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Abstract: Investments in security and cyber-insurance are two cyber-risk management strategies that
can be employed together to optimize the overall security expense. In this paper, we provide a closed
form for the optimal investment under a full set of insurance liability scenarios (full liability, limited
liability, and limited liability with deductibles) when we consider a multi-branch firm with correlated
vulnerability. The insurance component results to be the major expense. It ends up being the only
recommended approach (i.e., setting zero investments in security) when the intrinsic vulnerability
is either very low or very high. We also study the robustness of the investment choices when our
knowledge of vulnerability and correlation is uncertain, concluding that the uncertainty induced on
investment by either uncertain correlation or uncertain vulnerability is not significant.

Keywords: risk management; insurance; cyber-security; cyber risk

1. Introduction

Cybercrime represents an ever-growing source of economic losses for companies.
According to the report by Malekos Smith and Lostri (2020), the world average cost of
cybercrime has steadily grown from 300 billion dollars in 2013 to 945 billion dollars in
2020. To fight that phenomenon, companies have spent an additional 145 billion dollars
in 2020, according to the same report. A quick and rough calculation shows that the ratio
of countermeasures to residual losses is 15%. It is then undisputed that cybersecurity
represents a major economic problem, and that economically effective ways have to be
found to deal with it.

Companies may deal with cyber-security issues through several risk management
strategies. The following list of strategies is reported in Peterson (2020):

• Risk avoidance
• Risk spreading
• Risk transfer
• Risk reduction
• Risk acceptance

Excluding the first and the last, which correspond, respectively, to the extreme strate-
gies of zeroing the risk and accepting it all, the remaining strategies may be reduced to
the following:

• Risk mitigation
• Risk transfer

Risk mitigation is another name for risk reduction and includes all those activities by
which we reduce the frequency and/or the impact of risky events. However, in risk mitiga-
tion, we do not change the subject who’s going to suffer from the economic consequences
of those events. Examples of mitigation measures for cyber-risks are the following:
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• purchase and employ antivirus software;
• install firewalls inside the network;
• tightening access control policies;
• renew and update the ICT infrastructures; and
• organize training courses for employees to increase their awareness of cyber-security

risks and develop a more cautious behavior.

As implicit in their name, such mitigation measures reduce the risk but do not elimi-
nate it. An established model to predict their effectiveness in reducing vulnerability is
due to Gordon and Loeb (GL model) Gordon and Loeb (2002); Naldi et al. (2018). Both
Gordon et al. (2016) and Naldi and Flamini (2017) provided guidelines to use the GL model
in a practical setting.

A different approach to risk management relies on transferring the risk to a third party.
The major risk transfer tool is insurance, where the insurer takes on the risk in return for
the payment of a periodic fee (the premium) by the insured. In Section 2, we review the
literature concerning cyber-insurance. However, most of the literature has concentrated
on the insurability or, as viewed from another angle, the existence of an insurance market
for cyber-security. A recent paper by Kshetri (2020) clears this doubt, since it shows that
the market is bound to expand and will be reinforced by institutional actions. Recent
efforts have been directed at a more operational level by providing pricing formulas for
the insurance premium under well-established risk models (see Mastroeni et al. (2019);
Mazzoccoli and Naldi (2020); Naldi and Mazzoccoli (2018)).

However, security investments and cyber-insurance are not mutually exclusive alter-
natives. They may be employed in a synergic way to deal with cyber-risks, using a mix of
strategies. The synergy lies in the possibility of exploiting the vulnerability reduction due
to security investments in order to lower the premium to be paid. Security investment and
insurance can then be jointly optimized to achieve the minimum possible security expense.

Whatever the optimal combination of risk mitigation and risk transfer, the mix has to
be revisited when we consider the presence of correlation between security accidents. In the
case of a multi-branch firm, where security breaches in any of the branches may reverberate
on the security of the headquarters, the risk management choices have to be reconsidered.
The impact of vulnerability correlation on risk management strategy optimization has not
been considered yet in the literature. This is exactly the problem we tackle here: How
should a company jointly optimize security investments and insurance buying when it
is composed of multiple branches, and a correlation exists between security accidents at
the branches and at the headquarters? Here, we consider the same framework described
by Khalili et al. (2018) and Xu et al. (2019), where the vulnerability of the headquarters
is influenced by the characteristics and behavior of the branches, i.e., by their intrinsic
vulnerability and their risk management choices, but not vice versa.

