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Abstract: This article describes the techniques employed in the production of a synthetic dataset of
driver telematics emulated from a similar real insurance dataset. The synthetic dataset generated
has 100,000 policies that included observations regarding driver’s claims experience, together with
associated classical risk variables and telematics-related variables. This work is aimed to produce a
resource that can be used to advance models to assess risks for usage-based insurance. It follows a
three-stage process while using machine learning algorithms. In the first stage, a synthetic portfolio
of the space of feature variables is generated applying an extended SMOTE algorithm. The second
stage is simulating values for the number of claims as multiple binary classifications applying
feedforward neural networks. The third stage is simulating values for aggregated amount of claims
as regression using feedforward neural networks, with number of claims included in the set of feature
variables. The resulting dataset is evaluated by comparing the synthetic and real datasets when
Poisson and gamma regression models are fitted to the respective data. Other visualization and
data summarization produce remarkable similar statistics between the two datasets. We hope that
researchers interested in obtaining telematics datasets to calibrate models or learning algorithms will
find our work ot be valuable.

Keywords: Bayesian optimization; Gaussian process; neural network; SMOTE; usage-based insurance
(UBI); vehicle telematics

1. Background

Usage-based insurance (UBI) is a recent innovative product in the insurance industry
that exploits the use and access of improved technology. It is a type of automobile insurance
policy where the cost of insurance is directly linked to the use of the automobile. With
the help of telematics device or mobile app, auto insurers are able to track and monitor
mileage, speed, acceleration, and other driving-related data. This data transmission allows
insurers to later store information for monitoring driving behavior and, subsequently,
for risk assessment purposes.

According to the Oxford dictionary, telematics refers to “the use or study of technology
that allows for information to be sent over long distances using computers”. Its origin can
be traced back to the French word, télématique, combining the words “telecommunications”
and “computing science”. There is a growing list of applications of telematics in various
industries, and it is most prominently used in the insurance industry. The infrastructure
that is offered by health telematics allows for access to healthcare that helps reduce costs
while optimizing quality of patient care. The installation of a smart home system with
alarms that remotely monitor home security can drastically reduce the cost of homeowners
insurance. In auto insurance, a plug-in device, an integrated equipment installed by
car manufacturers, or a mobile application can be used to directly monitor cars, thereby
allowing insurers to more closely align driving behaviors with insurance premium rates
through UBI. It was said in Karapiperis et al. (2015) that Progressive Insurance Company,
in collaboration with General Motors, offered the first such UBI in the early 2000s with
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premium discounts linked to the monitoring of driving activities and behavior. With
agreement of the driver, a tracking device was installed in the vehicle to collect information
through GPS technology. Subsequently, with even further advances in technology, different
forms of UBI have emerged that include, for example, Pay-as-you-Drive (PAYD), Pay-
how-you-Drive (PHYD), Pay-as-you-Drive-as-you-Save (PAYDAYS), Pay-per-mile, and
Pay-as-you-Go (PASG).

The variations in UBI programs generally fall into two broad categories: how you
drive and how far you drive. In the first category, insurers track data, such as the changes
in your speed, how fast you are driving as you make a left or right turn, the day of the
week you drive, and the time of day that you drive, that reflect your driving maneuvering
behavior. In the second category, insurers track data that are related to your driving
mileage, essentially the distance you travel in miles or kilometers. It is interesting to note
that, even prior to the development of telematics, Butler (1993) have suggested the use of
cents-per-mile premium rating for auto insurance. Also see Denuit et al. (2007) for an early
discussion of the development of PAYD auto pricing.

1.1. Literature

The actuarial implications of usage-based insurance for fair risk classification and a
more equitable premium rating are relevant; this is reflected in the growth in the literature
on telematics in actuarial science and insurance. Many of the research on telematics
have found that the additional value of information derived from telematics can provide
improved claims predictions, risk classification, and premium assessments. Husnjak et al.
(2015) provides a very nice overview of the architecture and pricing paradigms that are
employed by various telematics programs around the world.

Table 1 provides an overview of the literature in actuarial science and insurance,
with an outline of the work describing the data source, the period of observation with
sample size, the analytical techniques employed, and a brief summary of the research
findings. For example, the early work of Ayuso et al. (2014) examines a comparison of
the driving behaviors between novice and experienced young drivers, those that are aged
below 30, with PAYD policies. The analysis is based on a sample of 15,940 young drivers
with PAYD policies in 2009 drawn from a leading Spanish insurance company. The work of
Guillen et al. (2020) demonstrates how the additional information drawn from telematics
can help to predict near-miss events. The analysis is based on a pilot study of drivers from
Greece in 2017 who agreed to participate in a telematics program.
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Table 1. An overview of the literature.

Data Source Reference Sample Period Analytical Techniques Research Synthesis

Belgium Verbelen et al. (2018) 10,406 drivers
(33,259 obs.)

2010–2014 Poisson GAM,
Negative binomial GAM

Shows that the presence of telematics variables are better important predictors
of driving habits

Canada So et al. (2020) 71,875 obs. 2013–2016 Adaboost,
SAMME.C2

Demonstrates telematics information improves the accuracy of claims
frequency prediction with a new boosting algorithm

China Gao et al. (2019) 1478 drivers 2014.01–2017.06 Poisson GAM Shows the relevance of telematics covariates extracted from speed-acceleration
heatmaps in a claim frequency model

Europe Baecke and Bocca (2017) 6984 drivers
(<age 30) 2011–2015

Logistic regression,
Random forests,
Neural networks

Illustrates the importance of telematics variables for pricing UBI products and
shows that as few as three months of data may already be enough to obtain
efficient risk estimates

Greece Guillen et al. (2020) 157 drivers
(1225 obs.)

