7.

2. The Model

In the following, we give a mathematical formulation of the problem and present
the heuristically derived Hamilton–Jacobi–Bellman (HJB) equation. We are acting on a
probability space (Ω,F ,P).

In the classical risk model, the surplus process of an insurance company is given by

Xt = x + ct−
Nt

∑
i=1

Zi ,

where {Nt} is a Poisson process with intensity λ and the claim sizes Zi are iid. with
E[Z1] = µ and E[Z2

1 ] = µ2 and independent of {Nt}. Furthermore, x denotes the initial
capital and c > 0 the premium rate. For further details on the classical risk model, see, e.g.,
Chapter 5.1 in Schmidli (2017).

The insurer can buy proportional reinsurance at a retention level 0 ≤ b ≤ 1, i.e.,
for a claim Zi, the cedent pays bZi, and the reinsurer pays the remaining claim (1− b)Zi.
Assume the expected value principle for the calculation of the insurance and reinsurance
premia with safety loadings η > 0 and θ > 0, respectively, where η < θ (see Chapter 1.10
in Schmidli (2017)) transforms the surplus of the insurer, denoted now by Xb to

Xb(t) = x + c(b)t−
Nt

∑
i=1

bZi . (1)

The new premium rate depends on the retention level and is given by c(b) = (b(1 +
θ)− (θ − η))λµ, being old premia reduced for the premia paid to the reinsurer (see, e.g.,
Chapter 5.7 in Schmidli (2017)).

Usually, optimisation problems can be tackled more easily if the surplus is given by
a Brownian motion. Therefore, diffusion approximation of the classical risk model is a
popular concept in optimisation problems in insurance. A diffusion approximation to (1)
by adopting a dynamic reinsurance strategy B = {bt}, that is, the retention level bt changes
continuously in time, is given by

XB
t = x + θ

∫ t

0
bs ds− λµ(θ − η)t +

√
λµ2

∫ t

0
bs dWs , (2)

dfsuch that the first two moments of (1) and (2) remain the same; see, for instance, Appendix
D.3 in Schmidli (2008) for details. In addition to buying reinsurance, the insurance company
has to inject capital in order to keep the surplus non-negative. The process describing the
accumulated capital injections up to time t under a reinsurance strategy B will be denoted
by YB = {YB

t }. The surplus process under a reinsurance strategy B and capital injections Y
is given by
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XB,Y
t = XB

t + Yt . (3)

Further, we introduce a continuous-time Markov chain J = {Jt} with state space
S = {1, 2}. We assume that J and W are independent, and that J has a strongly irreducible
generator Q = [qij]2×2, where qij = −qii for i 6= j, and we consider the filtration {Ft},
generated by the pair (W, J). That is, the economy can be in two different regimes, and
accordingly the parameters in (2) are no longer constant, but depend on the state. In order
to emphasise the dependence on the reinsurance price, we let the safety coefficient of the
reinsurer depend on the current regime by letting all other variables unchanged. Thus,
instead of (2), we now consider the process

XB
t = x +

∫ t

0
θJs bs − λµ(θJs − η) ds +

∫ t

0

√
λµ2bs dWs ,

The set of admissible reinsurance strategies will be denoted by B and is formally
defined as

B = {B = {bt}, bt ∈ [0, 1], bt Ft − adapted} .

We are interested in the minimal value of expected discounted capital injections by
starting in state i with initial capital x over all admissible strategies, i.e., we minimise

VB(i, x) := Ei,x

[∫ ∞

0
e−δt dYB

t

]
, (i, x) ∈ {1, 2} × [0, ∞) .

Here, and in the following, we use the common notation E[.|X0 = x, J0 = i] = Ei,x[.].
Our target is to find an admissible reinsurance strategy B∗ such that the value function

V(i, x) := inf
B∈B

VB(i, x) .

can be written as the return function corresponding to the strategy B∗, i.e., V(i, x) =
VB∗(i, x).

According to the theory of stochastic control, we expect the value function V is to
solve the HJB equation (see Schmidli (2008) or Jiang and Pistorius (2012) for a model with
Markov-switching)

inf
b∈[0,1]

λµ2b2

2
V′′(i, x) + λµ

(
θib− θi + η

)
V′(i, x)− (δ− qii)V(i, x)− qiiV(j, x) = 0 , (4)

The boundary condition V′(i, 0) = −1 arises from the requirement of smooth fit
(C1-fit) at zero. As we do not allow the surplus to become negative, it is clear that the value
function for x < 0 fulfils V(i, x) = −x + V(i, 0), i.e., we immediately inject as much capital
as it is needed to shift the surplus process to zero, meaning V′(i, x) = −1. The second
boundary condition lim

x→∞
V(i, x) = 0 originates from the fact that a Brownian motion with

a positive drift converges to infinity almost surely, i.e., for x → ∞ the amount of expected
discounted capital injections converges to 0, see, for instance, Rolski et al. (1999).

The HJB equation can be formally derived as the infinitesimal version of the dynamic
programming principle, upon assuming that V has the regularity needed to apply Ito’s
formula for Markov-modulated diffusion processes (as in the proof of Lemma 1 below);
we refer to Chapter 2 in Schmidli (2008) for a textbook treatment.

It is clear that b∗(i, x) = − µθiV′(i,x)
µ2V′′(i,x) ∧ 1. If b∗ < 1, the HJB becomes for i, j ∈ {1, 2} i 6= j

−
µ2θ2

i V′(i, x)2

2µ2V′′(i, x)
− λµ

(
θi − η

)
V′(i, x)− (δ− qii)V(i, x)− qiiV(j, x) = 0 . (5)
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Technically, HJB Equation (5) is a system of 2 ordinary differential equations, coupled
through the transition rates of the underlying Markov chain. It is a hard task to explicitly
solve these equations and show that the solutions are decreasing and convex functions of
the initial capital. Therefore, we use a recursive method to obtain the value function as a
limit. However, first we look at the constant strategies and investigate why none of those
can be optimal in the case of more than one regime.

3. Constant Strategies

It is known (see, for instance, Eisenberg and Schmidli (2009)) that in the one-regime
case the optimal reinsurance strategy is given by a constant. In this section, we show
that in the two-regime case a constant strategy (other than “no reinsurance at all”) cannot
be optimal.

Let b1, b2 ∈ [0, 1), then B̂ := {bJt} is an admissible reinsurance strategy. Further, we
let Ŷ and X̂ denote the capital injection process triggered by the reinsurance strategy B̂ and
the surplus process under B̂ and after capital injections, respectively. Thus, for the return
function V̂(i, x), corresponding to B̂, it holds

V̂(i, x) = Ei,x

[ ∫ ∞

0
e−δt dŶt

]
.

Lemma 1. If û is a solution to the system of ODEs, i ∈ {1, 2}, j 6= i

λµ2b2
i

2
û′′(i, x) + λµ(θibi − θi + η)û′(i, x)− (δ− qii)û(i, x)− qiiû(j, x) = 0 , (6)

with boundary conditions û′(i, 0) = −1, lim
x→∞

û(i, x) = 0, then û(i, x) = V̂(i, x).

Proof. First, we look at the Equation (6). A general solution to (6) fulfilling lim
x→∞

û(i, x) = 0

is given by

û(i, x) = Ci1eA1x + Ci2eA2x , i ∈ {1, 2} , (7)

where A1, A2 < 0. The coefficients are uniquely given by

C11

(
A2

1
λµ2b2

1
2

+ A1λµ(θ1b1 − θ1 + η)− (δ− q11)
)
− q11C21 = 0,

C12

(
A2

2
λµ2b2

1
2

+ A2λµ(θ1b1 − θ1 + η)− (δ− q11)
)
− q11C22 = 0,

C21

(
A2

1
λµ2b2

2
2

+ A1λµ(θ2b2 − θ2 + η)− (δ− q22)
)
− q22C11 = 0, (8)

C22

(
A2

2
λµ2b2

2
2

+ A2λµ(θ2b2 − θ2 + η)− (δ− q22)
)
− q22C12 = 0,

C11 A1 + C12 A2 = −1, C21 A1 + C22 A2 = −1 .