In this paper, we then extend the analysis carried out in Mazzoccoli and Naldi (2019)
by considering the case of a company having multiple branches, whose security breaches
may endanger the headquarters’ security as well, and the headquarters wish to minimize
their overall security expense.

We provide the following original contributions:

• We provide a closed formula for the optimal investment in security under vulnerability
correlation, extending the results presented in Mazzoccoli and Naldi (2019), where
cyber-risk interdependence is not taken into account.

• We demonstrate that the optimal strategy may be not to invest in security but to rely on
the protection provided by insurance alone, and we provide closed formulas to identify
when such no-investment strategy is the best one, modifying the results obtained by
Gordon and Loeb Gordon and Loeb (2002), showing that the no-investment strategy
applies not only for low vulnerability values but also in the opposite case of high
vulnerability values.

• We analyze the robustness of investment decisions when vulnerability and risk corre-
lation are not accurately estimated.
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2. Literature Review

A wide body of literature deals with cyber-insurance. Hereafter, we report a very brief
literature survey.

Cyber-insurance models are surveyed in Marotta et al. (2017), while the state of the
cyber-insurance market is analyzed in Strupczewski (2018). Early debates focused on the
influence of cyber-insurance on security investments, i.e., whether the use of insurance leads
to investing more in security or favors the birth of a market for lemons. Opinions favoring
cyber-insurance appear in the works of Kesan et al. (2004), Bolot and Lelarge (2009) and
Yang and Lui (2014); contrary opinions were instead stated by Pal et al. (2014) and
Shetty et al. (2010), who claimed that the insured’s vulnerability is affected by intrinsic
information asymmetry, which leads to no insurance market. The inaccurate knowledge
of risks by the insurer may, in fact, lead to overpricing Vakilinia and Sengupta (2018)
and Bandyopadhyay et al. (2009), which is a source of concern for the adoption of cyber-
insurance Levitin et al. (2018); Ouyang (2017). Formulas for the insurance premium have
been proposed (see, e.g., Mastroeni et al. (2019); Mazzoccoli and Naldi (2020); Naldi and
Mazzoccoli (2018)).

The introduction of cyber-insurance as an element in the overall risk management
strategy is however relatively recent. Meland et al. (2015) advocated the search for an
optimal mix of strategies, including self-protection, acting both as a prevention measure
and as a remedy one, self-insurance, tolerated residual risk, and, of course, cyber-insurance.
In Young et al. (2016), security investments are considered as a means to achieve lower
premiums (since cyber-risk is reduced) and therefore lower the barriers for the adoption of
cyber-insurance: the overall security expense is represented by the sum of the investments
and the insurance premium and can be minimized through a proper choice of the amount
of investment. In Mazzoccoli and Naldi (2019), the optimization task is explicitly dealt
with by providing closed-form formulas for the optimal investment under three liability
scenarios for the insurer.

The final issue related to this paper is that of vulnerability correlation. The risk
mitigation (investment) and risk transfer (insurance) strategies have to be re-examined
in the presence of a significant correlation between security accidents taking place in
different infrastructures. The problem of vulnerability correlation is well known: all
infrastructures are now interconnected and interdependent to some degree, which adds
to their vulnerability, since attacks on any infrastructure may endanger the others (see,
e.g., Guo et al. (2016); Khalili et al. (2018); Kröger (2008); Maglaras et al. (2018); Nagurney
and Shukla (2017); Vakilinia and Sengupta (2018); Xu et al. (2019); Zhao et al. (2013)). For
example, the breach of a logistics server by hackers leads to direct losses of the logistics
department as well as indirect leakage of the partner’s order information Xu et al. (2019).

3. Security Investments and Insurance: The Stand-Alone Firm

Investments in security must be properly set according to the company’s needs.
On the one hand, they allow reducing the losses due to cyber-attacks. On the other hand,
they represent an expense anyway. Investing in security must then be carried out as long
as the additional investment provides a more-than-compensating marginal loss reduction.
When we reach the balance between additional investment and marginal loss reduction,
we obtain the optimal amount of security investment, since it is not worth investing more.
When the company decides to rely on insurance as well, the optimization must consider
the transfer of risk provided by the insurance policy and the payment of the insurance
premium, which in turn depends on the expected loss. In this section, we set a framework
where we consider both the insurance premium and the effect of security investments for a
stand-alone firm, i.e., a company with a single site (no branches).

