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Abstract: This paper considers a mean-variance portfolio selection problem when the stock price has
a 3/2 stochastic volatility in a complete market. Specifically, we assume that the stock price and the
volatility are perfectly negative correlated. By applying a backward stochastic differential equation
(BSDE) approach, closed-form expressions for the statically optimal (time-inconsistent) strategy and
the value function are derived. Due to time-inconsistency of mean variance criterion, a dynamic
formulation of the problem is presented. We obtain the dynamically optimal (time-consistent) strategy
explicitly, which is shown to keep the wealth process strictly below the target (expected terminal
wealth) before the terminal time. Finally, we provide numerical studies to show the impact of main
model parameters on the efficient frontier and illustrate the differences between the two optimal
wealth processes.

Keywords: mean-variance portfolio selection; 3/2 stochastic volatility; backward stochastic
differential equation; dynamic optimality; complete market

1. Introduction

In the last several decades, various stochastic volatility models have been developed in
the literature to explain the volatility smile and heavy tails of return distribution as widely
observed in the financial market; see, for example, Heston (1993); Hull and White (1987);
Lewis (2000); and Stein and Stein (1991). Among them, a non-affine model with a mean
reverting structure called the 3/2 stochastic volatility model Lewis (2000) enjoys empirical
support in the bond and stock market by previous works, such as Ahn and Gao (1999);
Bakshi et al. (2006); and Jones (2003). Effort has been made under the 3/2 stochastic
volatility in derivative pricing problems such as Carr and Sun (2007); Drimus (2012);
and Yuen et al. (2015). It seems, however, that little attention has been paid to portfolio
selection problems under Markowitz (1952) mean-variance criterion.

The single-period asset allocation theory under the mean-variance criterion is first
introduced by the seminal paper Markowitz (1952). Thereafter, there has been increasing at-
tention on extensions and applications of Markowitz’s work. Two milestones are the work of
Li and Ng (2000) and Zhou and Li (2000) that generalize Markowitz’s work to a multi-period
and continuous-time setting by using embedding techniques. In Zhou and Li (2000), they
assume that all the market parameters are deterministic functions or constants. To extend
the results to more realistic models with random parameters, on the assumption that the
return rate, volatility, and risk premium are all bounded stochastic processes, the backward
stochastic differential equation (BSDE) approach is introduced by Lim and Zhou (2002) to
solve a mean-variance problem in a complete market. From then on, many papers work on
the mean-variance portfolio selection problem under various financial models by using the
BSDE approach. Chiu and Wong (2011) consider the problem where asset prices are cointe-
grated. Shen et al. (2014) investigate the same problem under a constant elasticity of variance
model by assuming that the risk premium process satisfies an exponential integrability.
Zhang and Chen (2016) extend the results in Shen et al. (2014) by further incorporating a li-
ability process. Shen and Zeng (2015) study the optimal investment-reinsurance problem for
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a mean-variance insurer in an incomplete market where the risk premium process is propor-
tional to a Markovian, affine-form, and square-root process, and a modified locally square-
integrable optimal strategy is derived by imposing an exponential integrability of order 2
on the risk premium process. Under similar conditions considered in Shen and Zeng (2015),
a mean-variance problem under the Heston model with a liability process and a financial
derivative is considered in Li et al. (2018). Other relevant works on mean-variance portfolio
selection problems by applying not only the BSDE approach, but also other approaches (for
example, the dynamic programming approach and the martingale approach Pliska (1986)) in-
clude Bielecki et al. (2005); Chang (2015); Ferland and Watier (2010); Han and Wong (2020);
Lv et al. (2016); Pan and Xiao (2017); Pan et al. (2018); Peng and Chen (2020a, 2020b);
Shen (2015, 2020); Shen et al. (2020); Tian et al. (2017); and Yu (2013).

The literature mentioned above under Markowitz’s paradigm, however, shares one
characteristic, that is, all deals with pre-committed strategies Strotz (1956). The resulting op-
timal strategy always depends on the initial wealth level, and thus is called time-inconsistent.
Recently, the time-consistent mean-variance portfolio selection problem has received con-
siderable attention. To tackle the time-inconsistency, Basak and Chabakauri (2010) derive
a time-consistent strategy which is determined by applying a backward recursion start-
ing from the terminal date. Björk et al. (2017) develop a game theoretical approach under
Markovian settings which essentially studies the subgame-perfect Nash equilibrium, and
they derive the equilibrium strategy and equilibrium value function by solving an extended
Hamilton–Jacobi–Bellman (HJB) equation. Along this approach, previous works include
Li et al. (2012, 2015); Lin and Qian (2016); and Zhu and Li (2020), to name but only a few.
Alternatively, Pedersen and Peskir (2017) introduce the dynamically optimal approach to
investigate the time-inconsistency of mean-variance problems. They overcome the time-
inconsistency by recomputing the statically optimal (pre-committed) strategy during the
investment period, and they can therefore obtain dynamically optimal (time-consistent)
strategies by solving infinitely many optimization problems.

Motivated by these aspects, we consider a dynamic mean-variance portfolio selection
problem within the framework developed in Pedersen and Peskir (2017) in a complete
market with two primitive assets: a risk-free asset and a stock with 3/2 stochastic volatility.
In particular, the market is completed by fixing a perfectly negative correlation between the
stock price and the volatility. To make the problem analytically tractable, the return rate of
the stock is a constant so that the risk premium process is linear in the reciprocal of volatility
process. We adopt the BSDE approach to solve this problem. The Lagrange multiplier is
first applied to transform the mean-variance problem into an unconstrained optimization
problem. By making an assumption on model parameters, the uniqueness and existence of
solution to a special type BSDE Bender and Kohlmann (2000) is established. We then solve
the BSDE explicitly and obtain the optimal strategy in a closed-form for the unconstrained
optimization problem. Furthermore, we derive the analytic expression of the statically
optimal strategy of the mean-variance portfolio selection problem by the Lagrange duality
theorem. Finally, by solving the statically optimal strategy at each time, we obtain the
dynamically optimal strategy which is shown to keep the corresponding wealth process
strictly below the target (expected terminal wealth) before the terminal time. To summarize,
this paper has main contributions in three aspects: (1) We make an assumption on the
model parameters instead of on the risk premium process. This assumption guarantees
the existence and uniqueness of solutions to the BSDEs. (2) We manage to derive the
square-integrable optimal strategy instead of the locally square-integrable optimal strategy
and verify the admissibility. (3) We provide both the static and dynamic optimality.

The rest of this paper is organized as follows. Section 2 formulates the financial
market and the portfolio selection problem. In Section 3, we derive the explicit solutions
to the BSDEs as well as the closed-from expression of the optimal investment strategy of
the unconstrained problem. Section 4 presents the static and dynamic optimality of the
mean-variance portfolio selection problem. In Section 5, we provide numerical examples
to present the efficient frontier under the statically optimal strategy and illustrate the
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differences between the two optimal controlled wealth processes. Section 6 concludes
the paper.