Now, arguing like in Shreve et al. (1984), we show that û = V̂. Using a generalised
form of Itô’s formula, like it has been done, for instance, in Jiang and Pistorius (2012),
we get

e−δtû(Jt, X̂t) = û(J0, X̂0) +
∫ t

0
e−δsû′(Js, X̂s) dWs + Mt

+
∫ t

0
e−δs

{λµ2b2
s

2
û′′(Js, X̂s) + λµ(θJs bs − θJs + η)û′(Js, X̂s)

− (δ− qJs ,Js)û(Js, X̂s)− qJs ,Js û
(
1I[Js=1] + 1, X̂s

)}
ds

+
∫ t

0
e−δs û′(Js, X̂s) dŶs

(9)
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where M is a local martingale associated with the regime switching mechanism. That is, M
is given by

Mt =
∫
[0,t]×[0,2]

û(X̂s−, j)− û(X̂s−, Js−) π̃(ds, dj) ,

where π̃ = π− ν is a compensated random measure as defined in Jacod and Shiryaev (2003).
It holds

π(dt, dj) = ∑
s≥0

1I[∆Js(ω) 6=0]1I(dt,dj)(s, Js(ω)) ,

ν(dt, dj) = 1I[∆Jt(ω) 6=0]qJt− ,j P(dj)dt ,

where P is the counting measure on {1, 2} and 1I(dt,dj)(s, Js(ω)) is the Dirac measure at the
point (s, Js(ω)).

Note that M is bounded because

|û(j, X̂s−)− û(Js−, X̂s−)| ≤ max
i∈{1,2}

û(i, X̂s−) ,

As û is bounded, we can conclude that M is a martingale with expectation zero.
Because û′ is bounded we can conclude that also the stochastic integral is a martingale with
expectation zero. Further, as û solves Equation (6) with u′(i, 0) = −1, building expectations
on the both sides in (9) yields

E
[
e−δtû(Jt, X̂t)

]
= û(i, x)−E

[ ∫ t

0
e−δs dŶs

]
.

By the bounded convergence theorem, we can interchange limit t→ ∞ and expecta-

tions and get û(i, x) = E
[ ∫ ∞

0 e−δs dŶs

]
.

Remark 1. Note that it holds Cij 6= 0 for all i, j ∈ {1, 2}. If, for example, C11 = 0 then we have
from (8) that it must also hold C21 = 0 and simultaneously

C22 = − 1
A2

= C12 ,

C22

(
A2

2
λµ2b2

1
2

+ A2λµ(θ1b1 − θ1 + η)− (δ− q11)− q11

)
= 0 ,

C22

(
A2

2
λµ2b2

2
2

+ A2λµ(θ2b2 − θ2 + η)− (δ− q22)− q22

)
= 0 ,

which leads to a contradiction.

Lemma 2. The return function corresponding to a strategy B = {bJs} with bi ∈ [0, 1), i = 1, 2,
does not solve HJB Equation (4).

Proof. We proof this lemma by contradiction. Assume that there is a strategy B = {bJs}
with bi ∈ [0, 1), i = 1, 2, so that the corresponding return function, V̂ solves the HJB
Equation (4), i.e.,

0 = inf
b∈[0,1]

[λµ2b2

2
V̂′′(i, x) + λµ(θib− θi + η)V̂′(i, x)− (δ− qii)V̂(i, x)− qiiV̂(j, x)

]
.

Subtracting Equation (6) from the latter, one finds
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0 = inf
b∈[0,1]

[
λµ2b2

2
V̂′′(i, x) + λµ(θib− θi + η)V̂′(i, x)− (δ− qii)V̂(i, x)− qiiV̂(j, x)

−
(

λµ2b̂2
i

2
V̂′′(i, x) + λµ(θi b̂i − θi + η)V̂′(i, x)− (δ− qii)V̂(i, x)− qiiV̂(j, x)

)]
,

which is equivalent to

λµ2b̂2

2
V̂′′(i, x) + λµθi b̂iV̂′(i, x) = inf

b∈[0,1]

[
λµ2b2

2
V̂′′(i, x) + λµθibiV̂′(i, x)

]
.

Then, it should hold that bi = −
µθi
µ2

V̂′(i,x)
V̂′′(i,x)

∧ 1. As we assumed b̂i < 1, for i = 1, 2, the

expression − µθi
µ2

V̂′(i,x)
V̂′′(i,x)

should not depend on x. Keeping in mind the boundary conditions

lim
x→∞

V̂(i, x) = 0 and V′(i, 0) = −1, we get

V̂′(i, x) = −e
− µθi

µ2 b̂i
x

,

which contradicts (7).

4. Recursion

In the following, we establish an algorithm that allows us to calculate the value
function as a limit of a sequence of twice continuously differentiable, decreasing and
convex functions. For simplicity, we let

∆i :=
λµ2θ2

i
2µ2

+ δ− qi , Bi :=
∆i

λµ(θi − η)
, B̃i :=

∆i + qi
λµ(θi − η)

. (10)

We will see that the behaviour of the optimal reinsurance strategy will depend on the
relations between B1, B̃1, B2 and B̃2. As there are many possibilities to arrange the above
quantities, we consider just one path, omitting considering the case of no reinsurance, in
order not to complicate the explanations. However, the algorithm proposed below can be
applied to any combination of parameters.

Assumption 1. W.l.o.g. we assume that B1 > B̃1 > B2 > B̃2 > max{ µθ2
µ2

, µθ1
µ2

}
, which is

equivalent to
1
B1

<
1
B̃1

<
1
B2

<
1
B̃2

< max
{ µ2

µθ2
,

µ2

µθ1

}
. (11)

In the case of just one regime, the problem could be solved by conjecturing that
the optimal strategy is constant and the corresponding return function is an exponential
function. This allowed us to verify easily that the solution, say v, to Differential Equation (5)
with qii = 0 was strictly increasing, convex and fulfilled − µθiv′

µ2v′′ < 1 or, if the case maybe,
the optimal strategy was not to buy reinsurance at all. In our case of two regimes, the
situation changes as we have seen in Section 3. The return functions corresponding to the
constant strategies do not solve the HJB equation in general.

As it is impossible to guess the optimal strategy and to subsequently check whether
the return function corresponding to this strategy is the value function, we slightly change
the solving procedure. At first, we look at the HJB equation in the form of Differential
Equation (5), such has been done, for instance, in Eisenberg and Schmidli (2009). The next,
very technical step is to solve the obtained differential equation and to check whether the
solution, say f , fulfils− µθi f ′(i,x)

µ2 f ′′(i,x) ∈ (0, 1). Then, we show that the gained solution f is indeed
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the return function corresponding to the reinsurance strategy − µθi f ′(i,x)
µ2 f ′′(i,x) ∈ (0, 1). Thus, in

this way we find an admissible strategy whose return function solves HJB Equation (4).
Verification theorem proves this return function to be the value function.

In the following, we describe the steps of an algorithm allowing to get a strictly decreas-
ing and convex solution to Differential Equation (5) under Assumption (11). The procedure
consists in choosing a starting function, fixing, say i = 1, and replacing the unknown
function V(2, x) in (5) by the chosen starting function. Using the method of Højgaard and
Taksar (1998), we show the existence and uniqueness of a solution. In the next step, now it
holds i = 2, the unknown function V(1, x) in (5) is replaced by the function obtained in the
first step. Letting the number of steps go to infinity, we get a solution to (5). We will see
that the starting value of the recursion plays a crucial role in obtaining a solution with the
desired properties: convexity and monotonicity. Therefore, we start by explaining how to
choose the starting function in Step 0.

4.1. Step 0

The solutions to the differential equations

−
λµ2θ2

i f ′(x)2

µ2 f ′′(x)
− λµ

(
θi − η

)
f ′(x)− δ f (x) = 0 . (12)

with boundary conditions lim
x→∞

f (x) = 0 and f ′(0) = −1 are well known and given by
1
B̃i

e−B̃ix. Note that due to Assumption (11) it holds that µθi
µ2 B̃i

< 1.
The optimal strategy in the case of two regimes is not constant, see Section 3. However,

we conjecture that the value function in the case of two regimes fulfils lim
x→∞

−V′(1,x)
V′′(1,x) =

lim
x→∞

−V′(2,x)
V′′(2,x) ∈ [1/B̃1, 1/B̃2], i.e., the ratio of the first and second derivatives converges to

the same value does not matter the initial regime state. One can see it as a sort of averaging
of the optimal strategies from the one-regime cases. This means, for instance, that if in
one-regime case the optimal reinsurance level was low in the first state and high in the
second, in the two-regime case the optimal level in the first state will go up and go down
in the second.

Mathematically, the above explanations are reflected in the starting function of our al-
gorithm:

W0(x) :=
1
Λ

e−Λx , (13)

where Λ fulfils

λµ(θ1 − η)

{
B1

Λ
− 1
}
+

q11

Λ
eα = 0 ,

λµ(θ2 − η)

{
B2

Λ
− 1
}
+

q22

Λ
e−α = 0 .

(14)

It means that Λ and α are uniquely given by

Λ =
B1 + B2 −

√
D

2
and α = ln

(
B1 − B2 +

√
D

−2q11/λµ(θ1 − η)

)
, (15)

D := (B1 − B2)
2 +

4q11q22

λ2µ2(θ1 − η)(θ2 − η)
.