Let us consider first the case of a stand-alone firm. The quantities of interest are:

• the investment z in security;
• the vulnerability v, i.e., the probability of success of an attack when no investments

are made; and
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• the probability S that an attack is successful when the investment z is made.

We expect the investment to decrease the probability of an attack being successful,
i.e., S < v. Gordon and Loeb introduced two classes of security probability functions to
describe the relationship among S, v, and z Gordon and Loeb (2002):

S(z, v) =
v

(γz + 1)β

S(z, v) = vαz+1.
(1)

In our analysis, we use the latter class function in Equation (1), since the former is
linear in the vulnerability and does not capture very well the recognized property that the
cost of protecting highly vulnerable information sets (high v) is a fast-growing function
of v itself (see Gordon and Loeb (2002)). As to the coefficient α > 0, which describes
the effectiveness of investments (higher values of α correspond to greater effectiveness of
investments), three values of α are estimated in Young et al. (2016) for three firm’s sizes
(see Table 1): large, medium, and small.

Table 1. Investment effectiveness α for different firm sizes.

Firm Size α

Large 2.7× 10−5

Medium 9.8× 10−5

Small 34.6× 10−5

As hinted in the Introduction, the company may wish to purchase an insurance policy
as well, in addition to investing in security. In that case (see Section 5), the company incurs
two expenditure terms:

• the investment z; and
• the insurance premium P.

Since we describe the investment z and its impact on the firm’s security above, we
now describe the insurance premium, again for a stand-alone firm.

The insurance premium P typically depends on the policy liability. We identify by
λ the overall money loss in the case of an attack. We do not provide here guidelines for
the estimation of loss, but Eling and Wirfs (2019) reported recent advances. We expect
the premium to take into account that investing in security reduces the expected loss (by
reducing the probability of success of an attack) and in the end reduces the expected loss
for the insurance company. If we indicate by P0 the basic premium, i.e., that applying when
we have full vulnerability (v = 1), and no investments are made, the resulting premium
can be expressed as Young et al. (2016)

P = P0[1− r(1− S(z, v))], (2)

where r is the discount rate that translates the reduction of vulnerability into the premium.
Equation (2) follows the suggestions put forward in Gordon et al. (2003); Toregas and
Zahn (2014), where insurance policies are explicitly assumed to include such incentives.
According to Bryce (2001), several insurers offer discounts to customers using managed
security service providers or installing network security devices.

Thus far, we assume that the insured is held fully indemnified in the case of a loss.
This is what we call the full liability case. Variants may be introduced to this basic full
liability scheme, e.g., through limited liability and deductibles.

In fact, the insurer may set the maximum liability, i.e., set an upper bound T on the
actual amount of money it may be called to pay. In this case, the insurance policy does not
provide full coverage: any loss above the bound T falls on the insured. When the insurer’s
liability is so limited, we have two scenarios, depending on the actual value of λ. If we
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have λ ≤ T, the insured is completely indemnified against cyber-risk: it has to pay just
for the security investment plus the insurance premium. Instead, if λ > T, the insured
company will also be called to cover the excess loss λ− T.

In addition to the maximum liability, a limit on liability may be introduced from
below in the form of deductibles. The deductible is the amount paid out of pocket by
the insured before the insurer pays any expenses. If the deductibles are set to F, the
compensation actually paid by the insurer when the damage is λ will be λ − F. The
rationale for deductibles is that they are meant to deter the large number of claims that
could otherwise be submitted.

Summing up, we consider three liability schemes:

• full liability;
• limited liability (with upper limit); and
• limited liability with deductibles (both lower and upper limit).

4. Security Investments and Insurance: The Multi-Branch Firm

In Section 3, we describe the scenario with a single-site firm and its insurance liability
options. In this section, we move to a multi-branch firm, where the vulnerability of the
branches influences that of the headquarters. We modify the breach probability function
for the headquarters, considering a unilateral influence as in Khalili et al. (2017), from the
branches to the headquarters but not vice versa. We set the framework for the multi-branch
case, reporting the overall security expenses for the headquarters and the branches under
the three liability cases described in Section 3. We consider the scenario of Figure 1, where a
company has n branches, and the hacker may attack any subset of these sites’ information
systems. Each branch exhibits a (generally different) vulnerability level and decides its
own security investments, as does the headquarters. We use the symbol z for the security
investments of the headquarters, while zi represents the investments of the ith branch.
Similarly, we use v and vi for the no-investment vulnerability of the headquarters and the
ith branch, respectively, and P and Pi for the insurance premiums.