2016– 2017 Negative binomial reg. Demonstrates how the information drawn from telematics can help predict
near-miss events

Japan Osafune et al. (2017) 809 drivers 2013.12–2015.02 Support Vector Machines Investigates accident risk indices that statistically separate safe and risky
drivers

Spain

Ayuso et al. (2014) 15,940 drivers
(<age 30)

2009–2011 Weibull regression Compares driving behaviors of novice and experienced young drivers with
PAYD policies

Ayuso et al. (2016) 8198 drivers
(<age 30)

2009–2011 Weibull regression Determines the use of gender becomes irrelevant in the presence of sufficient
telematics information

Boucher et al. (2017) 71,489 obs. 2011 Poisson GAM
Offers the benefits of using generalized additive models (GAM) to gain
additional insights as to how premiums can be more dynamically assessed with
telematics information

Guillen et al. (2019) 25,014 drivers
(<age 40)

2011 Zero-inflated Poisson Investigates how telematics information helps explain part of the occurrence of
zero accidents not typically accounted by traditional risk factors

Ayuso et al. (2019) 25,014 drivers
(<age 40)

2011 Poisson regression Incorporates information drawn from telematics metrics into classical
frequency model for tariff determination

Pérez-Marín et al. (2019) 9614 drivers
(<age 35)

2010 Quantile regression Demonstrates that the use of quantile regression allows for better identification
of factors associated with risky drivers

Pesantez-Narvaez et al. (2019) 2767 drivers
(<age 30)

2011 XGBoost Examines and compares the performance of XGBoost algorithm against the
traditional logistic regression
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1.2. Motivation

Here, in this article, we provide the details of the procedures that were employed
in the production of a synthetic dataset of driver telematics. This synthetic dataset was
generated to imitate the intricate characteristics of a similar real insurance dataset; the
intent is not to reproduce or replicate the original characteristics in order to preserve the
privacy extracted from the original source. In the final synthetic dataset generated, we
produced 100,000 policies that included observations about driver’s information and claims
experience (number of claims and aggregated amount of claims) together with associated
classical risk variables and telematics-related variables. An increasingly popular auto
insurance product innovation is usage-based insurance (UBI), where a tracking device or
a mobile app is installed to monitor insured driving behaviors, as previously discussed.
Such monitoring is an attempt of the industry to link risk premiums that are assessed
with observable variables that are more directly tied to driving behaviors. While such
monitoring may be more frequently engineered than that reproduced or implied in our
synthetic dataset, the dataset is in aggregated or summarized form, assumed to be observed
over a certain period of time and can be used for research purposes of performing risk
analysis of UBI products. For the academic researcher, the dataset can be used to calibrate
advances in actuarial and risk assessment modeling. On the other hand, the practitioner
may find the data to be useful for market research purposes, where for instance, an insurer
is intending to penetrate the UBI market.

In the actuarial and insurance community, as driven by industry need that is facilitated
with computing technology advancement, there is a continuing growth of the need for
data analytics to perform risk assessment with high accuracy and efficiency. Such exercise
involves the construction, calibration, and testing of statistical learning models, which, in
turn, requires the accessibility of big and diverse data with meaningful information. Access
to such data can be prohibitively difficult, understandably so because several insurers are
reluctant to provide data to researchers for concerns of privacy.

This drives a continuing interest and demand for synthetic data that can be used to
perform data and predictive analytics. This growth is being addressed in the academic com-
munity. To illustrate, the works of (Gan and Valdez 2007, 2018) created synthetic datasets
of large portfolios of variable annuity products, so that different metamodeling techniques
can be constructed and tested. Such techniques have the potential benefits of addressing
the intensive computational issues that are associated with Monte Carlo techniques typ-
ically common in practice. Metamodels have the added benefits of drastically reducing
computational times and thereby providing a more rapid response to risk management
when market forces drive the values of these portfolios. Gabrielli and Wüthrich (2018) de-
veloped a stochastic simulation machinery to reproduce a synthetic dataset that is “realistic”
and reflects real insurance claims dataset; the intention is for analysts and researchers to
have access to a large data in order to develop and test individual claims reserving models.
Our paper intends to help support this trend of supporting researchers by providing them
with a synthetic dataset to allow them to calibrate advancing models. More specifically, we
build the data generating process to produce an imitation of the real telematics data. The
procedure initially generates 100,000 synthetic observations with features while using an
extended version of SMOTE. We subsequently construct two neural networks, which emulate
the number of claims and aggregated amount of claims drawn from real data. Integrating
the synthetic observations with two neural networks, we are able to produce the complete
portfolio with the synthetic number of claims and aggregated amount of claims.

The rest of this paper has been structured, as follows. Section 2 describes the machine
learning algorithms uthat were sed to perform the data generation. Section 3 provides
a description of all the variables that are included in the synthetic datafile. Section 4
provides the details of the data generation process using the extended SMOTE and the
feedforward neural networks. This section also provides the comparison of the real data
and the synthetically generated data when Poisson and gamma regression models are used.
We conclude the text in Section 5.
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2. Related Work

This section briefly explains two popular machine learning algorithms that we em-
ployed to generate the telematics synthetic dataset. The first algorithm is the extended
SMOTE, Synthetic Minority Oversampling Technique. This procedure is used to generate
the classical and telematics predictor variables in the dataset. The second algorithm is the
feedforward neural network. This is used to generate the corresponding response variables
that describe the number of claims and aggregated amount of claims.