Remark 2. It is a straightforward calculation to show Λ ∈ (B̃2, B̃1) and α > 0 using the definition
of Bi and Assumption (11).

Note that due to our assumption, it holds that − µθiW ′0(x)
µ2W ′′0 (x) < 1.
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We will see by establishing the algorithm below that Equation (14) for Λ will be crucial
in order to obtain a well-defined solution to (5). The elaborated mathematical meaning and
explanation of the Equation (14) will be demonstrated in the following steps.

4.2. Step 1

Assuming (11), we start investigating Differential Equation (5) and substitute the term
−q11V(2, x) by −q11W0(x) defined in (13), i.e., we look now at the differential equation

−
λµ2θ2

1 f ′(x)2

µ2 f ′′(x)
− λµ

(
θ1 − η

)
f ′(x)− (δ− q11) f (x)− q11W0(x) = 0 . (16)

Although we know the function W0, differential Equation (16) still cannot be solved
in a way that we could easily prove the solution to be strictly decreasing and convex.
Therefore, we use the following technique, introduced in Højgaard and Taksar (1998).

We assume that there is a strictly increasing, bijective on R+ function g such that the
derivative of the solution f to (16) fulfils f ′(g(x)) = −e−x. Then, it holds

f ′′(g(x)) =
e−x

g′(x)
and f ′′′(g(x)) = − e−x

g′(x)2 −
e−x

g′(x)3 .

Differentiating (16) yields

−
λµ2θ2

1
2µ2

(
2 f ′(x)− f ′(x)2 f ′′′(x)

( f ′′(x))2

)
−
(
θ1 − η

)
f ′′(x)− (δ− q11) f ′(x)− q11W ′0(x) = 0 .

Changing the variable to g(x) leads to a new differential equation for the function g

λµ2θ2
1

2µ2

(
2e−x +

− e−3x

(g′(x))2

(
1 + g′′(x)

g′(x)

)
e−2x/(g′(x))2

)
− λµ

(
θ1 − η

) e−x

g′(x)
+ (δ− q11)e−x

−q11W ′0(g(x)) = 0 ,

which can be further simplified by multiplying by e−xg′(x) and inserting the definition
of B1:

λµ2θ2
1

2µ2
g′′(x) = λµ(θ1 − η)

{
g′(x)B1 − 1

}
+ q11g′(x)e−Λg(x)+x . (17)

As the function g should be bijective, we will prove the existence and uniqueness
of a solution to (17) on R+ with the boundary conditions guaranteeing g(R+) = R+ and
g′ > 0. In particular, the term e−Λg(x)+x determines the unique condition yielding g′ > 0
and lim

x→∞
g′(x) 6= ∞, namely, lim

x→∞
g′(x) = 1/Λ.

In order to guide the reader through the auxiliary results below, we provide a roadmap
identifying the key findings of Step 1.

Note that when investigating (17) we are looking at a boundary value problem.
To show the existence and uniqueness of a solution, we will translate the boundary value
problem into an initial value problem, i.e., we shift the condition g′(x)→ 1/Λ as x → ∞
to x = 0 by using Volterra type representation for (17).

• First, we show that if (17) has a solution, say g, with the boundary values g(0) = 0 and

g′(n) = 1/Λ, for some n ∈ N, then g′(0) ∈
(

1/B̃1, 1/Λ
)

.

• In the second step, we show that there is a unique solution ξn to (17) with the boundary
conditions ξn(0) = 0 and ξ ′n(n) = 1/Λ.

• We prove the existence of a solution g1 to (17) with g(0) = 0 and lim
x→∞

g1(x) = 1/Λ.

• It holds g′1(0) ∈ (1/B̃1, 1/Λ) and g′′1 (x) > 0.
• The inverse function h1 of g1 fulfils h′1 ∈ (Λ, B̃1) and h′′1 (x) < 0.
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• h1(x) ∈ (Λx, B̃1x) for all x > 0 and lim
x→∞

(
h1(x)−Λx

)
= α with α given in (15).

Lemma 3. If there is a solution g to (17) with the boundary conditions g(0) = 0, g′(n) = 1/Λ,
for some n ≥ 1, then it holds that

g′(0) ∈
(

1/B̃1, 1/Λ
)

.

Proof. We prove the claim by contradiction. Let g be a solution to (17) with the boundary
conditions g(0) = 0, g′(n) = 1/Λ.

• Assume for the moment that g′(0) ≤ 1/B̃1. Then,
λµ2θ2

1
2µ2

g′′(0) = λµ
(
θ1 − η

)
(g′(0)B̃1 − 1) < 0 : if g′(0) < 1/B̃1,

λµ2θ2
1

2µ2
g′′′(0) = q11g′(0)(−g′(0)Λ + 1) < 0 : if g′(0) = 1/B̃1 ,

meaning that g′(x) stays positive but below 1/B̃1 in an environment of 0. As B̃1 > Λ,
the function e−Λg(x)+x is increasing in an ε-environment of 0, i.e., e−Λg(x)+x > 1,
which means that

λµ2θ2
1

2µ2
g′′(x) = (g′(x)B1 − 1)λµ

(
θ1 − η

)
+ q11g′(x)e−Λg(x)+x

< (g′(x)B̃1 − 1)λµ
(
θ1 − η

)
< 0 .

Thus, g′′ will stay negative and g′ will never arrive at 1/Λ > 1/B̃1.

• On the other hand, if g′(0) ≥ 1/Λ > 1/B̃1, then in a similar way one concludes that
g′ stays above 1/Λ for all x ∈ (0, n], contradicting g′(n) = 1/Λ.

• Thus, we can conclude that g′(0) ∈
(
1/B̃1, 1/Λ

)
.

Lemma 4. For every n ≥ 1 there is a unique solution ξn(x) to (17) on [0, n] fulfilling ξn(0) = 0,
ξ ′n(n) = 1/Λ.

Proof. As the proof is very technical, we postpone it to Appendix A.

Lemma 5. Let ξn be the unique solution to (17) with the boundary conditions ξn(0) = 0 and
ξ ′n(n) = 1/Λ. Then, ξ ′′n(x) > 0 on [0, ∞).

Proof. See Appendix A.

Proposition 1. There exists a unique solution g1 to (17) with the boundary conditions g1(0) = 0
and lim

x→∞
g′1(x) = 1/Λ, g′1 ∈ (1/B̃1, 1/Λ) and g′′1 > 0 on (0, ∞).

Proof. See Appendix A.

Remark 3. Proposition 1 implies−Λg1(x) + x > 0 for all x > 0. Moreover, due to Equation (14),
it holds that

lim
x→∞

(−Λg1(x) + x) = α . (18)

where α is given in (15).

Note that the definition of g yields g′(x) = − f ′(g(x))
f ′′(g(x)) . The boundary conditions imply

lim
x→∞

g(x) = ∞ and lim
x→∞

g′′(x) = 0. Thus, letting x → ∞ in (17) and using (18), we get the

first equation in (14). This provides the first idea and the meaning of the choice of W0.



Risks 2021, 9, 73 11 of 25

Corollary 1. There is a strictly increasing and concave inverse function of g1 on R+: g−1
1 (x) =:

h1(x). Further, it holds

• h1 fulfils h′1(x) > 0, h′1 ∈ (Λ, B̃1), lim
x→∞

h′1(x) = Λ and h′′1 (x) < 0.

• h′1(x)−Λ = 1
g̃′1(h1(x)) −Λ > 0, i.e., h1(x)−Λx is strictly increasing with h1(x) > Λx for

x > 0.

Proof. The function g1 fulfils g1(R+) = R+ and g′1(x) > 0 for all x ∈ R+, i.e., g1 is
a bijective function, which implies the existence of an inverse function h1. All other
properties follow from the properties of g1.

We can now let
W1(x) =

∫ ∞

x
e−h1(y) dy , (19)

i.e., W ′1(x) = −e−h1(x). Note that W1 is well defined due to Corollary 1 and solves Dif-
ferential Equation (17) with the boundary conditions W ′1(0) = −1 and lim

x→∞
W1(x) = 0.

In particular, due to (11) it holds − µθ1W ′1
µ2W ′′1

< 1.
In the following second step, we construct in a similar way a function g2.

4.3. Step 2

In the second step, we add the term−q22g′(x)W ′1(g(x))ex to Differential Equation (12),
i.e., we are looking at the differential equation

λµ2θ2
2

2µ2
g′′(x) = λµ

(
θ2 − η

)
(g′(x)B2 − 1)− q22g′(x)W ′1(g(x))ex

= λµ
(
θ2 − η

)
(g′(x)B2 − 1) + q22g′(x)e−h1(g(x))+x .