Figure 1. Cyber-security scheme for multi-branch firm.

The headquarters may be subject to two kind of attacks Xu et al. (2018)

1. direct breach, due to a direct attack on the headquarters; and
2. indirect breach, due to breaches taking place on branches.

For the ith branch, as for the headquarters, the security probability function follows
the Gordon–Loeb model:

Si(vi, zi) = vαizi+1
i , (3)

We can now determine the overall security expense for the generic ith branch by sum-
ming the investment and the insurance premium for the three liability cases, as described
in Section 3, i.e., full liability, limited liability, and deductibles.

For the case of full liability, the expense born by the ith branch is

Ei = zi + Pi (4)
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If the insurance policy includes an upper limit Ti to the liability of the ith branch, the
overall expense is instead

Ei =

{
zi + Pi if λ ≤ Ti

zi + Pi + vαizi+1
i ti(λi − Ti) if λi > Ti

(5)

where ti is the probability of an attack taking place on the ith branch.
If the insurance policy also includes a deductible Fi, the overall expected expense for

the ith branch is

Ei =


zi + Pi + vαizi+1

i tiλi if λi ≤ Fi

zi + Pi + vαizi+1
i tiFi if Fi < λi ≤ Ti

zi + Pi + vαizi+1
i ti(λi − Ti + Fi) if λi > Ti

(6)

We can now turn to the headquarters. As hinted before, the attacks on the branches
may further endanger the security of the headquarters, so that we must consider indirect
breaches as well. We define first the probability of a direct attack being successful, again
through the Gordon–Loeb model:

S(z, v) = vαz+1 (7)

As to the indirect attack, we model the impact of an attack taking place on the ith
branch through the probability ρ of an indirect attack propagation. If we assume that the
headquarters may suffer from either a direct attack or an indirect one through any of its
branches, and direct attacks and indirect attacks take place independently of one another,
the overall probability of the headquarters being breached is

SH(z, v) = 1− (1− tS(z, v))
n

∏
i=1

(
1− ρitiSi(zi, vi)

)
(8)

Similarly to what is done for the branches, we can finally compute the security expense
for the headquarters, again for the three coverage cases.

For the full liability case, we have

EH = z + P (9)

If the insurance policy includes a maximum liability equal to T, the overall security
expense becomes

EH =

{
z + P if λ ≤ T
z + P + SH(λ− T) if λ > T

(10)

If a deductible F is also factored in, we have

EH =


z + P + SHλ if λ ≤ F
z + P + SH F if F < λ ≤ T
z + P + SH(λ− T + F) if λ > T

. (11)

5. Optimal Investment for the Headquarters

After describing the overall expenses in the case of a multi-branch firm in Section 4,
we focus now on the headquarters and obtain the optimal investment in the headquarters’
security, considering a unilateral influence from the branches to the headquarters but not
vice versa, as in Khalili et al. (2017). We consider the three liability cases described in
Section 3.
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5.1. Full Liability

We consider first the branches and then the headquarters.
After recalling Equations (2) and (4), we obtain the overall expenses for the ith branch:

Ei = zi + Pi

= zi + P0i[1− ri(1− vαizi+1
i )]

(12)

To find the optimal investment ẑ(full)
i for the ith branch, we can exploit the result

reported in Mazzoccoli and Naldi (2019):

ẑ(full)
i = − 1

αi

[
ln(−P0iriαivi ln(vi))

ln(vi)

]
. (13)

We need to check whether this solution is a valid one, i.e., ẑ(full)
i > 0, which is

equivalent to the following condition:

vi ln vi < −
1

P0iriαi
. (14)

The function on the left hand side of this inequality is shown in Figure 2.

0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0 vi1 vi2

bi

vi

v i
ln
(v

i)

Figure 2. The vi ln vi function.

If we set the threshold
b = − 1

P0iriαi
, (15)

we see that the equation vi ln vi = b is solved for two values vi1 and vi2. The inequality is
satisfied if the vulnerability vi lies between those two values (vi1 < vi < vi2). We observe
then a region of intermediate vulnerability values for which the solution obtained from
Equation (13) is a valid (positive) investment. It pays to invest in security as long as the
intrinsic vulnerability (i.e., in the absence of investments) is neither too high (above vi2)
nor too low (below vi1), as shown by Mazzoccoli and Naldi (2019).