2.1. Extended SMOTE

Being developed by Chawla et al. (2002), the Synthetic Minority Oversampling Tech-
nique (SMOTE) is originally intended to address classification datasets with severe class
imbalances. The procedure is to augment the data to oversample observations for the
minority class and this is accomplished by selecting samples that are within the neighbor-
hood in the feature space. First, we choose a minority class and then obtain its K-nearest
neighbors, where K is typically set to 5. All of the K neighbors should be minority instances.
Subsequently, one of these K neighbor instances is randomly chosen to compute new
instances by interpolation. The interpolation is performed by computing the difference
between the minority class instance under consideration and the selected neighbor taken.
This difference is multiplied by a random number uniformly drawn between 0 and 1,
and the resulting instance is added to the considered minority class. In effect, this proce-
dure does not duplicate observations; however, the interpolation causes the selection of a
random point along the “line segment” between the features Fernández et al. (2018).

This principle of SMOTE for creating synthetic data points from minority class is em-
ployed and adopted in this paper with a minor adjustment. In our data generation,
we applied it to generate predictor variables that are based on the entire feature space of
the original or real dataset. The one minor adjustment we used is to tweak the interpolation
by randomly drawing a number from a U-shaped distribution, rather than a uniform
distribution, between 0 and 1. This mechanism has the resulting effect of maintaining the
characteristic of the original or real dataset with small possibility of duplication. In particu-
lar, we are able to capture characteristics of observations that may be considered unusual or
outliers. Section 4.1.1 provides a further description of a synthetically generated portfolio.

2.2. Feedforward Neural Network

Loosely modeled after the idea of neurons that form the human brain, the neural
network consists of a set of algorithms for doing machine learning in order to cleverly
recognize patterns. Indeed, neural networks are very versatile, as they can be used for
addressing inquiries that are considered either supervised or unsupervised learning; this set
of algorithms has grown in popularity as the method continues to provide strong evidence
of its ability to produce predictions with high accuracy. A number of research using neural
networks has been published in the actuarial and insurance literature. Wüthrich (2019)
showed that the biased estimation issue resulting from use of neural networks with early
stopping rule can be diminished using shrinkage version of regularization. Yan et al. (2020)
used the backpropagation (BP) neural network optimized by an improved adaptive genetic
algorithm to build car insurance fraud detection model. Additional research has revealed
the benefits and advantages of neural networks applied to various models for insurance
pricing, fraud detection, and underwriting. Among these include, but are not limited to,
Viaene et al. (2005); Dalkilic et al. (2009); Ibiwoye et al. (2012); Kiermayer and Weiß (2020).

The concept of neural networks can be attributed to the early work of McCulloch
and Pitts (1943). A neural network (NN) consists of several processing nodes, referred to
as neurons, which are considered to be simple yet densely interconnected. Each neuron
produces a sequence of real-valued activations that are triggered by a so-called activation
function, and these neurons are organized into layers to form a network. The activation
function plays a crucial role in the output of the model, affecting its predictive accuracy,
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computational efficiency of learning a model, and convergence. There are several types of
neural network activation functions, and we choose just a few of them for our purpose.

Neural network algorithms have the tendency to be complex and to overfit the training
dataset. Because of this model complexity, they are often referred to as black-box, as it
sometimes becomes difficult to draw practical insights into the learning mechanisms
employed. Part of this problem has to do with the large number of parameters and
the resulting non-linearity of the activation functions. However, these disadvantageous
features of the model may be beneficial for the purpose of our data generation. For instance,
the overfitting may help us build a model with high accuracy and precision, so that we
produce a synthetic portfolio that mimics the characteristics of the portfolio derived from
the real dataset.

For feedforward neural networks, signals are more straightforward, because they are
allowed to go in one direction only: from input to output Goodfellow et al. (2016). In effect,
the output from any layer does not directly affect that same layer, so that the effect is that
there are no resulting feedback loops. In contrast, for recurrent neural networks, signals
can travel in both directions so that feedback loops may be introduced in the network.
Although considered to be more powerful, computations within recurrent neural networks
are much more complicated than those within feedforward neural networks. We fit two
simulations using the feedforward neural network, as later described in the paper.

Figure 1 displays a sample architecture of a feedforward neural network, together
with the type of activation functions that are considered in this article. In this case, it
becomes apparent how the information flows only from the input to the output. The
graphs described in Figure 1 has three feature variables as the input, one hidden layer,
two nodes for the hidden layer, and the response variable y as the resulting output. The
activation function ( f ) is responsible for converting the weighted sum of previous node
values (∑) into a node value of that layer. Representative activation functions are sigmoid
and Rectified Linear Unit (ReLU) functions, as seen in the bottom left of Figure 1. The
sigmoid is used as an activation function in neural network that converts any real-valued
sample to a probability range between 0 and 1. It is this property that the neural network
can be used as a binary classifier. On the other hand, the ReLU function is a piecewise linear
function that gives the input directly as output, if positive, and zero as output, otherwise.
This function is often the default function for many neural network algorithms, because it
is believed to train the model with ease and outstanding performance.