(20)

Note that h1(x) ∈ C∞, which implies Lipschitz-continuity on compacts. The existence
of a solution g2 with the boundary conditions g2(0) = 0 and lim

x→∞
g2(x) = 1/Λ can be

shown similar to Step 1.
The main findings of Step 2 are as follows:

1. There is a unique solution g2 to (20) with the boundary conditions g2(0) = 0 and lim
x→∞

g2(x) = 1/Λ.

2. It holds that g′2(0) ∈ (1/Λ, 1/B̃2) and g′′2 (x) < 0.
3. The inverse function h2 of g2 fulfils h′2 ∈ (B̃2, Λ) and h′′2 (x) > 0.
4. h2(x) ∈ (B̃2x, Λx) for all x > 0.

In the following, we prove only the results that cannot be easily transferred from
Step 1.

Lemma 6. If there is a solution g2 to Differential Equation (20) with the boundary conditions
g2(0) = 0 and lim

x→∞
g′2(x) = 1/Λ then g′2(0) ∈ (1/Λ, 1/B̃2).

Proof. See Appendix A.

Lemma 7. Let g2 be the unique solution to Differential Equation (20) with the boundary conditions
g2(0) = 0 and lim

x→∞
g′2(x) = 1/Λ. Then, g′′2 (x) < 0 for all x ∈ (0, ∞).

Proof. Lemma 6 yields g′2(0) ∈ (1/Λ, 1/B̃2). It means (see (A1)) that g′′2 (0) < 0. Let
x̂ := inf{x > 0 : g′′2 (x) = 0}, then g′2(x̂) ∈ (1/Λ, 1/B̃2) because if g′2(x) = 1/Λ and
g′′2 (x) < 0 then Lemma 6 gives lim

x→∞
g′2(x) 6= 1/Λ. Further, we also have

g′′′2 (x̂) = q22g′2(x̂)
(
− g′2(x̂)h′1(g2(x̂)) + 1

)
e−h1(g2(x̂))+x̂ > 0
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because h′1 > Λ due to Corollary 1. Then, g′′2 becomes positive, i.e., g′2 becomes increas-
ing and stays increasing for g′2 > 1/Λ, i.e., bounded away from 1/Λ, which yields a
contradiction.

Corollary 2. Let h2(x) be the inverse function of g2(x). Then, h′2 ∈ (B̃2, Λ), h′′2 > 0, lim
x→∞

h′2(x) =

Λ, h2(x) ∈ (B̃2x, Λx).

Proof. The proof is a direct consequence of Lemma 7.

Remark 4.

• Let
β := lim

x→∞
(−h1(g2(x)) + x) . (21)

Then, due to Equation (14) it holds β = −α.
• Furthermore, it follows easily

β = lim
x→∞

(−h1(g2(x)) + x) = lim
x→∞

(
− h1(g2(h2(x))) + h2(x)

)
= lim

x→∞

(
− h1(x) + Λx−Λx + h2(x)

)
,

and using (18) we get lim
x→∞

(−h1(x) + Λx) = lim
x→∞

(−x + Λg1(x)) = −α.
Therefore, we conclude

lim
x→∞

(
−Λx + h2(x)

)
= β + α = 0 (22)

as h2(x) ≤ Λx, see Corollary 2

Remark 4 explains the second equation in (14), if we let x → ∞ in Differential Equation (20).

4.4. Step 2m+1

In this step, we are searching for the function h2m+1 as the inverse of the solution
g2m+1 to the differential equation Um(g) = 0, where

Um(g) :=
λµ2θ2

1
2µ2

g′′(x)− λµ
(
θ1 − η

)
(g′(x)B1 − 1)− q11g′(x)e−h2m(g(x))+x . (23)

The existence of a solution g2m+1 can be proven similarly to Step 1. The boundary
conditions are g2m+1(0) = 0 and lim

x→∞
g′2m+1(x) = 1/Λ.

Our main target is to show that the obtained sequences of functions (g2m+1), (g′2m+1)
and (h2m+1) are monotone. We carry out the proof by induction using as the induction step
h2(x) < Λx on (0, ∞), see Corollary 2 in Step 2.

The main findings of Step 2m + 1 are summarised in the following remark.

Remark 5. Similar to Step 1, we get for g2m+1 and its inverse function h2m+1 that

• g2m+1(0) = h2m+1(0) = 0;
• g′2m+1 ∈ (1/B̃1, 1/Λ), h′2m+1 ∈ (Λ, B̃1);
• g′′2m+1(x) > 0 and h′′2m+1(x) < 0; and
• lim

x→∞
g′2m+1(x) = 1/Λ, lim

x→∞
h′2m+1(x) = Λ.

In Lemma 8 we show

• g′2m+1 > g′2m−1 on R+, g2m+1 > g2m−1 and h2m+1 < h2m−1 on (0, ∞).

Lemma 8. Assume that the functions h2k obtained in Steps 2k, 0 ≤ k ≤ m, fulfil

1. h2k(R+) = R+, h2k(0) = 0, h′2k ∈ (B̃2, Λ), h2k(x) ≤ Λx, lim
x→∞

h2k = Λ and h′′2k(x) > 0,
and
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2. h2k(x) < h2k−2(x) for x > 0.

Then, g′2m+1 > g′2m−1 on R+, g2m+1 > g2m−1 and h2m+1 < h2m−1 on (0, ∞).

Proof. See Appendix A.

Remark 6. Similar to Step 2, (22) we conclude by induction from lim
x→∞

(
− h2m(g2m+1(x))+ x

)
=

α that
lim

x→∞

(
−Λx + h2m+1(x)

)
= mβ + (m + 1)α = α (24)

with α given in (15).

4.5. Step 2m + 2

In Step 2m + 2, we are searching for the function h2m+2 as the inverse of the solution
g2m+2 to the differential equation Gm(g2m+2) = 0, where

Gm(g) =
λµ2θ2

2
2µ2

g′′(x)− λµ
(
θ2 − η

)
(g′(x)Λ− 1)− q22g′(x)e−h2m+1(g(x))+x .

The main findings of this Step are summarised below.

Remark 7. Similar to Step 2m + 1, we get for g2m+2 and its inverse function h2m+2:

• g2m+2(0) = h2m+2(0) = 0;
• g′2m+2 ∈ (1/Λ, 1/B̃2), h′2m+2 ∈ (B̃2, Λ);
• g′′2m+2(x) < 0 and h′′2m+2(x) > 0;
• lim

x→∞
g′2m+2(x) = 1/Λ, lim

x→∞
h′2m+2(x) = Λ.

• g′2m+1 > g′2m−1 on R+, g2m+1 > g2m−1 and h2m+1 < h2m−1 on (0, ∞).

Remark 8. Similar to Step 2m + 1, (24) we conclude by induction from lim
x→∞

(
− h2m+1(g2m+2(x))

+x
)
= β = −α that

lim
x→∞

(
−Λx + h2m+2(x)

)
= (m + 1)β + (m + 1)α = 0 . (25)

Note that the choice of Λ and α given by (14) is the only choice leading to β = −α.
In this way, one makes sure that it holds lim

x→∞

(
−Λx + h2m+2(x)

)
= 0 also in the 2m + 2-th

step, implying in this way 0 ≤ h2m+2(x) ≤ Λx. A different choice of Λ and α would
eliminate the upper boundary for h2m+2, destroying the well-definiteness of the limiting
function lim

m→∞
h2m+2.

5. The Value Function

In this section, we first construct a candidate for the value function by letting m→ ∞
for the sequences (g2m+1), (g2m+2), (g′2m+1), (g′2m+2), (h2m+1) and (h2m+2). Then, we
prove the candidate to be the value function via a verification theorem.

We know from Remarks 5 and 7 that the sequences (g2m+1), (g2m+2), (g′2m+1), (g′2m+2),
(h2m+1) and (h2m+2) are monotone and thus pointwise convergent. In the following lemma,
we show that the convergence is uniform on compacts.

Lemma 9. The sequences (g2m+1), (g2m), (g′2m+1), (g′2m), (g′′2m+1), (g′′2m), h2m, h2m+1 converge
uniformly on compacts to g1, g2, (g1)′, (g2)′, (g1)′′, (g2)′′, h2 = g2

−1, h1 = g1
−1, respectively.

Proof. Note first that Lemma 8 and Remark 7 yield the monotonicity of the sequences
(g2m+1), (g2m), (g′2m+1), (g′2m), h2m and h2m+1. Therefore, these sequences converge point-
wise implying the pointwise convergence of (g′′2m+1) and (g′′2m).
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In the following, we show that (g2m+1), (g′2m+1), (g′′2m+1) and h2m+1 converge uni-
formly on compacts.