2. Formulation of the Problem

Let [0, T] be a finite horizon and (Ω,F , P) be a complete probability space which car-
ries a one-dimensional standard Brownian motion W = (Wt)t∈[0,T]. The right-continuous,
P-complete filtration (Ft)t∈[0,T] is generated by the Brownian motion W.

We consider a market where two primitive assets—one risk-free asset and one stock—
are available to the investor. The price of the risk-free asset B solves

dBt = rBt dt,

with Bt0 = b0 ∈ R+ at time t0 ∈ [0, T) fixed and given, where r > 0 stands for the interest
rate. The price of the stock follows

dSt = µSt dt +
√

VtSt dWt, (1)

with St0 = s0 ∈ R+ at time t0. The return rate of the stock price µ > r is a constant and
V = (Vt)t∈[t0,T] is the stochastic variance of the stock price described by a 3/2 model (see,
for example, Lewis (2000)):

dVt = κVt(θ −Vt) dt− σV3/2
t dWt, (2)

with the initial value of Vt0 = v0 ∈ R+ at time t0, where three parameters, κ, θ, and σ, are
all assumed to be positive. We hereby put the minus sign in front of σ in (2) to emphasize
the assumption that the dynamics of the stock price St and the volatility Vt are perfectly
negative correlated.

We shall consider Markov controls u(t, Vt, Xu
t ) denoting the wealth invested in the

stock at time t ∈ [t0, T], and such a deterministic function u(·, ·, ·) is called a feedback
control law. We assume that there are no transaction costs in the trading as well as other
restrictions. The investor wishes to create a self-financing portfolio of the risk-free asset B
and the stock S dynamically. Thus, the controlled wealth process (Xu

t )t∈[t0,T] of the investor
can be described by the system of SDEs below.{

dXu
t = [rXu

t + (µ− r)u(t, Vt, Xu
t )] dt + u(t, Vt, Xu

t )
√

Vt dWt,

dVt = κVt(θ −Vt) dt− σV3/2
t dWt,

(3)

with Xu
t0
= x0 at time t0 ∈ [0, T). We let Pt0,v0,x0 denote the probability measure with initial

value (Vt0 , Xu
t0
) = (v0, x0) at time t0 ∈ [0, T).

Definition 1. Given any fixed t0 ∈ [0, T), if for any (v0, x0) ∈ R+ ×R, it holds that

1. Et0,v0,x0

[∫ T
t0

u2(t, Vt, Xu
t )Vt dt

]
< ∞,

2. Et0,v0,x0

[
supt∈[t0,T] |Xu

t |2
]
< ∞,

then the (Markovian) strategy u is called admissible. We denote by U the set of admissible portfo-
lio strategies.

We are first interested in determining an admissible strategy u ∈ U that solves the
following portfolio problem:

Definition 2. The mean-variance portfolio problem is an optimization problem denoted by min
u∈U

Vart0,v0,x0(Xu
T)

subject to Et0,v0,x0 [X
u
T ] = ξ,

(4)
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where ξ is a fixed and given constant playing the financial role of a target. The corresponding value
function is denoted by VMV(t0, v0, x0).

Remark 1. Here, we impose ξ > x0er(T−t0), in line with previous studies such as Lim and Zhou (2002);
Shen and Zeng (2015), and Shen et al. (2014). Otherwise, the investor can simply take the risk-free
strategy u ≡ 0 over [t0, T] which dominates any other admissible strategy.

As a result of the quadratic nonlinearity of the variance operator, problem (4) falls out-
side of Bellman’s principle. Denote by u∗ the optimal strategy in problem (4) which refers
to the static optimality (refer to Definition 1 in Pedersen and Peskir (2017)) and is relative to
the initial position (t0, v0, x0). The investor might not be committed to the statically optimal
strategy u∗ chosen at the very initial position (t0, v0, x0) during the following investment
period (t0, T]. Therefore, we shall also consider a dynamic formulation of problem (4).
Here, we opt for the framework developed in Pedersen and Peskir (2017). We now review
the definition of dynamic optimality in problem (4) for the readers’ convenience.

Definition 3. For a triple (t0, v0, x0) ∈ [0, T) × R+ × R fixed and given, we call a Makrov
strategy ud∗ dynamically optimal in problem (4), if for every (t, v, x) ∈ [t0, T)× R+ × R and
every strategy π ∈ U with π(t, v, x) 6= ud∗(t, v, x) and Et,v,x[Xπ

T ] = ξ, there is a Markov strategy
w satisfying w(t, v, x) = ud∗(t, v, x) and Et,v,x[Xw

T ] = ξ such that

Vart,v,x(Xw
T ) < Vart,v,x(Xπ

T ).

The dynamically optimal strategy ud∗ is essentially derived by solving the statically
optimal strategy u∗ at each time and implementing it in an infinitesimally small period
of time, which in turn implies that we shall first address problem (4) in the sense of static
optimality so as to derive the dynamic optimality.

We observe that problem (4) is, in fact, a convex optimization problem with linear
constraint Et0,v0,x0 [X

u
T ] = ξ. Thus, we can handle the constraint by introducing a Lagrange

multiplier θ ∈ R, and define the following Lagrangian:

L(x0, v0; u, θ) = Et0,v0,x0 [(Xu
T − ξ)2] + 2θEt0,v0,x0 [X

u
T − ξ]

= Et0,v0,x0

[
(Xu

T − (ξ − θ))2
]
− θ2.

(5)

Then, the Lagrangian duality theorem (see, for example, Luenberger (1968)) indicates
that we can derive the static optimality u∗ in problem (4) by solving the following equivalent
min-max stochastic control problem:

max
θ∈R

min
u∈U

L(x0, v0; u, θ). (6)

This shows that we can solve problem (6) with two steps, of which the first step is to
solve the unconstrained stochastic optimization problem with respect to u ∈ U given a
fixed θ ∈ R and the second step is to solve the static optimization problem with respect to
the Lagrange multiplier θ ∈ R. Therefore, we can first address the following unconstrained
quadratic-loss minimization problem:

min
u∈U

J(x0, v0; u, γ) = Et0,v0,x0

[
(Xu

T − γ)2
]
, (7)

with γ = ξ − θ fixed and given.