y

Inputs 

layer

Hidden 

layer

Output 

layer

𝑥1

𝑥3

𝑥2
Output Activation function

Figure 1. Architecture of a feedforward neural network.
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In the feedforward neural network, parameters are the weights (wi) of connections
between layers. Hyperparameters are the values for determining the architecture of the
neural network model, which include, among others, the number of layers, the number
of nodes in each layer, activation functions, and the parameters used for optimizer (e.g.,
Stochastic Gradient Descent (SGD) learning rate). Parameters can be learned from the data
using a loss optimizer. However, hyperparameters still must be predetermined prior to
the learning process and, in many cases, these decisions depend on the judgment of the
analyst or the user. The work of Hornik et al. (1989) proved that standard multi-layer
feedforward networks are capable of approximating any measurable function and, thus,
is called the universal approximator. This implies that any lack of success in applications
must arise from inadequate learning, insufficient numbers of hidden units, or the lack of
a deterministic relationship between input and target. Hyperparameters may be more
essential in deep learning to be able to yield satisfactory output.

We found that a number of research done in neural networks focused on introducing
the algorithms for optimizing hyperparameters values. Some of the frequently used search-
ing strategies are grid search, random search Bergstra and Bengio (2012), and sequential
model-based optimization Bergstra et al. (2011). This line of work on hyperparameters
is presently a very active field of research that includes, for example, hyperparameters
in parameter learning process (e.g., Thiede and Parlitz (2019); Franceschi et al. (2017);
Maclaurin et al. (2015)). However, the methods that are proposed in the current literature
are relatively new and not mature enough to be used in practical real world problems.
The simple and widely used optimization algorithms are the grid search and the random
search. The grid search, on one hand, is the method for discretizing the search space of
each hyperparameter and based on the Cartesian products, to discretize the total search
space of hyperparameters. Subsequently, after learning for each set of the hyperparameters,
we select the best at the end. It is intuitive and easy to apply, but it does not take relative
feature importance into account, and therefore is considered to be ineffective and extremely
time-consuming. This method is also severely influenced by the curse of dimensionality as
the number of hyperparameters increase. In the random search, on the other hand, hyper-
parameters are randomly sampled. Bergstra and Bengio (2012) showed that the random
search, as compared to the grid search, is particularly effective, especially when dealing
with relative feature importance. However, since the next trial set of hyperparameters is not
chosen based on previous results, it is also time-consuming, especially when it involves a
large number of hyperparameters, thereby suffering from the same curse of dimensionality
as the grid search.

To optimize hyperparameters, we find that one of the most powerful strategies is the
sequential model-based optimization, sometimes also referred to as Bayesian optimization.
The following set of hyperparameters are determined based on the result of previous sets
of hyperparameters. Bergstra et al. (2011) and Snoek et al. (2012) showed that sequential
model-based optimization outperforms both grid and random searches. Sequential model-
based optimization constructs a probabilistic surrogate model to define the posterior
distribution over unknown black box function (loss function). The posterior distribution is
developed based on conditioning on the previous evaluations and a proxy optimization is
performed to seek the next location to evaluate. For the proxy optimization, the acquisition
function is computed based on the posterior distribution and it has the highest value at the
location having the highest probability of the lowest loss function; this point becomes the
next location. Most commonly, the Gaussian process is used as surrogate model, because of
their flexibility, well-calibrated uncertainty, and analytic properties Murugan (2017). Thus,
we use the Gaussian process as the hyperparameter tuning algorithm.

Another important decision, which may affect the time efficiency and performance of
the neural network model, is to choose the optimizer. The optimizer refers to an algorithm
used to update the parameters of model in order to reduce the losses. The neural network
is not a convex optimization. For this reason, in the training process, it could fall into
the minimum of local part and the convergence rate could be too small leading to the
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learning process unfinished for days Li et al. (2012). To address this issue, diverse opti-
mizers have been suggested: Gradient Descent, Stochastic Gradient Descent, Mini-Batch
Gradient Descent, Momentum, AdaGrad Duchi et al. (2011); RAMSProp; Adam Kingma and
Ba (2014); and, others Ruder (2016). The Adam optimization is an efficient stochastic opti-
mization that has been suggested and it combines the advantages of two popular methods:
AdaGrad, which works well with sparse gradients, and RMSProp, which has an excellent
performance in on-line and non-stationary settings. Recent works by Zhang et al. (2019);
Peng et al. (2018); Bansal et al. (2016); and Arik et al. (2017) have presented and proven that
the Adam optimizer provides better performance than others in terms of both theoretical
and practical perspectives. Therefore, in this paper, we use Adam as the optimizer in our
neural network simulations.

3. The Synthetic Output: File Description

For our portfolio emulation, we based it on a real dataset acquired from a Canadian-
based insurer, which offered a UBI program that was launched in 2013, to its automobile
insurance policyholders. The observation period was for the years between 2013 and 2016,
with over 70,000 policies being observed, for which the dataset drawn is pre-engineered
for training a statistical model for predictive purposes. See also So et al. (2020).

We generated a synthetic portfolio of 100,000 policies. Table 2 provides the types,
names, definitions, or brief description of the various variables in the resulting datafile,
which can be found in http://www2.math.uconn.edu/~valdez/data.html (accessed on 23
March 2021).

Table 2. Variable names and descriptions.