Assume (g2m+1), (g′2m+1), (g′′2m+1) and h2m+1 converge pointwise to g1, w, u and χ,
respectively. Note that it holds by definition of g2m+1: Um(g2m+1) = 0 with Um defined in
(23). As g′′2m+1 > 0 and g′2m+1 > 0, see Step 2m + 1, it holds

λµ2θ2
1

2µ2
g′′2m+1(x) < λµ

(
θ1 − η

)
(g′′2m+1(x)B1 − 1) .

Integrating both sides of the above inequality, yields

λµ2θ2
1

2µ2

(
g′2m+1(x)− g′2m+1(0)

)
=
∫ x

0
g′′2m+1(y) dy

<
2µ2λµ

(
θ1 − η

)
λµ2θ2

1

∫ x

0
(g′2m+1(y)B1 − 1) dy

=
2µ2λµ

(
θ1 − η

)
λµ2θ2

1

(
g2m+1(x)B1 − x

)
,

which means that the sequence (g′′2m+1) is dominated by an integrable function. By
Lebesgue’s convergence theorem

∫ x
0 g′′2m+1(y) dy converges pointwise to

∫ x
0 u(y) dy. Re-

call that
∫ x

0 u(y) dy is a continuous function of x and because of the uniqueness of the
pointwise limit (g′2m+1) converges pointwise to w =

∫ x
0 u(y) dy. That is, as (g′2m+1) is

a decreasing sequence, Dini’s theorem yields the uniform convergence of (g′2m+1) to w
on compacts.

With the same arguments we get that (g2m+1) converges uniformly to g1 and it holds
w = g1

′ on compacts.
In a similar way, one can conclude that (g2m) and (g′2m) converge uniformly on

compacts to g2 and g2
′, respectively. So that we can conclude, compare, for instance,

(de Souza and Silva 2001, pp. 60, 297), that the sequence of the inverse functions (h2m)
converges uniformly on compacts to h2, the inverse of g2.

As a consequence of Differential Equation Um(g2m+1) = 0, also the sequence (g′′2m+1)
converges uniformly to g1

′′ on compacts.

Lemma 10. The limiting functions g1, g2, h1 and h2 fulfil on (0, ∞)

• gi(0) = hi(0) = 0;
• g1

′ ∈ (1/B̃1, 1/Λ), h1′ ∈ (Λ, B̃1);
• g2

′ ∈ (1/Λ, 1/B̃2), h2′ ∈ (B̃2, Λ);
• g1

′′(x) > 0 and g2
′′ < 0;

• h1
′′(x) > 0 and h2

′′(x) < 0.
• g1, g2, h1 and h2 fulfil on (0, ∞)

λµ2θ2
1

2µ2
g1
′′(x) = λµ

(
θ1 − η

)
(g1
′(x)B1 − 1) + q11g1

′(x)e−h2(g1(x))+x ,

λµ2θ2
2

2µ2
g2
′′(x) = λµ

(
θ2 − η

)
(g2
′(x)B2 − 1) + q22g2

′(x)e−h1(g2(x))+x .

(26)

Proof. From Lemma 9, one gets immediately the above inequalities with ≥ and ≤ instead
of > and < along with Differential Equation (26).

The strict inequalities follow easily using the methods presented in Step 1.

Lemma 11. For i ∈ {1, 2} it holds lim
x→∞

gi
′(x) = 1/Λ and lim

x→∞
gi
′′(x) = 0.
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Proof. Note that g1
′ is increasing and g2

′ is decreasing with g1
′ ≤ 1/Λ, g2′ ≥ 1/Λ,

h1
′ ≥ Λ and h2

′ ≤ Λ. It means

−h2′(g1(x))g1′(x) + 1 ≥ 0 and − h1
′(g2(x))g2′(x) + 1 ≤ 0 ,

meaning that e−h2(g1(x))+x is increasing and e−h1(g2(x))+x is decreasing. If lim
x→∞

g1
′(x) <

1/Λ, then lim
x→∞

e−h2(g1(x))+x = ∞ contradicting g1
′′ ≥ 0. If lim

x→∞
g2
′(x) > 1/Λ, then

lim
x→∞

e−h2(g2(x))+x = 0 leads to the contradiction lim
x→∞

g2
′′(x) > 0.

lim
x→∞

gi
′′(x) = 0 is a direct consequence from the above.

Corollary 3. It holds
∫ ∞

x e−hi(y) dy < ∞, i ∈ {1, 2}.

Proof. As h1(0) = 0 = h2(0) and h1
′ ∈ (Λ, B̃1) and h2

′ ∈ (B̃2, Λ) we conclude h1 ∈
(Λx, B̃1x) and h2 ∈ (B̃2x, Λx). Therefore,∫ ∞

x
e−hi(y) dy <

∫ ∞

x
e−B̃2y dy < ∞ .

Definition 1. We let for i ∈ {1, 2}

Ṽ(i, x) :=
∫ ∞

x
e−hi(y) dy (27)

and
b∗(i, x) :=

µθi
µ2h
′
i(x)

. (28)

Lemma 12. The function Ṽ and b∗ defined in (27) and (28), respectively, fulfil

1. Ṽ′(i, x) = −e−hi(x), b∗(i, x) ∈ (0, 1).
2. Ṽ(i, x) solves the system of differential equations for i, j ∈ {1, 2} with i 6= j

λµ2b∗(i, x)2

2
Ṽ′′(i, x) + λµ(θib∗(i, x)− θi + η)Ṽ′(i, x)− (δ− qii)Ṽ(i, x)

−qiiṼ(j, x) = 0

with the boundary conditions Ṽ′(i, 0) = −1 and lim
x→∞

Ṽ(i, x) = 0.

3. Ṽ(i, x) is the return function corresponding to the strategy b∗(i, x).

Proof.

1. It follows directly from (27), (28), (11), h2 ∈ (B̃2, Λ) and h1 ∈ (Λ, B̃1).
2. The functions g1, g2, h1 and h2 solve the system of equations (26) with boundary

conditions g1(0) = g2(0) = 0, lim
x→∞

g1
′(x) = lim

x→∞
g1
′(x) = 1/Λ and g1(h1(x)) = x,

g2(h2(x)) = x.
It holds Ṽ′(1, gi(x)) = −e−x, i.e.,

Ṽ′′(i, gi(x)) =
e−x

gi′(x)
and Ṽ′′′(i, gi(x)) = − e−x

gi(x)2 −
e−xgi

′′(x)
gi′(x)3 .

Substituting gi by Ṽ(i, x) in (26) yields the desired result.
3. Similar to Shreve et al. (1984) and Section 3, one gets that

Ṽ(i, x) = E
[ ∫ ∞

0
e−δt dYb∗

t

]
,
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where {YB∗
t } describes the capital injection process corresponding to the strategy

B∗ = {b∗} with b∗ defined in (28).

Proposition 2. The function Ṽ(i, x) defined in (27) is strictly decreasing, convex, fulfils V′(i, 0) =
−1, lim

x→∞
V(i, x) = 0 and solves HJB Equation (4).

Proof. The proof follows easily from Lemma 12.

Theorem 1 (Verification Theorem). The strategy B∗ = {b∗} with

b∗(i, x) =
µθi

µ2h
′
i(x)

< 1

is the optimal strategy, and the corresponding return function Ṽ, given in (27), is the value function.

Proof. Let B = {bt} be an arbitrary admissible strategy and XB the surplus process under
B and after the capital injections. Following the steps from lemma 1 we get

e−δ(t)Ṽ(Jt, XB
t ) = Ṽ(J0, XB

0 ) +
∫ t

0
e−δsṼ′(Js, XB

s ) dWs + Mt

+
∫ t

0
e−δs

{λµ2b2
s

2
Ṽ′′(Js, XB

s ) + λµ(θJs bs − θJs + η)Ṽ′(Js, XB
s )

− (δ− qJs ,Js)Ṽ(Js, XB
s )− qJs ,Js Ṽ

(
1I[Js=1] + 1, XB

s
)}

ds

+
∫ t

0
e−δs Ṽ′(Js, XB

s ) dYB
s (29)

where M is again a martingale with expectation 0 as M is bounded

|Ṽ(XB
s−, j)− Ṽ(XB

s−, Js−)| ≤ max
i∈{1,2}

V1(XB
s−, i) ,

where V1 is the return function corresponding to the strategy “no reinsurance”, i.e., b ≡ 1.
Because Ṽ′ is bounded we can conclude that also the stochastic integral is a martingale with
expectation zero. Further, as Ṽ solves the HJB equation and is convex with V′(i, 0) = −1,
it follows that

λµ2b2
s

2
Ṽ′′(Js, XB

s ) + λµ(θJs bs − θJs + η)Ṽ′(Js, XB
s )− (δ− qJs ,Js)Ṽ(Js, XB

s )

−qJs ,Js Ṽ
(
1I[Js=1] + 1, XB

s
)
≥ 0

and Ṽ′(i, x) ≥ −1. Thus, building expectations on the both sides in (29) yields

E
[
e−δtṼ(Jt, XB

t )
]
≥ Ṽ(i, x)−E

[ ∫ t

0
e−δs dYB

s

]
.