3. Solution to the Unconstrained Problem

In this section, we opt for the BSDE approach so as to solve problem (7) above. Before
formulating the main results in this section, we make the following notations to facilitate
the discussions below. For any R+-valued, Ft-adapted stochastic process η := (ηt)t∈[0,T],
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a continuous process A := (At)t∈[0,T] associated with η is defined by At =
∫ t

0 η2
s ds. Let

β ≥ 0 be a generic constant, we denote by

• L2
P(β, η, [0, T];R): the space of Ft-adapted, R-valued stochastic processes f satisfying

‖ f ‖2
β := E

[∫ T

0
eβAt | ft|2dt

]
< ∞;

• L2,η
P (β, η, [0, T];R): the space of Ft-adapted, R-valued stochastic processes f satisfying

‖η f ‖2
β := E

[∫ T

0
η2

t eβAt | ft|2dt
]
< ∞;

• L2,c
P (β, η, [0, T];R) the space of Ft-adapted, R-valued stochastic processes f satisfying

‖ f ‖2
β,c := E

[
sup

0≤t≤T
eβAt | ft|2

]
< ∞.

Therefore, we have the following Banach space:

M(β, η, [0, T];R2) :=
(

L2,η
P (β, η, [0, T];R)) ∩ (L2,c

P (β, η, [0, T];R)
)
× L2

P(β, η, [0, T];R)

with the norm ‖(Y, Z)‖2
β = ‖ηY‖2

β + ‖Y‖2
β,c + ‖Z‖2

β.
In addition, we introduce

∆ =[κθ + 2(µ− r)σ]2 − 2σ2(µ− r)2,

n1 =
−[κθ + 2(µ− r)σ] +

√
∆

−σ2 ,

n2 =
−[κθ + 2(µ− r)σ]−

√
∆

−σ2 ,

Cb =max

{
(60 + 16

√
14)

(
(µ− r)2 +

σ2n2
1n2

2(1− e
√

∆T)2

(n1 − n2e
√

∆T)2

)
,

8(µ− r)2 + 8(µ− r)σ
n1n2(1− e

√
∆T)

n1 − n2e
√

∆T

}
.

(8)

It can be easily checked that ∆ > 0 due to µ > r. The following standing assumption
is imposed on the model parameters throughout the paper:

Assumption 1. Cb ≤ κ2θ2/2σ2.

Remark 2. It follows from Lemma 5 below that Cb is strictly increasing in T. In particular, when
T → 0, Cb → (60 + 16

√
14)(µ− r)2. This indicates the feasibility of Assumption 1. Moreover,

Assumption 1 is crucial to guarantee that three BSDEs—(9), (12), and (17)—admit unique solutions
and the statically optimal strategy (30) is admissible.

The following linear BSDE of (P, Γ) is considered so as to solve problem (7):dPt =

{[
2r− (µ− r)2

Vt

]
Pt +

2(µ− r)√
Vt

Γt

}
dt + Γt dWt,

PT = 1.
(9)

Clearly, due to the randomness and unboundedness of the driver of (9), this linear
BSDE is without the uniform Lipschitz continuity with respect to both Pt and Γt. Thus, BSDE
(9) is out of scope of EI Karoui et al. (1997). Nevertheless, we observe that BSDE (9) follows a
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stochastic Lipschitz continuity which is first proposed in Bender and Kohlmann (2000). To
proceed, some useful results on the BSDE with the stochastic Lipschitz continuity adapted
from Definition 2 and Theorem 3 in Bender and Kohlmann (2000) are presented below.

Definition 4. We call a pair (ζ, f ) standard data for the BSDE of (Y, Z):{
−dYt = f (t, Yt, Zt) dt− Zt dWt,

YT = ζ, t ∈ [0, T],

if the following four conditions hold:

1. There exist two R+-valued, Ft-adapted stochastic processes (η1,t)t∈[0,T] and (η2,t)t∈[0,T] such
that ∀t ∈ [0, T], ∀(y1, z1), (y2, z2) ∈ R2

| f (t, y1, z1)− f (t, y2, z2)| ≤ η1,t|y1 − y2|+ η2,t|z1 − z2|.

We refer to this inequality as the stochastic Lipschitz continuity.
2. There exists a positive constant ε > 0 satisfying η2

t := η1,t + η2,t ≥ ε.

3. The terminal condition ζ satisfies E
[
exp

(
β
∫ T

0 η2
t dt
)
|ζ|2
]
< ∞ in which β is a positive constant.

4. f (·,0,0)
η ∈ L2

P(β, η, [0, T];R).

Lemma 1. The BSDE of (Y, Z){
−dYt = f (t, Yt, Zt) dt− Zt dWt,

YT = ζ, t ∈ [0, T],

admits a unique solution (Y, Z) ∈ M(β, η, [0, T];R2) if (ζ, f ) is standard data for a sufficiently
large β, in particular, for β > 3 +

√
21.

Before adapting the above results to establish the uniqueness and existence of the solution
to BSDE (9), we recall the following useful result from Theorem 5.1 in Zeng and Taksar (2013).

Lemma 2. Suppose the process (rt)t∈[0,T] follows the Cox–Ingersoll–Ross (CIR) model:

drt = (κθ − κrt) dt + σ
√

rt dWt,

where κ, θ and σ are positive constants. Then, we have

E
[

exp
(

β
∫ T

0
rt dt

)]
< ∞ if and only if β ≤ κ2/2σ2.

Lemma 3. Assume Assumption 1 holds, then there is a constant 3 +
√

21 < β ≤ κ2θ2

6(µ−r)2σ2 such

that the unique solution (P, Γ) ∈ M(β, η, [t0, T];R2) with ηt =
(

2r + 3(µ−r)2

Vt

)1/2
to BSDE

(9) exists.

Proof. Let η1,t = 2r − (µ − r)2/Vt and η2,t = 2(µ − r)/
√

Vt. Denote in this case the
non-negative Ft-adapted process ηt by

η2
t := η1,t + η2

2,t,

and accordingly, define the increasing process At by

At :=
∫ t

t0

η2
s ds =

∫ t

t0

(
2r +

3(µ− r)2

Vs

)
ds.
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We then have

Et0,v0,x0 [exp(βAT)] ≤ CEt0,v0,x0

[
exp

(
3(µ− r)2β

∫ T

t0

1
Vt

dt
)]

,

where the positive constant C > 0 is independent of β. By Itô’s lemma, we then have the
following dynamics of the reciprocal of the variance process (2):

d
(

1
Vt

)
= κθ

(
κ + σ2

κθ
− 1

Vt

)
dt + σ

√
1
Vt

dWt,

which is a CIR process. It follows from Lemma 2 that if

3(µ− r)2β ≤ κ2θ2

2σ2 ,

then we have

Et0,v0,x0

[
exp

(
3(µ− r)2β

∫ T

t0

1
Vt

dt
)]

< ∞.

Indeed, when Assumption 1 holds, there exists a constant β such that
3 +
√

21 < β ≤ κ2θ2

6(µ−r)2σ2 , and the driver and the terminal condition of BSDE (9) then
constitute standard data. Finally, by Lemma 1 above, we see that a unique solution
(P, Γ) ∈ M(β, η, [t0, T];R2) to BSDE (9) with 3 +

√
21 < β ≤ κ2θ2

6(µ−r)2σ2 and

ηt =
(

2r + 3(µ−r)2

Vt

)1/2
exists.