We can now turn to the headquarters. In Appendix A, we obtain the optimal invest-
ment for the headquarters

ẑ(full) = − 1
α

[
ln(−P0rαtv ln(v)∏n

i=1(1− ρitiv
αi ẑ

(full)
i +1

i ))

ln(v)

]
. (16)
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As we can see, the overall investment for the headquarters also depends on the
security characteristics of the branches, in particular through their intrinsic vulnerability
and the investments in security made by the branches themselves. We wish to highlight
that contribution by defining the coefficient of branch influence

φ(full) =
n

∏
i=1

(1− ρitiv
αi ẑ

(full)
i +1

i ) =
n

∏
i=1

(
1 +

ρiti
P0iriαi ln(vi)

)
. (17)

It can be noted that, if the headquarters were not dependent on the security of the
branches, we would have φ(full) = 1. Since that coefficient lies in the (0, 1] range and
decreases when the dependence coefficients ρi grow, values closer to 0 mark a larger
dependence on the security of the branches.

We can rewrite (A3) using (17), obtaining

ẑ(full) = − 1
α ln(v)

[
ln

(
−P0rαtv ln(v)φ(full)

)]
. (18)

We can now check whether the conditions for the validity of the investment apply:

1. ẑ(full) is positive.
2. ẑ(full) is a point of minimum for EH .

We report the detailed analysis in Appendix B. We see that the following conditions
may lead not to invest in security:

• Low insurance premium
• Low potential loss
• Low probability of attack
• Low discount rate offered on the premium
• Low effectiveness of security investments
• Too high or too low vulnerability of the branches

By investing the amount ẑ(full), the headquarters minimize their overall expenditure,
which is finally

EH = − 1
α ln(v)

[
ln

(
P0rαtv ln(v)

n

∏
i=1

(1− ρitiv
αi ẑ

(full)
i +1

i )

)]

+ P0

[
1− r

(
n

∏
i=1

(1− ρitiv
αi ẑ

(full)
i +1

i ) +
1

P0rα ln(v)

)]

= − 1
α ln(v)

[
ln

(
P0rαtv ln(v)

n

∏
i=1

(
1 +

ρiti
P0iriαi ln(vi)

))]

+ P0

[
1− r

(
n

∏
i=1

(
1 +

ρiti
P0iriαi ln(vi)

)
+

1
P0rαt ln(v)

)]
(19)

For the purpose of assessing the behavior of this expense, we adopt hereafter the
parameters listed in Tables 2 and 3 for the headquarters and the branches, respectively. The
values in these tables are taken from Young et al. (2016) and Mazzoccoli and Naldi (2019).
For the sake of simplicity, we consider all the branches to be equal. We see now how the
investments made by the branches and their intrinsic vulnerability impact on the optimal
investment the headquarters are called to make.
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Since we wish to investigate the influence of branches on the headquarters, we start
by seeing how the vulnerability of the branches influences the headquarters’ expense.
We see in Figure 3 that the vulnerability of the branches impacts negatively, since the
headquarters’ overall expense increases when the branches get more vulnerable. However,
there is a counter-intuitive behavior of the other component of security expense, i.e., the
investment: we see in Figure 4 that the headquarters are called to invest less as the branches
get more vulnerable.

Table 2. Parameters adopted for the headquarters.

Headquarters Parameters

Parameter Value

Expected loss λ 107

Attack probability t 0.9
Investment effectiveness α 2.7× 10−5

Discount rate r 0.5
Premium rate coefficient k 5%
Limit coverage T 8× 106

Deductibles F 105

Table 3. Parameters adopted for the generic ith branch.

Branch Parameters

Parameter Value

Expected loss λi 106

Attack probability ti 0.9
Investment effectiveness αi 34.6× 10−5

Discount rate r 0.5
Premium rate coefficient k 5%
Vulnerability vi 0.65
Limit coverage Ti 8× 105

Deductibles Fi 104

Dependence coefficient ρi 0.25
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Figure 3. Overall security expense of the headquarters for the full liability case.
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Figure 4. Optimal investment for the headquarters in the full liability case.

Hence, although the overall effect is negative, the impact of the branches behavior on
the two components of security expense is different. In particular, the premium represents
by far (roughly by a factor of ten) the major component, and its trend is reflected in the
overall expense (see Figure 5).