By the bounded convergence theorem, we can interchange limit t → ∞ and expec-

tations and get Ṽ(i, x) ≤ E
[ ∫ ∞

0 e−δs dYB
s

]
. For the strategy B∗ = {b∗(Js, Xs)}, we get the

equality.

6. Numerical Illustrations

All numerical computations were performed on Matlab R2020b using the library
bvpsuite2.01.
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The package bvpsuite2.0 has been developed at the Institute for Analysis and Sci-
entific Computing, Vienna University of Technology, and can be used—among other
applications—for the numerical solution of boundary value problems in ordinary differ-
ential equations on semi-infinite intervals. The library uses collocation for the numerical
solution of the underlying boundary value problems, which is a piecewise polynomial
function which satisfies the given ODE at a finite number of nodes (collocation points).
This approach shows advantageous convergence properties compared to other direct higher
order methods.2

The subsequent example has an illustrative scope and aims solely at providing nu-
merical evidence of the convergence of the recursive algorithm developed in the previous
theoretical sections. In order to provide a clear numerical illustration of the results, the fol-
lowing choice of parameters turns out to be suitable: µ = 1, λ = 1, µ2 = 4, η = 0.3,
θ1 = 0.33, θ2 = 0.8, q11 = −0.6 and q22 = −0.4.

6.1. Illustration of the Recursive Procedure

We start with illustrating the recursive procedure described in Section 4; that is, we
consider the functions h′2k and h′2k+1 and their convergence behaviour.

The fast convergence of each h′i(x)→ Λ for x → ∞ results in a very badly conditioned
differential equation (in this example, Λ ∼ 0.295522). As a consequence, we had to truncate
the solution interval and set the boundary conditions at x = 500, i.e., h′i(500) = Λ. The short
horizon leads the solver to overshoot the solution at the beginning and to compensate later
on, creating a characteristic initial “hump” for h′2k+1, which is evened out more and more
with each iteration. As a matter of fact, the larger k is, the more h′2k+1 is converging towards
a concave shape. On the other hand, the convergence of h′2k is faster, as for 6 iterations the
functions are already very close to each other, see Figure 1.
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Figure 1. The functions h′2k (left) and h′2k−1 (right) for k = 1, 2, 3, 4, 5, 6.

6.2. Solving the HJB Directly

Differently than in the section above, the HJB Equation (4) is now solved directly
using again bvpsuite2.0. The optimal reinsurance strategy b∗(i, x) and the ratio −V′′(i,x)

V′(i,x)
corresponding to the limit of the sequences (h′2m+1) (for i = 1) and (h′2m) (for i = 2) are
illustrated in Figure 2.

In Figure 2, left picture, one sees that in both regimes the optimal reinsurance strategy
is non-constant with respect to the surplus level. The red line representing the optimal
strategy b∗(1, x) is decreasing and the strategy b∗(2, x), in blue, is increasing. The reason
for this behaviour is the relation B̃1 > Λ > B̃2, where B̃1 = 1.787083 and B̃2 = 0.24.
The optimal strategies for the one-regime cases are
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µθ1

µ2B̃1
= 0.046165 <

µθ1

µ2Λ
= 0.350947

for the regime 1 and
µθ2

µ2B̃2
= 0.83 >

µθ1

µ2Λ
= 0.676769

for regime 2, respectively. Thus, due to the possibility to change into a regime with a
different reinsurance price, the optimal strategy changes.
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Figure 2. The optimal reinsurance strategies (left) and the ratios −V′′/V′ (right).

In Figure 2, right picture, we see that the ratio −V′′(i,x)
V′(i,x) converges for both regimes to

the level 0.295522 = Λ, the value towards which the sequences h′2k and h′2k+1 converge as
can be seen in Section 6.1.

Using bvpsuite optimisation, each step of the iteration takes between 30 and 40 s to
compute on a single 3GHz core.

These findings confirm the validity of the iterative algorithm developed in Section 4
and illustrated numerically in Section 6.1.

7. Conclusions

In this paper, we study the problem faced by an insurance company that aims at
finding the optimal proportional reinsurance strategy minimising the expected discounted
capital injections. We assume that the cost of entering the proportional reinsurance contract
depends on the current busyness cycle of a two-state economy, and we model this by letting
the safety loading of the reinsurance be modulated by a continuous-time Markov chain.
This leads to an optimal reinsurance problem under regime switching. In order to simplify
our explanations, we assume a certain relation between the crucial parameters of the two
regimes. Considering all possible combinations would be space-consuming with just a
marginal additional value.

Differently to Eisenberg and Schmidli (2009)—where no regime switching has been
considered—we find that the optimal reinsurance cannot be independent of the current
value of the surplus process, but should instead be given as a feedback strategy b∗, also
depending on the current regime. However, due to the complex nature of the resulting
HJB equation, determining an explicit expression for b∗ turns out to be a challenging task.
For this reason, we develop a recursive algorithm that hinges on the construction of two
sequences of functions converging uniformly to a classical solution to the HJB equation and
simultaneously providing the optimal strategies for both regimes. The obtained optimal
strategies are monotone with respect to the surplus level and converge for both regimes
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to the same explicitly calculated constant as the surplus goes to infinity. The algorithm
is illustrated by a numerical example, where one can also see that the convergence to the
solution of the HJB equation is quite fast.

The recursive scheme represents the main contribution of this paper and might also
be applied (with necessary adjustments) to other optimisation problems containing regime-
switching. For this reason, we retrace here the main steps and ideas of the algorithm.

The differential equation for the value function is first translated into a differential
equation for an auxiliary function, transforming the derivative of the value function into
an exponential function, using the method of Højgaard and Taksar (1998). In order to get
a solution to the system of equations, say Equations (a) and (b), we solve the differential
Equation (a) assuming that the solution to Equation (b) is given by an exponential function
e−Λ, which is the starting function of our algorithm. Then, we solve Equation (b) by
inserting the solution to Equation (a) from the previous step. Proceeding in this manner,
we obtain two sequences of uniformly converging functions whose limiting functions solve
the original HJB equation system.

Note that we are facing a boundary value problem, i.e., the boundary conditions on
the value function and its derivative, lim

x→∞
V(i, x) = 0 and V′(i, 0) = −1 are given at differ-

ent boundaries, with one boundary being infinity. Therefore, the usual Picard–Lindelöf
approach does not work. Instead, we use Volterra form representations and comparison
theorems to show the existence and uniqueness of a solution with the desired properties.

One of the crucial points in the above considerations is the starting function of the
algorithm. It turns out that there is a uniquely given constant, Λ, allowing to obtain the
desired properties of the limiting functions.

In particular, we show that the derivatives of the auxiliary functions lie in suitable
intervals (B̃2, Λ) or (Λ, B̃1), depending on the differential equation we are looking at.

Thus, we are able to show that the value function is twice continuously differentiable
and the optimal strategy has a monotone character and converges for x → ∞ to an explicitly
calculated value.

It would be interesting to implement the considerations from Chiappori et al. (2006) to
extend the presented model by hidden information, for instance, by introducing a hidden
Markov chain governing the reinsurance price over the parameter θ. This topic will be one
of the directions of our future research.
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Appendix A

Appendix A.1. Proofs of Step 1

Proof of Lemma 4. Let n ∈ N and consider the differential Equation (17) on the interval
[0, n] with the boundary conditions g(0) = 0 and g′(0) = ϑ for some ϑ > 0.