In what follows, we shall give the explicit expression of the unique solution (P, Γ) of
BSDE (9).

Lemma 4. Assume Assumption 1 holds, then the unique solution (P, Γ) of BSDE (9) has the
following explicit expression: 

Pt = exp(−2r(T − t))g(t, Vt),

Γt = σa(t)
Pt√
Vt

,
(10)

for t ∈ [t0, T], where g(t, v) = exp
{

a(t) 1
v + b(t)

}
, and a(t) and b(t) are solutions to the

following system of ODEs:
da(t)

dt
− (κθ + 2(µ− r)σ)a(t) +

1
2

σ2a2(t) + (µ− r)2 = 0, a(T) = 0,

db(t)
dt

+ (κ + σ2)a(t) = 0, b(T) = 0.
(11)

Proof. We first introduce the likelihood process (Lt)t∈[t0,T] from the dynamics

dLt = −
2(µ− r)√

Vt
Lt dWt, Lt0 = 1.

Similar to the reasoning in Lemma 3, it can be easily verified from Assumption 1
above that

Et0,v0,x0

[
exp

(∫ T

t0

2(µ− r)2

Vt
dt
)]

< ∞.
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That is, the Novikov’s condition is satisfied for (Lt)t∈[t0,T]. Thus, (Lt)t∈[t0,T] is a
uniformly integrable martingale under Pt0,v0,x0 measure and we can define an equivalent
probability measure P̃t0,v0,x0 on FT through the Radon–Nikodym derivative

dP̃t0,v0,x0 = LT dPt0,v0,x0 .

From the Girsanov’s theorem, Brownian motions under P̃t0,v0,x0 and Pt0,v0,x0 are related
to each other through

dWP̃
t =

2(µ− r)√
Vt

dt + dWt,

and we can rewrite (9) under the P̃t0,v0,x0 -measure as follows:dPt =

{[
2r− (µ− r)2

Vt

]
Pt

}
dt + Γt dWP̃

t ,

PT = 1.
(12)

We see that the driver of BSDE (12) again satisfies the stochastic Lipschitz continuity

with, in this case, η2
t = |2r− (µ−r)2

Vt
|+ ε for any ε > 0 fixed and given and At =

∫ t
t0

η2
s ds

such that using Hölder’s inequality we have for some β > 3 +
√

21

Ẽt0,v0,x0 [exp(βAT)] ≤KẼt0,v0,x0

[
exp

(
(µ− r)2β

∫ T

t0

1
Vt

dt
)]

=KEt0,v0,x0

[
LT exp

(
(µ− r)2β

∫ T

t0

1
Vt

dt
)]

≤K
(

Et0,v0,x0

[
exp

(
−
∫ T

t0

4(µ− r)√
Vt

dWt −
∫ T

t0

8(µ− r)2

Vt
dt
)]) 1

2

·
(

Et0,v0,x0

[
exp

(
(4 + 2β)(µ− r)2

∫ T

t0

1
Vt

dt
)]) 1

2

=K
(

Et0,v0,x0

[
exp

(
(4 + 2β)(µ− r)2

∫ T

t0

1
Vt

dt
)]) 1

2

<∞,

where K > 0 is constant-independent of β, the second equality follows from the fact that(
exp

(
−
∫ t

t0

4(µ−r)√
Vu

dWu −
∫ t

t0

8(µ−r)2

Vu
du
))

t∈[t0,T]
is a Pt0,v0,x0 martingale due to Assumption 1,

and the last strict inequality is due to Assumption 1. This shows that the terminal condition
and the driver of BSDE (12) constitute standard data. Then, by Lemma 1 above, the BSDE (12)
admits a unique solution (P, Γ) satisfying

Γ ∈ L2
P̃t0,v0,x0

(β, η, [t0, T];R)

with some β > 3 +
√

21 and ηt =
√
|2r− (µ−r)2

Vt
|+ ε. Moreover, we see that under

P̃t0,v0,x0 measure

d
[

Pt exp
(∫ t

t0

(
(µ− r)2

Vu
− 2r

)
du
)]

= exp
(∫ t

t0

(
(µ− r)2

Vu
− 2r

)
du
)

Γt dWP̃
t .
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This shows that
(

Pt exp
(∫ t

t0

(
(µ−r)2

Vu
− 2r

)
du
))

t∈[t0,T]
is a local martingale under mea-

sure P̃t0,v0,x0
. By the Burkholder–Davis–Gundy inequality and Hölder’s inequality, we then

find that

Ẽt0,v0,x0

[
sup

t0≤t≤T

∣∣∣∣ ∫ t

t0

exp
(∫ s

t0

(
(µ− r)2

Vu
− 2r

)
du
)

Γs dWP̃
s

∣∣∣∣
]

≤KẼt0,v0,x0

(∫ T

t0

exp
(

2
∫ t

t0

(
(µ− r)2

Vu
− 2r

)
du
)

Γ2
t dt
) 1

2


≤K
(

Ẽt0,v0,x0

[
exp

(
2
∫ T

t0

∣∣∣∣ (µ− r)2

Vt
− 2r

∣∣∣∣dt
)]

+ Ẽt0,v0,x0

[∫ T

t0

Γ2
t dt
])

≤K
(

Et0,v0,x0

[
exp

(
−
∫ T

t0

4(µ− r)√
Vt

dWt −
∫ T

t0

8(µ− r)2

Vt
dt
)]) 1

2

·
(

Et0,v0,x0

[
exp

(
8(µ− r)2

∫ T

t0

1
Vt

dt
)]) 1

2

+ KẼt0,v0,x0

[∫ T

t0

Γ2
t dt
]

=K

((
Et0,v0,x0

[
exp

(
8(µ− r)2

∫ T

t0

1
Vt

dt
)]) 1

2

+ Ẽt0,v0,x0

[∫ T

t0

Γ2
t dt
])

<∞,

where the positive constant K > 0 might vary between lines; the equality follows from the

fact that
(

exp
(
−
∫ t

t0

4(µ−r)√
Vu

dWu −
∫ u

t0

8(µ−r)2

Vu
du
))

t∈[t0,T]
is a Pt0,v0,x0 martingale due to As-

sumption 1, and the last strict inequality is due to Assumption 1 and

Γ ∈ L2
P̃t0,v0,x0

(β, η, [t0, T];R). This shows that
(

Pt exp
(∫ t

t0

(
(µ−r)2

Vu
− 2r

)
du
))

t∈[t0,T]
is, in

fact, a uniformly integrable martingale under P̃t0,v0,x0 measure (refer to Corollary 5.17 in
Le Gall (2016)). Upon noticing the boundary condition that PT = 1, we have the expecta-
tional form for (Pt)t∈[t0,T] below.