Type Variable Description

Traditional

Duration Duration of the insurance coverage of a given policy, in days
Insured.age Age of insured driver, in years
Insured.sex Sex of insured driver (Male/Female)
Car.age Age of vehicle, in years
Marital Marital status (Single/Married)
Car.use Use of vehicle: Private, Commute, Farmer, Commercial
Credit.score Credit score of insured driver
Region Type of region where driver lives: rural, urban
Annual.miles.drive Annual miles expected to be driven declared by driver
Years.noclaims Number of years without any claims
Territory Territorial location of vehicle

Telematics

Annual.pct.driven Annualized percentage of time on the road
Total.miles.driven Total distance driven in miles
Pct.drive.xxx Percent of driving day xxx of the week: mon/tue/. . . /sun
Pct.drive.xhrs Percent vehicle driven within x hrs: 2hrs/3hrs/4hrs
Pct.drive.xxx Percent vehicle driven during xxx: wkday/wkend
Pct.drive.rushxx Percent of driving during xx rush hours: am/pm
Avgdays.week Mean number of days used per week
Accel.xxmiles Number of sudden acceleration 6/8/9/. . . /14 mph/s per 1000 miles
Brake.xxmiles Number of sudden brakes 6/8/9/. . . /14 mph/s per 1000 miles
Left.turn.intensityxx Number of left turn per 1000 miles with intensity 08/09/10/11/12
Right.turn.intensityxx Number of right turn per 1000 miles with intensity 08/09/10/11/12

Response NB_Claim Number of claims during observation
AMT_Claim Aggregated amount of claims during observation

The synthetic datafile contains a total of 52 variables, which can be categorized into
three main groups: (a) 11 traditional features, such as policy duration, age, and sex of
driver, (b) 39 telematics features, including total miles driven, number of sudden breaks,
or sudden accelerations, and (3) two response variables describing number of claims and
aggregated amount of claims.

Additional specific information of the variables in the datafile is presented below:

• Duration is the period that policyholder is insured in days, with values in [22, 366].
• Insured.age is the age of insured driver in integral years, with values in [16, 103].

http://www2.math.uconn.edu/~valdez/data.html
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• Car.age is the age of vehicle, with values in [−2, 20]. Negative values are rare but are
possible as buying a newer model can be up to two years in advance.

• Years.noclaims is the number of years without any claims, with values in [0, 79] and
always less than Insured.age.

• Territory refers to the territorial location code of vehicle, which has 55 labels in
{11, 12, 13, . . ., 91}.

• Annual.pct.driven is the number of day a policyholder uses vehicle divided by 365,
with values in [0, 1].

• Pct.drive.mon, · · · , Pct.drive.sun are compositional variables meaning that the
sum of seven (days of the week) variables is 100%.

• Pct.drive.wkday and Pct.drive.wkend are clearly compositional variables too.
• NB_Claim refers to the number of claims, with values in {0, 1, 2, 3}; 95.72% observations

with zero claim, 4.06% with exactly one claim, and merely 0.20% with two claim and
0.01% with three claim. Real NB_Claim has the following proportions; zero claim:
95.60%, one claim: 4.19%, two claim: 0.20%, three claim: 0.007%.

• AMT_Claim is the aggregated amount of claims, with values in [0, 138766.5]. Table 3
shows summary statistics of synthetic and real data.

Table 3 provides an interesting comparison of the summary statistics of the aggregated
amount of claims derived from the synthetic datafile and compared to the real dataset,
broken down by the number of claims from the synthetic dataset. First, we observe that
we do not exactly replicate the statistics, a good indication that we have done a good
job of reconstructing a portfolio based on the real dataset with very little indication of
reproducing nor replicating the exact data. Second, these statistics show that we are able
to preserve much of the characteristics of the original dataset according to the spread and
depth of observations we have, as described in this table. To illustrate, among those with
exactly two claims, the average amount of claim in the synthetic file is 8960 and it is 8643 in
the real dataset; the median is 7034 in the synthetic file, while it is 5148 in the real data. The
respective standard deviations, which give a sense of how dispersed the values are from the
mean, are 9554 and 10,924. We shall be able to compare more of these intricacies when we
evaluate the quality of the reproduction by giving more details of this type of comparisons.

Table 3. Summary statistics of AMT_Claim based on synthetic NB_Claim: Synthetic vs. Real.

Synthetic NB_ClaimNB_ClaimNB_Claim Mean Std Dev Min Q1 Median Q3 Max

AMT_Claim

0 0 0 0 0 0 0 0
1 4062 6767 0 670 2191 4776 138,767
2 8960 9554 0 2350 7034 11,225 56,780
3 5437 2314 2896 3620 5372 5698 9743

Real NB_ClaimNB_ClaimNB_Claim Mean Std Dev Min Q1 Median Q3 Max

AMT_Claim

0 0 0 0 0 0 0 0
1 4646 8387 0 659 2238 5140 145,153
2 8643 10,920 0 1739 5184 11,082 62,259
3 5682 2079 3253 4540 5416 5773 9521

As we said earlier, we reproduced 52 variables and the data types are summarized
in Table 4. The NB_Claim variables can be treated as integer-valued or a classification
or categorical variable, with 0 category as those considered to be the least risky drivers
who, thus far, have zero claim frequency history. The percentage variables are those with
values between 0 and 100%. Compositional variables are less frequently described in
insurance datasets but are increasingly becoming more important for telematics related
variables. Compositional variables refer to a class or groups of variables that are commonly
presented as percentages or proportions that describe parts of some whole. The total sum
of these parts are typically constraint to be some fixed constant such as 100% of the whole.
A clear example in our dataset are the variables Pct.drive.wkday and Pct.drive.wkend,
for which, respectively, are the percentages of times spent driving during the weekdays
and during the weekends. For instance, if each of these are 50%, then half of the time
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that the individual is driving on the road is done during the day of the week (Monday
through Friday), while the other half is done during the weekend (Saturday and Sunday).
See So et al. (2020) and Verbelen et al. (2018).