• It is straightforward to show that Equation (17) can be written in form of a Volterra
integral equation

λµ2θ2
1

2µ2
g(x) =

(λµ2θ2
1

2µ2
ϑ +

q11

Λ

)
x− λµ(θ1 − η)

2
x2

+
∫ x

0

{
λµ(θ1 − η)B1g(z) +

q11

Λ
e−Λg(z)+z(x− z− 1)

}
dz

Note that the function

k(x, z, y) := λµ(θ1 − η)B1y +
q11

Λ
e−Λy+z(x− z− 1)

is Lipschitz continuous in y for x ∈ [0, n]. Then, the Theorem on Continuous De-
pendence, see Walter (Walter 1998, p. 148), yields the existence of a unique solution
ξn(x; ϑ) to (17) on [0, n] with ξn(0; ϑ) = 0 and ξ ′n(0; ϑ) = ϑ for every ϑ ∈ [1/B̃1, 1/Λ],
where ξ(x; ϑ) is continuous as a function of (x; ϑ).
From Lemma 3, we know that ξ ′n(n; 1/B̃1) < 1/Λ and ξ ′n(n; 1/Λ) > 1/Λ. By the
intermediate value theorem, there is a ϑn ∈ (1/B̃1, 1/Λ) leading to a solution ξn(x; ϑn)
with ξn(0; ϑn) = 0 and ξ ′n(n; ϑn) = 1/Λ.

• Further, letting

f(x, y1, y2) =
(

f1(x, y1, y2), f2(x, y1, y2)
)

:=
(

y2,
2µ2λµ(θ1 − η)

λµ2θ2
1

(B1y2 − 1) +
2µ2q11

λµ2θ2
1

y2e−Λy1+x
)

on D := R+ ×
(
1/B̃1, 1/Λ

)
×R we can rewrite Differential Equation (17) as a system

of first-order equations:
(y′1, y′2) = f(x, y1, y2) .

The Jacobi matrix J = (cij) = (d fi/dyj) is then given by

J =

(
0 1

− 2µ2q11
λµ2θ2

1
y2Λe−Λy1+x 2µ2λµ(θ1−η)

λµ2θ2
1

B1 +
2µ2q11
λµ2θ2

1
e−Λy1+x

)
.

On D, the Jacobi matrix J is essentially positive3 and irreducible4. We can conclude
that by Hirsch’s Theorem, see Walter (Walter 1998, p. 112), for any ϑ < ϑ̃ it holds ξn(x; ϑ) <
ξn(x; ϑ̃) and ξ ′n(x; ϑ) < ξ ′n(x; ϑ̃) for all x ∈ (0, n]. Therefore, ξn(x; ϑn) is the unique solution
to (17) with the boundary conditions ξn(0; ϑn) = 0 and ξ ′n(n; ϑn) = 1/Λ. For simplicity, we
will write for this unique solution just ξn(x).

Proof of Lemma 5. We know from Lemma 3 that ξ ′n(0) ∈ (1/B̃1, 1/Λ). Then, it holds that
ξ ′′n(0) > 0 and e−Λξn(x)+x is increasing as long as ξ ′n < 1/Λ. Further, deriving (17) we get

λµ2θ2
1

2µ2
ξ ′′′n (x) = ξ ′′n(x)B1λµ

(
θ1 − η

)
+ q11ξ ′′n(x)e−Λξn(x)+x

+ q11ξ ′n(x)
(
−Λξ ′n(x) + 1

)
e−Λξn(x)+x .
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Let x̂ := inf{x > 0 : ξ ′′n(x) = 0}. Then, ξ ′′n(x) > 0 and consequently ξ ′n(x) > 1/B̃1 on
[0, x̂). If x̂ ∈ [0, n), then

ξ ′′′n (x̂) = q11ξ ′n(x̂)
(
−Λξ ′n(x̂) + 1

)
e−Λξn(x̂)+x̂

{
< 0 : ξ ′n(x̂) < 1/Λ,
> 0 : ξ ′n(x̂) > 1/Λ.

• Thus, if ξ ′n(x̂) < 1/Λ, then ξ ′′′n (x̂) < 0 and the second derivative ξ ′′n becomes negative,
implying that ξ ′n stays smaller than 1/Λ on [x̂, n] and contradicts ξ ′n(n) = 1/Λ.

• If ξ ′n(x̂) > 1/Λ, then ξ ′′′n (x̂) > 0 contradicting ξ ′′n(x̂) = 0.

• If ξ ′n(x̂) = 1/Λ, then ξ ′′′n (x̂) = 0 implying ξ
(k)
n (x̂) = 0 for all k ≥ 4. This means that

ξn(x) is a linear function on [0, n], i.e., ξ ′n(x) is a constant and ξ ′′n(x) ≡ 0 on [0, n].
Inserting this conjecture into Differential Equation (17) yields the contradiction.

If x̂ > n the claim follows with the arguments from Lemma 3.

Proof of Proposition 1.

• First, we show that the sequences (ξn) and (ξ ′n) are decreasing.
As it holds ξ ′n(n) = 1/Λ for all n ≥ 1, with Lemma 5 one gets ξ ′n(x) > 1/Λ for x > n.
This means, in particular, that ξ ′n+1(n + 1) = 1/Λ < ξ ′n(n).
We know that ξn(0) = 0 = ξn+1(0). Assume now ξ ′n+1(0) ≥ ξ ′n(0). The function

F(x, y1, y2) =
2µ2

λµ2θ2
1

(
λµ(θ1 − η){y2B1 − 1}+ q11y2e−Λy1+x

)
is increasing in y1. Letting P f := f ′′ − F(x, f , f ′) Differential Equation (17) can be
written as Pξn = 0 = Pξn+1. Comparison Theorem, see Walter (Walter 1998, p. 139),
yields then ξ ′n(x) ≤ ξ ′n+1(x) on [0, n + 1] leading to a contradiction.
Thus, ξ ′n(0) > ξ ′n+1(0) for all n ∈ N and as a direct consequence of the same Compari-
son Theorem: ξn(x) ≥ ξn+1(x) and ξ ′n(x) ≥ ξ ′n+1(x) on compacts for all n ∈ N.
Therefore, we can conclude that the sequences (ξn) and (ξ ′n) are decreasing fulfilling
ξn(0) = 0 and ξ ′n(n) = 1/Λ. Therefore, (ξn) and (ξ ′n) converge pointwise to some
functions g1 and w, respectively, and due to Differential Equation (17), the sequence
(ξ ′′n) converges pointwise to some function u.

• In the next step, we show that the sequences (ξn), ξ ′n and (ξ ′′n) converge uniformly
on compacts.
As ξ ′n > 0 and ξ ′′n > 0, see Lemma 5, for all n ≥ 1 and all x ≥ 0, it holds that

λµ2θ2
1

2µ2
ξ ′′n(x) = (ξ ′n(x)B1 − 1)λµ

(
θ1 − η

)
+ q11ξ ′n(x)e−Λξn(x)+x

< (ξ ′n(x)B1 − 1)λµ
(
θ1 − η

)
.

Integrating both sides of the above inequality and using that ξ ′n ≥ ξ ′n+1, yields

ξ ′n(x)− ξ ′n(0) =
∫ x

0
ξ ′′n(y) dy <

2µ2λµ
(
θ1 − η

)
λµ2θ2

1

∫ x

0
(ξ ′1(y)B1 − 1) dy

=
2µ2λµ

(
θ1 − η

)
λµ2θ2

1

(
ξ ′1(x)B1 − x

)
,

which means that the sequence (ξ ′′n) is dominated by a locally integrable function.
By Lebesgue’s convergence theorem

∫ x
0 ξ ′′n(y) dy converges pointwise to

∫ x
0 u(y) dy.

Recall that
∫ x

0 u(y) dy is a continuous function of x, and because of the uniqueness
of the pointwise limit, (ξ ′n) converges pointwise to w =

∫ x
0 u(y) dy. That is, as (ξ ′n)

is a decreasing sequence Dini’s theorem yields the uniform convergence of (ξ ′n) to w
on compacts.
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With the same argument, we get that (ξn) converges uniformly to g1 and it holds
w = g′1 on compacts. As a consequence of Differential Equation (17), (ξ ′′n) converges
uniformly to g′′1 on compacts.

• Now, we are ready to show that g1 fulfils lim
x→∞

g′1(x) = 1/Λ.

Note that g1 solves Equation (17). The function g1 fulfils due to the properties of
(ξn) and (ξ ′n): g1(0) = 0, g′1(x) ≥ 1/B̃1 and g′′1 (x) ≥ 0 for all x ≥ 0. It means that
lim

x→∞
g′1(x) ∈ (1/B̃1, ∞]. If lim

x→∞
g′1(x) > 1

Λ then there is an m ∈ N such that g′1(x) > 1
Λ

for x ≥ m. However, for ξn with n > m it holds ξ ′n(m) < 1
Λ , meaning g1(m) ≤ 1

Λ .
Then, we can conclude that lim

x→∞
g1(x) ≤ 1

Λ .