Pt = exp(−2r(T − t))EP̃
t0,v0,x0

[
exp

(∫ T

t

(µ− r)2

Vu
du
)∣∣∣∣Ft

]
.

Denote by

g(t, v) = EP̃
t,v

[
exp

(∫ T

t

(µ− r)2

Vu
du
)]

,

where EP̃
t,v[·] is the expectation at time t ∈ [0, T) such that Vt = v under P̃t0,v0,x0-measure.

Due to the Markovian structure of the variance process (Vt)t∈[t0,T] with respect to (Ft)t∈[t0,T],
we can obviously rewrite (Pt)t∈[t0,T] as follows:

Pt = exp(−2r(T − t))g(t, Vt).

Note that the variance process Vt has P̃t0,v0,x0 -dynamics:

dVt =
{
[κθ + 2(µ− r)σ]Vt − κV2

t

}
dt− σV3/2

t dWP̃
t .

Suppose the deterministic function g(·, ·) ∈ C1,2([t0, T] × R+), then applying the
Feynman–Kac theorem yields the following PDE governing function g:

∂g
∂t

+ [(κθ + 2(µ− r)σ)v− κv2]
∂g
∂v

+
1
2

σ2v3 ∂2g
∂v2 +

(µ− r)2

v
g = 0,

g(T, v) = 1.
(13)
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We conjecture that g admits the following exponential expression:

g(t, v) = exp
(

a(t)
1
v
+ b(t)

)
,

with boundary condition a(T) = b(T) = 0. Its derivatives are given by

∂g
∂t

= g
(

1
v

da(t)
dt

+
db(t)

dt

)
,

∂g
∂v

= −g
a(t)
v2 ,

∂2g
∂v2 = g

(
a2(t)

1
v4 + a(t)

2
v3

)
.

(14)

Substituting (14) into (13) yields[
da(t)

dt
− (κθ + 2(µ− r)σ)a(t) +

1
2

σ2a2(t) + (µ− r)2
]

1
v
+

db(t)
dt

+ (σ2 + κ)a(t) = 0.

The arbitrariness of v ∈ R+ in turn leads to the system of ODEs (11) as claimed above.
Applying Itô’s lemma to Pt, we obtain

Γt = σa(t)
Pt√
Vt

by the uniqueness result of BSDE (9).

Lemma 5. Assume Assumption 1 holds, then the explicit solutions of the ODE system (11) are

a(t) =
n1n2(1− e

√
∆(T−t))

n1 − n2e
√

∆(T−t)
, (15)

b(t) =
∫ T

t

(
κ + σ2

)
a(s) ds, (16)

where n1, n2 and ∆ are given in (8). Moreover, function a(t) is strictly decreasing in t.

Proof. By reformulating the Riccati ODE of a(t), we have

da(t)
dt

= −1
2

σ2(a(t)− n1)(a(t)− n2),

where n1 and n2 are given in (8) above. After some tedious calculations upon considering
a(T) = 0, we obtain (15). Integrating both sides of ODE of b(t) from t to T upon considering
the boundary condition b(T) = 0 gives (16). Furthermore, differentiating (15) with respect
to t yields

da(t)
dt

=
−4(µ− r)2

√
∆e
√

∆(T−t)

σ4(n1 − n2e
√

∆(T−t))2
< 0.

Denote by Yt := 1/Pt the reciprocal process of (Pt)t∈[t0,T]. Then, a direct application of
Itô’s lemma to Yt yields the backward stochastic Riccati equation (BSRE) of (Y, Λ) below.dYt =

{[
−2r +

(µ− r)2

Vt

]
Yt +

2(µ− r)√
Vt

Λt +
Λ2

t
Yt

}
dt + Λt dWt,

YT = 1,
(17)
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where Λt = −Y2
t Γt. As (P, Γ) given in (10) is the unique solution of BSDE (9), from the

relationship of (P, Γ) and (Y, Λ), we see that BSRE (17) admits a unique solution as well.

Lemma 6. Assume Assumption 1 holds, then the unique solution (Y, Λ) of BSRE (17) is
Yt = exp

(
2r(T − t)− a(t)

1
Vt
− b(t)

)
,

Λt = −σa(t)
1√
Vt

Yt,
(18)

with a(t) and b(t) given in (15) and (16), respectively.

Proof. The equations (18) can be directly derived from the relationship of (P, Γ) and
(Y, Λ) above.

We now define a Doléans-Dade exponential (Πt)t∈[t0,T] of
(
− µ−r−σa(t)√

Vt

)
t∈[t0,T]

by

Πt = exp
(∫ t

t0

−µ− r− σa(u)√
Vu

dWu −
∫ t

t0

1
2
(µ− r− σa(u))2

Vu
du
)

. (19)

In the next lemma, we shall study the integrablity of Πt which will be useful when we
verify the admissibility of optimal strategy (20) below.

Lemma 7. Assume Assumption 1 holds, then the Doléans–Dade exponential Πt (19) satisfies

Et0,v0,x0

[
sup

t∈[t0,T]
|Πt|8

]
< ∞.

Proof. We know that the following equation of k

p =
k

2
√

k− 1

admits two positive solutions

k1 = 2p
√

p(p− 1) + p(2p− 1), k2 = −2p
√

p(p− 1) + p(2p− 1),

for any given constant p > 1, where the first solution satisfies k1 > 1. In particular, when
p = 8, we have k1 = 120+ 32

√
14. Using Assumption 1, Lemma 5, and the reasoning given

in the proof of Lemma 3 above, we see that

Et0,v0,x0

[
exp

(
(60 + 16

√
14)

∫ T

t0

(µ− r− σa(t))2

Vt
dt
)]

< ∞.

Then, Theorem 15.4.6 in Cohen and Elliott (2015) yields

Et0,v0,x0

[
sup

t∈[t0,T]
|Πt|8

]

≤8
7

{
Et0,v0,x0

[
exp

(
(60 + 16

√
14)

∫ T

t0

(µ− r− σa(t))2

Vt
dt
)]}√120+32

√
14−1√

120+32
√

14
< ∞.

This completes the proof.

To end this section, we shall relate the optimal Markovian strategy and the corre-
sponding value function of problem (7) to the solution (Y, Λ) of BSRE (17).
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Proposition 1. Assume Assumption 1 holds, then for (t0, v0, x0) ∈ [0, T)×R+ ×R fixed and
given, the optimal (Markovian) strategy of problem (7) is

u∗(t, v, x) = −
(

x− γe−r(T−t)
)µ− r− σa(t)

v
, (20)

for t ∈ [t0, T]. The corresponding value function is

J(x0, v0; u∗(·), γ) = exp
(

2r(T − t0)− a(t0)
1
v0
− b(t0)

)(
x0 − γe−r(T−t0)

)2
. (21)

The controlled wealth process X∗t evolves as

X∗t =
(

x0er(t−t0) − γe−r(T−t)
)

Πt exp
{
−
∫ t

t0

(µ− r)
µ− r− σa(u)

Vu
du
}
+ γe−r(T−t), (22)

where Πt is given in (19). Moreover, the optimal strategy u∗ belongs to U .