Table 4. Data types of all the 52 variables in the synthetic dataset.

Category Continuous/Integer Percentage Compositional

Marital Duration Annual.pct.driven Pct.drive.mon
Insured.sex Insured.age Pct.drive.xhrs Pct.drive.tue
Car.use Car.age Pct.drive.rushxx .
Region Credit.score .
Territory Annual.miles.drive Pct.drive.sun
NB_Claim Years.noclaims Pct.drive.wkday

Total.miles.driven Pct.drive.wkend
Avgdays.week
Accel.xxmiles
Brake.xxmiles
Left.turn.intensityxx
Right.turn.intensityxx
AMT_Claim

4. The Data Generating Process

The data generation of the synthetic portfolio of 100,000 drivers is a three-stage process
using the feedforward neural networks to perform the two simulations and using extended
SMOTE to reproduce the feature space. In the first stage, a synthetic portfolio of the space of
feature variables is generated applying an extended SMOTE algorithm. The second stage is
simulating values for the number of claims as multiple binary classifications while using
feedforward neural networks. The third stage is simulating values for amount of claims
as a regression using feedforward neural network with number of claims treated as one
of the feature variables. The final synthetic data is created by combining the synthetic
portfolio, the synthetic number of claims, and the synthetic amount of claims. The resulting
data generation is evaluated with a comparison between the synthetic data and the real
data when Poisson and gamma regression models are fitted to the respective data. Note
that the response variables were generated with an extremely complex and nonparametric
procedure, so that these comparisons do not necessarily reflect the true nature of the data
generation. We also provide other visualization and data summarization to demonstrate
the remarkable similar statistics between the two datasets.

4.1. The Detailed Simulation Procedures

Synthetic telematics data are generated based on two feedforward neural network
simulations and extended SMOTE. For convenience, we will use notations xi ∈ X =
{X1, X2, · · · , X50}, i = 1, 2, · · · , M, which describe the portfolio having 50 feature variables
and xi is observation (the policy). Y1 is NB_Claim and Y2 is AMT_Claim. Superscript r means
real data and s means synthetic data.

4.1.1. Synthetic Portfolio Generation

We propose extended version of SMOTE to generate the final synthetic portfolio, Xs, as
described in Section 2.1. Extended SMOTE is primarily different from the original SMOTE in
just a single step: the interpolation step. The detailed procedure is the following: for each
feature vector (observation, xr

i ), the distance between xr
i and the other feature vectors in

Xr is computed based on the Euclidean distance to obtain 5 nearest neighbors for each
xr

i . Subsequently, one xr
i and corresponding one-nearest neighbor are randomly selected.

The difference between xr
i and this neighbor is multiplied by a random number drawn

from the U-shape distribution, as shown in Figure 2. Adding the random number to the xr
i ,

we create a synthetic feature vector, xs
i . 100,000 synthetic observations are generated, which

consisted of the synthetic portfolio, Xs. After applying the extended SMOTE, the following
considerations had also been reflected in the synthetic portfolio generation:
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• integer features are rounded up;
• for categorical features, only Car.use are multi-class. Car.use is converted by one-hot

coding before applying extended SMOTE so that every categorical feature variable has
the value 0 or 1. After the generation, they are rounded up; and,

• for compositional features, Pct.drive.sun and Pct.drive.wkend are not involved in
the generation process, but are calculated by ‘1 − the rest of related features.’

0.0 0.2 0.4 0.6 0.8 1.0
Random number

0

1

2

3

4

Co
un

t

Figure 2. 1000 random numbers drawn from the U-shape distribution.

4.1.2. The Simulation of Number of Claims

To mimic the real telematics data, the next step is to build the simulation generating
Ys

1 , with four categorical values. It is a multi-class classification problem. However,
we converted it into multiple binary class classifications to make each process simple and
simultaneously improve the accuracy of simulation. In each simulation function, x is input
and z is output, where zr

11(1)
indicates the Zr

1 value corresponding to xr
1(1)

.

1. Sub-simulation 1: Zr
1 = 1Yr

1≥1. Corresponding instance index is

{1(1), 2(1), · · · , M(1)}. The data is given as the following:

D1 = {(xr
1(1) , zr

11(1)), (xr
2(1) , zr

12(1)), · · · , (xr
M(1) , zr

1M(1))}

2. Sub-simulation 2: Zr
2 = 1Yr

1≥2|Yr
1≥1. Corresponding instance index is

{1(2), 2(2), · · · , M(2)}. The data is given as the following:

D2 = {(xr
1(2) , zr

21(2)), (xr
2(2) , zr

22(2)), · · · , (xr
M(2) , zr

2M(2))}

3. Sub-simulation 3: Zr
3 = 1Yr

1=3|Yr
1≥2. Corresponding instance index is

{1(3), 2(3), · · · , M(3)}. The data is given as the following:

D3 = {(xr
1(3) , zr

31(3)), (xr
2(3) , zr

32(3)), · · · , (xr
M(3) , zr

3M(3))}

The feedforward neural network simulation is learned from each Dk. Hyperparame-
ters are tuned via Gaussian Process (GP) algorithm, as detailed in the previous section: the
number of hidden layers, the number of nodes for first hidden layer, the number of nodes
for the rest of the hidden layers, activation functions, batch size, and the learning rate.
Table 5 introduces the resultant architecture of the network. We set up sigmoid activation
function for output layer, since this is a binary problem; it has the value between 0 and 1.
Threshold is 0.5 and cross entropy loss function is used. The weight of the neural network
is optimized using the Adam optimizer. In the Adam optimizer, as input values, we need
α (learning rate), β1, β2, and ε. See Algorithm 1 of Kingma and Ba (2014). In practice,
β1 = 0.9, β2 = 0.999, and ε = 1e−08 are commonly used, and no further tuning is usually
done. Thus, we only tuned the learning rate via GP.
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Table 5. The architecture of the three sub-simulations for number of claims.