0.2 0.3 0.4 0.5 0.6 0.7 0.8
3.1

3.2

3.3

3.4

3.5

3.6
×105

Branches’ vulnerability

Pr
em

iu
m

No. of branches
1
2
3

Figure 5. Premium paid by the headquarters in the full liability case.

We can now investigate the impact of the intrinsic vulnerability v of the headquarters.
To provide concrete figures, we assume that the basic premium is set as a fraction of the
expected loss, i.e., P0 = kλt. This premium setting mechanism follows the well known
expected value principle, as described by Goovaerts et al. (2001), in Section 5.3. It is also
known as flat-rate pricing, which is reported to be used by 50% of insurance companies in
a recent survey by Romanosky et al. (2017). As expected, the insurance premium grows
non-linearly with the vulnerability (see Figure 6).
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Figure 6. Impact of the intrinsic vulnerability on the premium in the full liability case.

Instead, the other component of the overall security expenses, i.e., the investment,
is not a monotone function of the vulnerability. In Figure 7, we can observe that the
optimal investment in security grows up till the vulnerability reaches the value v̂ and then
decreases. When the vulnerability is either low or high, it is probably not worth investing
in security, but instead relying on the total protection afforded by an insurance policy.
Investing is instead heavily required when the vulnerability lies in the intermediate range.
The vulnerability value marking the center of that intermediate region can be identified by
looking for the maximum investment condition:

∂ẑ(full)

∂v
= − ln(v) + 1− ln(−P0rαtv ln(v)φ(full))

αv ln2(v)

∂ẑ(full)

∂v
= 0⇐⇒ v = e

− e
P0rαtφ(full)

It is also noted that, from the comparison of the value ranges of the two components
of security expenses in Figures 6 and 7, insurance represents the dominant component.

0.2 0.4 0.6 0.8

0

2

4

6

×104

v̂v̂v̂

Headquarters’ vulnerability

H
ea

dq
ua

rt
er

s’
op

ti
m

al
in

ve
st

m
en

t

No. of branches
1
2
3

Figure 7. Impact of the intrinsic vulnerability on the optimal investment in security in the full
liability case.
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5.2. Limited Liability

We consider the case where the insurance company does not cover all the losses. The
limit coverages for the headquarters and the ith branch are, respectively, T and Ti.

In this case, after recalling Equations (2) and (5), the overall expense for the ith branch
is the following:

Ei = zi + Pi + vαizi+1ti(λi − Ti)

= zi + P0i(1− ri) + vαizi+1

× [P0iri + ti(λi − Ti)]

(20)

According to Mazzoccoli and Naldi (2019), we obtain the optimal investment ẑ(lim)
i

for the ith branch:

ẑ(lim)
i = − 1

αi

[
ln(−αi[P0iri + ti(λi − Ti)]vi ln(vi))

ln(vi)

]
. (21)

Using similar arguments as in the previous subsection, we need to check whether the
optimal investment is valid, i.e., ẑ(lim)

i > 0. Thus, we find that this condition is satisfied if

vi ln vi < −
1

[P0ir + λi − Ti]tiαi
. (22)

Introducing the threshold

a(lim)
i = − 1

[P0iri + ti(λi − Ti)]αi
, (23)

we see that equation vi ln vi = a(lim)
i identifies two values vi1 and vi2, delimiting a region

of intermediate vulnerability values, vi1 < vi < vi2, for which the investment defined by
Equation (21) is a valid one.

Now, we turn to the headquarters. In Appendix C, we derive the optimal investment
for the headquarters

ẑ(lim) = − 1
α

[
ln(−αt[P0r + λ− T]v ln(v)φ(lim))

ln(v)

]
. (24)

where we introduce the coefficient of branch influence in limited liability regime

φ(lim) =
n

∏
i=1

(
1 +

ρiti
[P0iri + ti(λi − Ti)]αi ln(vi)

)
. (25)

Now, we check Conditions (a) and (b) as in Section 5.1 for the validity of the optimal
investment. We report the detailed analysis in Appendix D. We prove that the optimal
investment actually leads to minimizing the overall security expenses and that it pays to
invest when the vulnerability lies in an intermediate region.

Comparing the conditions for investing represented by Equations (A6) and (A14),
we can observe that the range of vulnerability values for which the headquarters find it
convenient to invest in security increases when we have limited liability.