Proof. Using Itô’s lemma to Gt = Xu
t − γe−r(T−t), we obtain

dGt = [rGt + (µ− r)u(t, St, Xu
t )] dt + u(t, St, Xu

t )
√

Vt dWt, G0 = x0 − γe−r(T−t0).

Furthermore, applying Itô’s lemma to YtG2
t yields

dYtG2
t =Yt

{
u(t, Vt, Xu

t )
√

Vt +

(
µ− r√

Vt
+

Λt

Yt

)
Gt

}2
dt

+
[
ΛtG2

t + 2YtGtu(t, Vt, Xu
t )
√

Vt

]
dWt.

(23)

We observe that the stochastic integral on the right-hand side of (23) is a local martin-
gale, and thus we can define stopping times (τn)n≥1 as follows:

τn = inf

{
t ≥ t0 :

∫ t

t0

∣∣∣∣Λt′G
2
t′ + 2Yt′Gt′u(t

′, Vt′ , Xu
t′)
√

Vt′

∣∣∣∣2 dt′ ≥ n

}
,

such that τn → ∞, Pt0,v0,x0 almost surely as n→ ∞. We integrate (23) from t0 to T ∧ τn and
take expectations on both sides of (23):

Et0,v0,x0

[
YT∧τn G2

T∧τn

]
=Et0,v0,x0

[∫ T∧τn

t0

Yt

{
u(t, Vt, Xu

t )
√

Vt +

(
µ− r√

Vt
+

Λt
Yt

)
Gt

}2
dt

]

+ y0

(
x0 − γe−r(T−t0)

)2
,

(24)

where y0 = exp
(

2r(T − t0)− a(t0)
1
v0
− b(t0)

)
. From the definition of function g(t, v) in

Lemma 4 above, we see that 0 < Yt < e2rT for any t ∈ [t0, T], Pt0,v0,x0-a.s. Moreover,
in view of Definition 1, we have Et0,v0,x0 [supt∈[t0,T] |Gt|2] < ∞ for u ∈ U . As a result of
the Lebesgue’s dominated convergence theorem and the monotone convergence theorem
working on (24), then we have

Et0,v0,x0 [(Xu
T − γ)2] =Et0,v0,x0

[∫ T

t0

Yt

{
u(t, Vt, Xu

t )
√

Vt +

(
µ− r√

Vt
+

Λt

Yt

)
Gt

}2
dt

]

+ y0

(
x0 − γe−r(T−t0)

)2
.

(25)

Upon considering explicit expressions of Yt and Λt (18), we obtain the optimal Markov
strategy (20) and the value function (21) for problem (7).
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Substituting u∗ (20) into the wealth process (3), we obtain

dX∗t =

[
rX∗t + (µ− r)

µ− r− σa(t)√
Vt

(
γe−r(T−t) − X∗t

)]
dt

+
µ− r− σa(t)√

Vt

(
γe−r(T−t) − X∗t

)
dWt.

A direction application of Itô’s lemma to er(T−t)X∗t − γ then yields the controlled
wealth process X∗t (22).

In the following, we show that the optimal strategy u∗ (20) is admissible. For this, we
first show that

Et0,v0,x0

[
sup

t∈[t0,T]
|X∗t |4

]
< ∞. (26)

Indeed, from Assumption 1 and Lemma 7 above we find that

Et0,v0,x0

[
sup

t∈[t0,T]
|X∗t |4

]

≤KEt0,v0,x0

[
1 + sup

t∈[t0,T]

∣∣∣∣ exp
{
−
∫ t

t0

(µ− r)
µ− r− σa(u)

Vu
du
}

Πt

∣∣∣∣4
]

≤K + KEt0,v0,x0

[
sup

t∈[t0,T]
exp

{
−8

∫ t

t0

(µ− r)
µ− r− σa(u)

Vu
du
}]

+ KEt0,v0,x0

[
sup

t∈[t0,T]
|Πt|8

]

≤K + KEt0,v0,x0

[
exp

(
C
∫ T

t0

1
Vt

dt
)]

+ KEt0,v0,x0

[
sup

t∈[t0,T]
|Πt|8

]
<∞,

where K > 0 is a constant that differs between lines and C = 8(µ− r)(µ− r + σa(t0)) > 0.
This shows that the second condition in Definition 1 that Et0,v0,x0

[
supt∈[t0,T] |X∗t |2

]
< ∞ is

satisfied by Jensen’s inequality. In view of (26), we further find that the first condition in
Definition 1 that Et0,v0,x0

[∫ T
t0
(u∗(t, Vt, X∗t ))

2Vt dt
]
< ∞ holds as well as

Et0,v0,x0

[∫ T

t0

(u∗(t, Vt, X∗t ))
2Vt dt

]
=
∫ T

t0

Et0,v0,x0

[
(X∗t − γe−r(T−t))2(µ− r− σa(t))2

Vt

]
dt

≤K
∫ T

t0

Et0,v0,x0

[
|X∗t − γe−r(T−t)|4 + 1

V2
t

]
dt

<K

{
Et0,v0,x0 [ sup

t∈[t0,T]
|X∗t |4] +

∫ T

t0

Et0,v0,x0

[
1

V2
t

]
dt

}
<∞,

where K > 0 is a constant that differs between lines and last strict inequality comes from
(26) and the fact that 1/Vt is a CIR process (see the proof of Lemma 3 above) with finite
second moment Et0,v0,x0

[
1

V2
t

]
at time t ∈ [t0, T] which is continuous in t (see, for example,

Cox et al. (1985)). These results show that the optimal strategy u∗ (20) is admissible.
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4. Static and Dynamic Optimality of the Problem

In this section, we derive the static and dynamic optimality of problem (4) by exploit-
ing the results above. In regard to the static optimality of problem (4), it now suffices to
maximize the following optimization problem with respect to the Lagrange multiplier
θ ∈ R in view of (5) and (6) above:

max
θ∈R

J(x0, v0; u∗, ξ − θ)− θ2. (27)

Reformulating (27) in terms of a quadratic functional over θ ∈ R, we find that the
value function of problem (4) can be obtained from

VMV(t0, v0, x0) = max
θ∈R

{(
e−a(t0)

1
v0
−b(t0) − 1

)
θ2 + 2e−a(t0)

1
v0
−b(t0)

(
x0er(T−t0) − ξ

)
θ

+e−a(t0)
1

v0
−b(t0)

(
x0er(T−t0) − ξ

)2
}

.
(28)