Architecture N.Hidden L. N.Nodes_First
Hidden L.

N.Nodes_Rest
Hidden L. Activation BatchSize Learning R.

sub-sim1 3 353 68 ReLU 85 0.000667
sub-sim2 3 473 67 ReLU 18 0.001019
sub-sim3 2 60 60 ReLU 16 0.001922

Figure 3 shows the accuracy of the three sub-simulations. When the real portfolio is
plugged in, its prediction reveals 100% coincidence with the real number of claims. This
implies that as we plug in realistic portfolio into this combined frequency simulation,
we are able to arrive at realistic number of claims.

NB_Claim
 no

NB_Claim
 1

NB_Claim
 2

NB_Claim
 3

Predicted label

NB_Claim no

NB_Claim 1

NB_Claim 2

NB_Claim 3

Tr
ue

 la
be

l

68,711 0 0 0

0 3,012 0 0

0 0 147 0

0 0 0 5

0

10,000

20,000

30,000

40,000

50,000

60,000

Figure 3. Confusion matrix based on the number of claims simulation results.

After building three sub-simulations, plugging in synthetically generated portfolio, Xs

into sub-simulation 1, we get Zs
1. Subsequently, we extract Xs|Zs

1 = 1, plugging it into sub-
simulation 2 and get the value, Zs

2. Likewise, plugging in Xs|Zs
2 = 1 into sub-simulation 3,

we obtain the final one, Zs
3. By combining these three results, we finally generate synthetic

number of claims, Ys
1 .

4.1.3. The Simulation of Aggregated Amount of Claims

We produce the subset of portfolios, which satisfies the condition, Yr
1 > 0. Corre-

sponding to a new index of the subset is defined as {1(sev), 2(sev), · · · , M(sev)}. The number
and amount of claims are not treated independent to each other, but, rather, the number of
claims Yr

1 , is also considered as one of the feature variables. Therefore, we use the following
data to train the aggregated amount of claims simulation:

D4 = {((xr
1(sev) , yr

11(sev)), yr
21(sev)), ((xr

2(sev) , yr
12(sev)), yr

22(sev)), · · · , ((xr
M(sev) , yr

1M(sev)), yr
2M(sev))}

Yr
2 is a non-negative continuous value. Thus, in the second simulation, we use ReLU

as the activation function and MSE as the loss function. Adam optimizers are used with the
hyperparameters that are selected in the same manner, as described in Section 4.1.2. These
are further described in Table 6.

Table 6. The architecture of simulation for the aggregated amount of claims.

Architecture N.Hidden L. N.Nodes_First
Hidden L.

N.Nodes_Rest
Hidden L. Activation BatchSize Learning R.

6 344 67 ReLU 3 0.000526
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Figure 4 reveals the resulting performance of the claims simulation. The prediction
errors are highly centered around zero and most of the dots are on the line of QQ plot
for predicted and real claim amount. This sufficiently proves that the simulation can
imitate the real amount of claim with a synthetic portfolio based on the number of claims
simulation introduced in Section 4.1.2.
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Prediction Error
0.000

0.001
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Figure 4. Assessing the accuracy of the simulation of aggregated amount of claims.

To generate Ys
2 , we use Ys

1 obtained from Section 4.1.2, and we extract the subset
of synthetic portfolio with the condition, Ys

1 > 0. This subset of synthetic portfolio and
corresponding Ys

1 are the input of the simulation to obtain Ys
2 .

4.2. Comparison: Poisson and Gamma Regression

Combining every output (Xs, Ys
1 , Ys

2) obtained from Section 4.1, the data with telematics
features are thereby complete. Any statistical or machine learning algorithms can now be
performed on this completed synthetic datafile. In order to frther compare the quality of
the reconstruction of the real dataset to produce the synthetic datafile, one simple approach
is to compare the resulting outputs when a Poisson regression model is calibrated on
the number of claims (frequency) and a gamma regression model is calibrated on the
amount of claims (severity), while using the respective real dataset and the synthetic
datafile. Both of the models are relatively standard benchmark models in practice. To
be more specific, we fitted both Poisson and gamma regression models to the real and
synthetic data to predict the number of claims ( NB_Claim

Duration ) and the average amount of claims
( AMT_Claim

NB_Claim |NB_Claim > 0). A net premium can be calculated by taking the product of the
number of claims and the average amount of claims. The purpose of this exercise is not to
evaluate the quality of the models or the relative importance of the feature variables, but
rather to compare the resulting outputs between the two datasets. The training models are
based on all of the feature variables in the absence of variable selection.