If lim
x→∞

g′1(x) < 1
Λ then lim

x→∞
e−Λg1(x)+x = ∞. However, the differential equation for

g1 yields

λµ2θ2
1

2µ2
g′′1 (x) =

λµ2θ2
1

2µ2
g′1(x)− λµ

(
θ1 − η

)
+ (δ− q1)g′1(x)

+ q11g′1(x)e−Λg1(x)+x → −∞ as x → ∞ ,

contradicting g′1 > 0.
Therefore, we conclude lim

x→∞
g′1(x) = 1

Λ . With the arguments from Lemma (5), we can

conclude g′′1 > 0 on (0, ∞) and lim
x→∞

g′′1 (x) = 0.

Appendix A.2. Proofs of Step 2

Proof of Lemma 6.

• Assume for the moment that g′2(0) = 1/Λ. Then,

λµ2θ2
2

2µ2
g′′2 (0) = λµ

(
θ2 − η

)
(g′2(0)B̃2 − 1) < 0 (A1)

and −h′1(0)g′2(0) + 1 < 0. Therefore, g′2(x) < 1/Λ on (0, ε) and

λµ2θ2
2

2µ2
g′′2 (x) = λµ

(
θ2 − η

)
(g′2(x)B2 − 1) + q22g′2(x)e−h1(g2(x))+x

= λµ
(
θ2 − η

)
(g′2(x)B2 − 1) + q22g′2(x)e−h1(g2(x))+Λξn(x)−Λg2(x)+x ,

As h′1 > Λ, it holds that −h′1(x) + Λ < 0, and (22) gives lim
x→∞

(−h1(x) + Λx) = −α

and consequently −h1(x) + Λx > −α. Furthermore, as long as g′2 ≤ 1/Λ the function
e−Λg2+x is increasing giving e−Λg2+x ≥ 1. Thus, on (0, ε),

λµ2θ2
2

2µ2
g′′2 (x) < λµ

(
θ2 − η

)
(g′2(x)B2 − 1) + q22g′2(x)e−αe−Λg2(x)+x

≤ λµ
(
θ2 − η

)
(g′2(x)B2 − 1) + q22g′2(x)e−α .

Because α > 0, see (15), it holds that B2 + q22e−α > 0, meaning that the rhs in the
above inequality is strictly increasing in g′2. Therefore, we can conclude using (15):

λµ2θ2
2

2µ2
g′′2 (x) < λµ

(
θ2 − η

)(B2

Λ
− 1
)
+

q22

Λ
e−α = 0 ,

i.e., g′′2 remains negative and the boundary value 1/Λ would be never attained if
g′2(0) = 1/Λ.
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• Assume now g′2(0) = 1/B̃2. Then, ξ ′′n(0) = 0 and because h′1(0) > Λ (Corollary 1)
it holds

λµ2θ2
2

2µ2
g′′′2 (0) = q22g′2(0)

(
− g′2(0)h

′
1(0) + 1

)
> 0 .

We conclude that g′′2 > 0 and ξ ′n > 1/B̃2 on (0, ε). However, if x̂ := inf{x > ε :
g′′2 (x) = 0} ∈ (ε, ∞) it holds g′′′2 (x̂) > 0 contradicting g′′2 (x̂) = 0. Hence, g′2 will stay
above 1/B̃2.

• By Hirsch’s Theorem, see Walter (Walter 1998, p. 112), for g′2(0) /∈ (1/Λ, 1/B̃2) it holds
g′2(n) 6= 1/Λ.

Appendix A.3. Proofs of Step 2m + 1

Proof of Lemma 8. Note first that h2 and h0 fulfil the above assumptions.
To prove the claim for a general m, we consider the difference of the differential

equations Um(g2m+1)−Um−1(g2m−1) = 0:

λµ2θ2
1

2µ2

(
g′′2m+1(x)− g′′2m−1(x)

)
= B1λµ

(
θ1 − η

)
{g′2m+1(x)− g′2m−1(x)}

+q11g′2m+1(x)e−h2m(g2m+1(x))+x − q11g′2m−1(x)e−h2m−2(g2m−1(x))+x .

(A2)

• If g′2m+1(0) = g′2m−1(0), then all k-th derivatives k ∈ N fulfil g(k)2m+1(0) = g(k)2m−1(0),
implying g2m+1(x) = g2m−1(x) for all x. As Um−1(g2m+1) 6= 0 because h2m < h2m−2
for x > 0, we get a contradiction.

• In this part, we show that g′2m+1(0) < g′2m−1(0) is impossible.

For that purpose, we use again the auxiliary functions introduced in Lemma 4, repre-
senting the solutions to differential equations with boundary conditions at 0 and at
n ∈ N. We denote by ξm−1,n the solutions to Um−1(ξm−1,n) = 0 with the boundary con-
ditions ξm−1,n(0) = 0 and ξ ′m−1,n(n) = 1/Λ and by ξm,n the solutions to Um(ξm,n) = 0
with boundary conditions ξm,n(0) = 0 and ξ ′m,n = 1/Λ, for n ∈ N.
Let n be arbitrary, but fixed and assume ξ ′m,n(0) < ξ ′m−1,n(0). Let further x̂ := inf{x >
0 : φ′n(x) = ψ′n(x)}. Then, it holds ξ ′m,n(x) < ξ ′m−1,n(x) and ξm,n(x) < ξm−1,n(x)
on (0, x̂). This means in particular, using the properties of h2m and h2m−2, that
h2m(ξm,n(x̂)) < h2m−2(ξm−1,n(x̂)) and consequently

q11ξ ′m,n(x̂)e−h2m(ξm,n(x̂))+x̂ − q11ξ ′m−1,n(x̂)e−h2m−2(ξm−1,n(x̂))+x̂ < 0 .

Equality (A2) then yields ξ ′′m,n(x̂)− ξ ′′m−1,n(x̂) < 0, contradicting ξ ′m,n(x̂)− ξ ′m−1,n(x̂) = 0.
That is, we can conclude ξ ′m,n(x)− ξ ′m−1,n(x) < 0 for all x ≥ 0. However, this con-
tradicts ξ ′m−1,n(n) = 1/B2 = ξ ′m,n(n). Furthermore, we conclude ξ ′m−1,n(0) > ξ ′m,n(0)
leading via the uniform convergence, see Lemma 4, to g′2m+1(0) ≥ g′2m−1(0). As we
excluded g′2m+1(0) = g′2m−1(0), it must hold g′2m+1(0) > g′2m−1(0).

• We know already that it must hold g′2m+1(0) > g′2m−1(0).
Let ẑ := inf{x > 0 : g′2m+1(x) < g′2m−1(x)} and assume that ẑ ∈ (0, ∞). At ẑ it
holds then g′2m+1(ẑ) − g′2m−1(ẑ) = 0 and g′2m+1(ẑ) − g′2m−1(ẑ) ≤ 0 which, due to
(A2), means

0 ≥
λµ2θ2

1
2µ2

(
g′′2m+1(ẑ)− g′′2m−1(ẑ)

)
= q11g′2m+1(ẑ)e

ẑ{e−h2m(g2m+1(ẑ)) − e−h2m−2(g2m−1(ẑ))} .

Thus, h2m(g2m+1(ẑ)) ≤ h2m−2(g2m−1(ẑ)).
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On the other hand, from Step 2m we know that g′2m(x) > g′2m−2 on R+ which is
equivalent to

h′2m−2(g2m−2) > h′2m(g2m)

on R+. As h′′2m, h′′2m−2, g′2m, g′2m−2 > 0, we can conclude that h′2m−2(g2m−2) and
h′2m(g2m) are strictly increasing. For all x with h2m(g2m+1(x)) ≤ h2m−2(g2m−1(x)),
it holds that

h′2m−2(g2m−1(x)) = h′2m−2

(
g2m−2

(
h2m−2(g2m−1(x))

))
> h′2m

(
g2m
(
h2m(g2m+1(x))

))
= h′2m(g2m+1(x)) .

Thus, if additionally g′2m−2 ≥ g′2m, then

d
dx

(
h2m−2(g2m−1(x))

)
>

d
dx

(
h2m(g2m+1(x))

)
.

This means in particular that g′′′2m+1(ẑ)− g′′′2m−1(ẑ) < 0 and consequently g′′2m+1(x)−
g′′2m−1(x) < 0 for x > ẑ. As g′2m+1(ẑ)− g′2m−1(ẑ) = 0, we obtained a contradiction to
lim

x→∞
g′′2m+1(x)− g′′2m−1(x) = 0.

Notes
1 https://www.asc.tuwien.ac.at/~ewa/software_development5.htm (accessed on 10 February 2021).
2 https://repositum.tuwien.at/handle/20.500.12708/4782 (accessed on 10 February 2021).
3 cij ≥ 0 for all i 6= j.
4 J cannot be transformed into a block upper triangle matrix via a permutation, i.e., there is no permutation matrix P

leading to PJP−1 =

(
a b
0 c

)
.
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