Upon considering the exponential expression of function g(t, v) given in Lemma 4
above, the right-hand side of (28) is then a quadratic function of θ ∈ R with strictly negative
leading coefficient. Therefore, to the right-hand side of (28) the maximum is uniquely
attained at

θ∗ =
x0er(T−t0) − ξ

ea(t0)
1

v0
+b(t0) − 1

. (29)

Theorem 1. Assume Assumption 1 holds, then for (t0, s0, x0) ∈ [0, T)×R+ ×R given and fixed
such that x0er(T−t0) < ξ, the statically optimal (Makrovian) strategy of problem (4) is

u∗(t, v, x) = −

x− ξe−r(T−t)+a(t0)
1

v0
+b(t0) − x0er(t−t0)

ea(t0)
1

v0
+b(t0) − 1

µ− r− σa(t)
v

(30)

for t ∈ [t0, T), where functions a(t) and b(t) are given in (15) and (16). The corresponding value
function is

VMV(t0, v0, x0) =
1

ea(t0)
1

v0
+b(t0) − 1

(
x0er(T−t0) − ξ

)2
. (31)

The controlled wealth process Xu∗
t is given by

X∗t =
x0er(t−t0)+a(t0)

1
v0
+b(t0) − ξe−r(T−t)+a(t0)

1
v0
+b(t0)

ea(t0)
1

v0
+b(t0) − 1

Πt

· exp
{
−
∫ t

t0

(µ− r)
µ− r− σa(u)

Vu
du
}
+

ξe−r(T−t)+a(t0)
1

v0
+b(t0) − x0er(t−t0)

ea(t0)
1

v0
+b(t0) − 1

,

(32)

where Πt is given in (19). Moreover, the statically optimal strategy u∗ belongs to U .

Proof. Substituting (29) into (28) gives the value function (31). Replacing the constant γ in
(20) and (22) with ξ − θ∗ yields the statically optimal strategy (30) and the wealth process
(32), respectively. In view of the proof in Proposition 1 above, it is obvious that the statically
optimal strategy u∗ (30) is admissible.

As discussed in Section 2, the statically optimal strategy u∗ (30) derived in Theorem 1
relies on the initial value (t0, v0, x0). This implies that once the investor arrives at a new
position (t, v, x) at later times, the statically optimal strategy u∗ determined at the initial
position would be sub-optimal. Now, we give the dynamically optimal strategy ud∗ of
problem (4) within the framework developed in Pedersen and Peskir (2017).
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Theorem 2. Assume Assumption 1 holds, then for (t0, v0, x0) ∈ [0, T) × R+ × R given and
fixed such that x0er(T−t0) < ξ, the dynamically optimal (Markovian) strategy of problem (4) for
t ∈ [t0, T) is

ud∗(t, v, x) = − xea(t) 1
v +b(t) − ξe−r(T−t)+a(t) 1

v +b(t)

ea(t) 1
v +b(t) − 1

µ− r− σa(t)
v

. (33)

The corresponding controlled wealth process Xd∗
t is

Xd∗
t =

(
x0er(t−t0) − ξe−r(T−t)

)
exp

{∫ t

t0

−(µ− r)
ea(u) 1

Vu +b(u)

ea(u) 1
Vu +b(u) − 1

µ− r− σa(u)
Vu

du

−1
2

e2a(u) 1
Vu +2b(u)(

ea(u) 1
Vu +b(u) − 1

)2
(µ− r− σa(u))2

Vu
du


· exp

{
−
∫ t

t0

ea(u) 1
Vu +b(u)

ea(u) 1
Vu +b(u) − 1

µ− r− σa(u)√
Vu

dWu

}
+ ξe−r(T−t)

(34)

satisfying Xd∗
t er(T−t) < ξ for t ∈ [t0, T).

Proof. To derive a candidate for the dynamic optimality ud∗ over t ∈ [t0, T), we identify
t0 with t, x0 with x, and v0 with v in the statically optimal strategy given in (30). We then
immediately find a candidate of the dynamically optimal strategy

ud∗(t, v, x) = − xea(t) 1
v +b(t) − ξe−r(T−t)+a(t) 1

v +b(t)

ea(t) 1
v +b(t) − 1

µ− r− σa(t)
v

. (35)

In what follows, we show that this candidate (35) is indeed dynamically optimal in
problem (4). To see this, we take any other admissible control π ∈ U such that Et,v,x[Xπ

T ] = ξ
and π(t, v, x) 6= ud∗(t, v, x), and we set w = u∗ under the measure Pt,v,x. We note from
(30) with (t0, v0, x0) replaced by (t, v, x) that u∗(t, v, x) = ud∗(t, v, x), and thus we have
w(t, v, x) = u∗(t, v, x) = ud∗(t, v, x) 6= π(t, v, x) for any t ∈ [0, T). Then, by continuity
of π and w, there exists a ball Bε := [t, t + ε] × [v − ε, v + ε] × [x − ε, x + ε] such that
w(t̃, ṽ, x̃) 6= π(t̃, ṽ, x̃) for any (t̃, ṽ, x̃) ∈ Bε when ε > 0 is small enough and satisfies
t + ε ≤ T. We observe from (25) that w = u∗ is, in fact, the unique continuous function
such that the minimum within the expectation on the right-hand side of (25) (with ξ − θ∗

and (t, v, x) in place of γ and (t0, v0, x0), respectively) is attained up to probability one.
Therefore, we can set exiting time τε = inf{t ∧ T| (t, Vt, Xπ

t ) /∈ Bε}, and we see that for
t̃ ≤ τε

Yt̃

{
π(t̃, Vt̃, Xπ

t̃ )
√

Vt̃ +

(
µ− r√

Vt̃
+

Λt̃
Yt̃

)
Gt̃

}2

≥ ζ > 0, Pt,v,x-a.s.



Risks 2021, 9, 61 16 of 21

where ζ is a fixed positive constant. Now, from (25) with ξ − θ∗ and (t, v, x) in place of γ
and (t0, v0, x0), respectively, we find that

Et,v,x[(Xπ
T − (ξ − θ∗))2]

=Et,v,x

∫ τε

t
Yt̃

{
π(t̃, Vt̃, Xπ

t̃ )
√

Vt̃ +

(
µ− r√

Vt̃
+

Λt̃
Yt̃

)
Gt̃

}2

dt̃


+ Et,v,x

[∫ T

τε

Yt′

{
π(t′, Vt′ , Xπ

t′ )
√

Vt′ +

(
µ− r√

Vt′
+

Λt′

Yt′

)
Gt′

}2
dt′
]

+ c
(

x− (ξ − θ∗)e−r(T−t)
)2

≥ζEt,v,x[τε − t] + c
(

x− (ξ − θ∗)e−r(T−t)
)2

>c
(

x− (ξ − θ∗)e−r(T−t)
)2

=Et,v,x[(Xw
T − (ξ − θ∗))2],

(36)

where c = exp
(

2r(T − t)− a(t) 1
v − b(t)

)
is a constant at position (t, v, x), and the strict

inequality makes use of the fact that τε > t as the pair (V, Xπ) has continuous sample
paths with probability one under Pt,v,x measure. From (36) we see that

Vart,v,x(Xπ
T ) = Et,v,x[(Xπ

T )
2]− ξ2

= Et,v,x[(Xπ
T − (ξ − θ∗))2]− (θ∗)2

> Et,v,x[(Xw
T − (ξ − θ∗))2]− (θ∗)2

= Vart,v,x(Xw
T ).