If the combination of P0, λ, T, t, r, and α is such that − 1
[P0r+λ−T]tαφ(lim) < min(v ln(v)),

there is no vulnerability value that allows obtaining a convenient investment. The no-
investment condition takes place when

a(lim) < −1
e
→ [P0r + λ− T]tαφ(lim) < e. (26)
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Thus, it does not pay to invest in security when the premium rate lies below the
threshold P0 = 1

r

[
e

αtφ(lim) − λ− T
]
.

By investing the amount ẑ(lim), the headquarters minimize their overall expenditure,
which is finally

EH = − 1
α ln(v)

[
ln

(
(P0r + λ− T)αtv ln(v)

×
n

∏
i=1

(
1 +

ρiti
P0iriαi ln(vi)

))]

+ P0

[
1− r

(
n

∏
i=1

(
1 +

ρiti
[P0iri + ti(λi − Ti)]αi ln(vi)

)

+
1

[P0r + λ− T]αt ln(v)

)]
(27)

In addition, in this case, we see in Figure 8 that more vulnerable branches compel the
headquarters to spend a bit more in security. However, the investment in security and the
insurance premium exhibit now the same order of magnitude, as can be seen in Figures 9
and 10. When the vulnerability of the branches grows, security investments become the
smaller portion of the overall expense since insurance becomes the preferred means of
achieving protection.
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Figure 8. Overall security expense of the headquarters for the limited liability case.
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Figure 9. Premium paid by the headquarters in the limited liability case.
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Figure 10. Optimal investment for the headquarters in the limited liability case.

Finally, contrary to what happens in the full liability case, both components of secu-
rity expense for the headquarters grow with its intrinsic vulnerability, as can be seen in
Figures 11 and 12. In Figure 11, it can be seen that the number of branches has practically
no impact on the optimal investment: the effect was magnified in plotting Figure 10 but
is actually very limited. Instead, the impact of the number of branches on the insurance
premium is significant.
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Figure 11. Impact of the intrinsic vulnerability on the optimal investment in the limited liability case.
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Figure 12. Impact of the intrinsic vulnerability on the premium in the limited liability case.
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5.3. Limited Liability with Deductibles

Now, we consider the case where insurance companies provide limited coverage (with
limit coverage, respectively, Ti for the ith branch and T for the headquarters) but impose
deductibles as well, described by Fi and F for the ith branch and the headquarters, respectively.

For simplicity of notation, we define by δi and δ the following quantities for the ith
branch and the headquarters, respectively,

δi =


λi if λi ≤ Fi

Fi if Fi < λi ≤ Ti

λi − Ti + Fi if λi > Ti

(28)

δ =


λ if λ ≤ F
F if F < λ ≤ T
λ− T + F if λ > T

. (29)

The expenses for the ith branch and the headquarters are, respectively,

Ei = zi + Pi + vαizi+1tiδi

= zi + P0i(1− ri) + vαizi+1

× [P0iri + tiδi]

(30)

EH = z + P = z + P0(1− r)

+

[
1− (1− tvαz+1)

n

∏
i=1

(1− ρitiv
αi ẑ

(ded)
i +1

i )

]
[P0r + tδ]

(31)

The optimal investment for the ith branch is then

ẑ(ded)
i = − 1

αi

[
ln(−αi[P0iri + tiδi]vi ln(vi))

ln(vi)

]
. (32)

Similarly to what we is done for the alternative liability cases, we wish to see when it
pays to invest in security, i.e., ẑ(ded)

i > 0, which is tantamount to the following condition:

vi ln vi < −
1

[P0iri + tiδi]αi
. (33)

Again, we define the threshold

b = − 1
[P0iri + tiδi]αi

, (34)

so that, again, we find two values vi1 and vi2 through solving the equation vi ln vi = b.
Again, the inequality is satisfied if the vi1 < vi < vi2. We have therefore a region of
vulnerability values that makes the solution obtained from Equation (32) a valid investment.