Figure 5 describes the average claim frequency between the real telematics on the left
side and the synthetic telematics on the right side. For simplicity, we only provide the behav-
ior of the claim frequency for three feature variables: Annual.pct.drive, Credit.score,
and Pct.drive.tue. For both of the datasets, we see that the observed values are colored
blue and the predicted values are colored orange. As we expected, the distributions of the
average claim frequency, as well as the pattern of blue and orange, for these feature vari-
ables considered here have very similar patterns between the real and synthetic datasets.
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Figure 5. Average claim frequency using real (left) and synthetic (right) datasets.

As similarly done for frequency, Figure 6 depicts the average claim severity between
the real telematics and the synthetic telematics. For our purpose, we examine these
comparisons based on two feature variables: Yrs.noclaims and Total.miles.driven.
Both of these feature variables do not seem to produce much variation in the predicted
values: this may explain that these are relatively less important predictor variables for
claims severity. However, this may also be explained by the fact that we do not necessarily
have an exceptionally good model here for prediction. However, this is not the purpose of
this exercise.

Still, from both Figures 5 and 6, there is some information we can draw. First, the
patterns of blue dots are similar between the real and synthetic data for every feature
variable considered here. Even though we do not include the graphs of other features, for
all features they show similar dispersion. The included features are the one considered
as important variables based on the classification models introduced in So et al. (2020).
This seems to suggest that real and synthetic data have similar frequency and feature
distributions for all variables, which implies that the synthetic datafile is behaving as
realistic as the real data. In conclusion, it mimics the real dataset exceptionally well.
Second, the patterns of orange dots are also similar between the real and synthetic data.
In more details, predicted frequency (Figure 5) and severity (Figure 6) from models tuned
based on real data have a similar dispersion with those from the model tuned on synthetic
data. This suggests results obtained by synthetic data might have little difference from the
results obtained by real data, and, conclusively, we can use synthetic data to train statistical
models in place of real data.
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Figure 6. Average severity using real (1st & 3rd) and synthetic (2nd & 4th) datasets.

Figure 7 further supports these conclusions, which shows a quantile–quantile (QQ)
plot of the predicted pure premium between the real data and the synthetic data. We do,
however, observe that we tend to overestimate the pure premium for the synthetic datafile
for high quantiles. This may be a result of the randomness produced throughout the data
generation process. This is not, by any means, an alarming concern.
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Figure 7. QQ-plot of predicted pure premium: real and synthetic data.

5. Concluding Remarks

It has been discussed that there is a perceived positive social effect to vehicle telematics:
it encourages careful driving behavior. Indeed, UBI programs can have many potential
benefits to insurers, consumers, and society, in general. Insurers are permitted to put a
price tag that links information that is more directly related to habits of insured drivers. As
a consequence, this helps insurance companies to provide customers the opportunity for
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more affordable premiums and to increase the predictability of their profit margin. On the
other hand, consumers may be able to control the level of premium costs by maintaining
safer driving habits or if at all possible, by reducing the frequency of driving. Furthermore,
UBI may benefit the society, because, with safer driving and fewer drivers on the road,
this may reduce the frequency of accidents, traffic congestion, and car emissions. In order
to get the optimal benefits of UBI to both insurers and their policyholders, it becomes
subsequently crucial to identify the more significant telematics variables that truly affect
the occurrence of car accidents. These perceived positive benefits motivated us to provide
the research community a synthetic datafile, which has the intricacies and characteristics
of a real data, that may be used to examine, construct, build, and test better predictive
models that can immediately be put into practice. For additional details of benefits of UBI,
see Husnjak et al. (2015).

In summary, this paper describes the generating process used to produce a synthetic
datafile of driver telematics that has largely been based and emulated from a similar real
insurance dataset. The final synthetic dataset produced has 100,000 policies that included
observations regarding driver’s claims experience, together with associated classical risk
variables and telematics-related variables. One primary motivation for such production is
to encourage the research community to develop innovative and more powerful predictive
models; this synthetic datafile can be used to train and test such predictive models so
that we can provide better techniques that can be used in practice to assess UBI products.
As alluded throughout this paper, the data generation is best described as a three-stage
process of applying extended SMOTE algorithm to produce synthetic portfolio of feature
variables and using feedforward neural networks to simulate the number and aggregated
amount of claims. The resulting data generation is evaluated by a comparison between
the synthetic data and real data when Poisson and gamma regression models are fitted to
the respective data. Data summarization and visualization of these resulting fitted models
between the two datasets produce remarkably similar statistics and patterns. Additional
figures provided in Appendix A suggest the notable similarities between the two datasets.
We are hopeful that researchers that are interested in obtaining driver telematics datasets
to calibrate statistical models or machine learning algorithms will find the output of this
research helpful for their purpose. We encourage the research community to build better
predictive models and test these models with our synthetic datafile.
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Appendix A. Graphical Display of Distributions of Selected Variables between
Synthetic and Real Datasets

The figures in this appendix provide summarization and visualization of selected
variables in the datasets. These figures provide suggestions of how remarkably similar
the distributions of the two datasets, an indication how good our procedure generated
the synthetic datasets. Note that we can only provide distribution summaries in order
to preserve confidentiality of the original data used in the generation. The figures are
self-explanatory.
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Figure A1. Synthetic data: Distribution of average number of claims for six telematics-related
features.
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Figure A2. Real data: Distribution of average number of claims for six telematics-related features.
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Figure A3. Synthetic data: Distribution of average number of claims for four traditional features.
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Figure A4. Real data: Distribution of average number of claims for four traditional features.
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