This shows that for any (t, v, x) ∈ [0, T) × R+ × R, the candidate ud∗ (35) is the
dynamically optimal (Markovian) strategy for problem (4).

We substitute ud∗ (35) into the controlled wealth process (3) and denote the corre-
sponding wealth process by Xd∗

t . Using Itô’s lemma to Zt := ξ − er(T−t)Xd∗
t yields

dZt =− (µ− r)
ea(t) 1

Vt
+b(t)

ea(t) 1
Vt
+b(t) − 1

µ− r− σa(t)
Vt

Zt dt

− ea(t) 1
Vt
+b(t)

ea(t) 1
Vt
+b(t) − 1

µ− r− σa(t)√
Vt

Zt dWt.

(37)

We then obtain the closed-form expression of Zt by solving the linear SDE (37):

Zt =z0 exp

{∫ t

t0

−(µ− r)
ea(u) 1

Vu +b(u)

ea(u) 1
Vu +b(u) − 1

µ− r− σa(u)
Vu

du

−1
2

e2a(u) 1
Vu +2b(u)(

ea(u) 1
Vu +b(u) − 1

)2
(µ− r− σa(u))2

Vu
du


· exp

{
−
∫ t

t0

ea(u) 1
Vu +b(u)

ea(u) 1
Vu +b(u) − 1

µ− r− σa(u)√
Vu

dWu

}
,

(38)

where z0 = ξ − x0er(T−t0) > 0. From the definition of Zt and (38), we conclude that
Xd∗

t er(T−t) < ξ for t ∈ [t0, T). Finally, the corresponding wealth process Xd∗
t (34) follows

from (38).
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5. Numerical Examples

In this section, numerical examples are provided to analyze the impact of different
parameters on the efficient frontier when the wealth process is controlled by the statically
optimal strategy as well as to illustrate the differences between the dynamically optimal
wealth and the statically optimal wealth derived in Section 4. Unless otherwise stated, we
consider the following model parameters adapted from previous empirical studies (see,
for example, Drimus (2012)): r = 0.04, µ = 0.2, κ = 22.84, θ = 0.4689, σ = 8.56, x0 = 1,
v0 = 0.245, t0 = 0, T = 1, ξ = 4.

Figure 1 shows us how the interest rate r affects the efficient frontier. We find that
higher interest rate r results in larger Vart0,v0,x0(X∗T) with the same Et0,v0,x0 [X

∗
T ]. One of

the possible reasons is that although the investor can get higher return by investing in the
risk-free asset, the risk premium (µ− r)/

√
Vt decreases as r increases so that the investor

indeed derives less expected return from the stock, and thus undertakes more risk. In
summary, the impact of r on the stock is more significant than that on the risk-free asset.

Figure 1. The impact of r on the efficient frontier.

Figure 2 shows how the return rate of the stock µ influences the efficient frontier.
Higher level of the return rate of the stock price µ lowers the variance of terminal wealth
Vart0,v0,x0(X∗T) with the same Et0,v0,x0 [X

∗
T ], which is quite clear due to the fact that the

investor receives more risk premium as µ increases and the investor can therefore undertake
less risk by investing less into the stock and more into the risk-free asset so as to have the
same expected terminal wealth.
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Figure 2. The impact of µ on the efficient frontier.

The impact of the parameter κ on the efficient frontier is presented in Figure 3 below.
We see that larger κ results in larger Vart0,v0,x0(X∗T) with the same Et0,v0,x0 [X

∗
T ]. One possible

reason is that as κ partly stands for the mean-reversion speed of the reciprocal of the
stochastic volatility 1/Vt (recall the proof of Lemma 3 above), a larger κ results in a faster
speed of 1/Vt towards the long-term level (κ + σ2)/κθ. Meanwhile, we see that the long-
term level is, in fact, decreasing in κ. These two aspects in turn make the volatility of the
stock Vt stays longer around the relatively higher level κθ/(κ + σ2). Therefore, the investor
has to undertake more risk.

Figure 3. The impact of κ on the efficient frontier.

The effect of the parameter σ on the efficient frontier is given in Figure 4, which shows
that Vart0,v0,x0(X∗T) decreases with the same Et0,v0,x0 [X

∗
T ] as σ increases. Again, from the

proof of Lemma 3 above, we see that σ plays a role as the volatility of the reciprocal of
volatility process 1/Vt, and a larger σ results in milder movements of the volatility process
Vt. In addition, we see that the long-run level of volatility κθ/(κ + σ2) decreases as σ
increases. Therefore, these two factors help the investor bear less risk.
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Figure 4. The impact of σ on the efficient frontier.

To end this section, we show the dynamics of wealth processes controlled by the stati-
cally optimal strategy u∗ (30) and the dynamically optimal strategy ud∗ (33), respectively.
By setting 500 equidistant time points over [0, 1], we simulate two paths of optimal wealth
processes X∗t and Xd∗

t . Figure 5 illustrates the significant difference between the dynami-
cally optimal wealth process Xd∗

t and the statically optimal wealth process X∗t . In particular,
we see that the result supports the conclusion of Theorem 2 above: the dynamically optimal
wealth Xd∗

t is strictly smaller than the expected terminal wealth ξ = 4 when t < 1.

Figure 5. Statically optimal wealth X∗t and dynamically optimal wealth Xd∗
t .

6. Conclusions

In this paper, a dynamically optimal mean-variance portfolio selection problem within
the framework developed in Pedersen and Peskir (2017) in a stochastic environment has
been investigated. A 3/2 stochastic volatility model is used to characterize the stochastic
volatility of the stock. Considering the methodology in Pedersen and Peskir (2017) to tackle
the time-inconsistency of the optimality under mean-variance criterion, we first address
the static optimality and solve it by using a general BSDE approach. Under an assumption
on model parameters, we obtain the static optimality and the corresponding value function
explicitly. By solving the static optimality in an infinitesimally small period of time, the
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closed-form expression of the dynamic optimality is derived. Considering some technical
difficulties, however, we have only studied the case without any state constraint. One
branch of research topics in the future is to impose pathwise constraints on the wealth
process; see, for example, Pedersen and Peskir (2018).
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