In Appendix E, we find the optimal investment to be

ẑ(ded) = − 1
α

[
ln(−αt[P0r + δ]v ln(v)φ(ded))

ln(v)

]
. (35)

where

φ(ded) =
n

∏
i=1

(
1 +

ρiti
[P0iri + tiδi]αi ln(vi)

)
(36)
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Since the second-order derivative is positive, we can be sure that the expense is at
its minimum:

∂2EH

∂z2

∣∣∣∣
ẑ(ded)

= α2[P0r + δ] ln2(v)tvαẑ(ded)+1φ(ded) > 0. (37)

We see in Appendix F that it does not pay to invest in security if the basic premium is

P0 <
1
r

[
e

αtφ(ded)
− tδ

]
. (38)

By investing the amount ẑ(ded), the headquarters minimize their overall expenditure,
which is finally

EH = − 1
α ln(v)

[
ln

(
(P0r + λ− T + F)αtv ln(v)

×
n

∏
i=1

(
1 +

ρiti
P0iriαi ln(vi)

))]

+ P0

[
1− r

(
n

∏
i=1

(
1 +

ρiti
[P0iri + ti(λi − Ti + Fi)]αi ln(vi)

)

+
1

[P0r + λ− T + F]αt ln(v)

)]
(39)

As we can see in Figures 13–18, we find similar results as in the limited liability case.
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Figure 13. Overall security expense of the headquarters for the limited liability with deductibles case.
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Figure 14. Premium paid by the headquarters in the limited liability with deductibles case.
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Figure 15. Optimal investment for the headquarters in the limited liability with deductibles case.
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Figure 16. Impact of the intrinsic vulnerability on the optimal investment in the limited liability with
deductibles case.
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Figure 17. Impact of the intrinsic vulnerability on the premium in the limited liability with de-
ductibles case.
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Figure 18. Impact of the intrinsic vulnerability on the residual loss in the limited liability with
deductibles case.

6. Robustness of Security Investment Decisions

As derived in Section 5, the optimal investment depends on several variables. We
know some of them exactly: we know the premium P0, the maximum liability T, and
the deductibles F. However, some other variables influencing the optimal investment
in security ẑ are the result of estimates: we must estimate the potential damage λ, the
probability of attack t, the vulnerability v, and the investment effectiveness coefficient
α. This applies not just to the headquarters but to all branches as well. In Mazzoccoli
and Naldi (2019), the authors paid attention to the vulnerability v and the investment
effectiveness α as potential sources on uncertainty in the estimates. Here, we focus instead
on the coefficient of branch dependence ρi and branch vulnerability vi. In this section, we
assess that impact by determining how sensitive the optimal investment is to inaccuracies
in ρi and vi. For that purpose, we employ the quasi-elasticity function. We recall that the
general concept of elasticity provides a means for estimating the response of one variable
to changes in some other variable (e.g., the price elasticity of demand tells us how the
demand varies when the price changes), as defined, e.g., in Chapter 17 of Arnold (2008)
and Chapter 6 of Krugman and Wells (2009). A review of its application in economics is
reported in Nievergelt (1983). Examples of its application outside economics are shown
in Guijarro et al. (2019); Naldi et al. (2019). Quasi-elasticity has to be used in the place of
elasticity when the independent variable lies naturally within the [0, 1] range, so that its
absolute value can also be expressed as a percentage. Quasi-elasticity is defined as the
ratio of the relative variations of the response variable to the variations of the independent
variable. The quasi-elasticity function measures therefore the percentage change in the
response variable when the independent variable changes by 0.01. In our case, we consider
first the optimal investment ẑ (for the time being, we do not specify whether it is ẑ(full),
ẑ(lim) or ẑ(ded)) as the response variable and the coefficient of branch dependence ρi and
then the branch vulnerability vi as the independent variable. In particular, we define the
quasi-elasticity of the optimal investment with respect to the coefficient x ∈ [0, 1] (x = ρi or
x = vi) as follows

εx =
1
ẑ

∂ẑ
∂x

. (40)

In the hereafter reported examples, we adopt the parameters reported in Tables 2 and 3,
excluding the parameter under consideration (ρi or vi, respectively).
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6.1. Quasi-Elasticity under Full Liability

For the full liability case, the quasi-elasticity with respect to ρi is

ερi =
ti

ln
(
−P0rαtv ln(v)∏n

i=1

(
1 + ρiti

P0iriαi ln(vi)

))
× 1

P0iriαi ln(vi) + ρiti

(41)

and that with respect to vi is

εvi = −
ρiti

ln
(
−P0rαtv ln(v)∏n

i=1

(
1 + ρiti

P0iriαi ln(vi)

))
× 1

vi ln(vi)(P0iriαi ln(vi) + ρiti)

(42)

The quasi-elasticity is always negative for both cases, which is somewhat counter-
intuitive: if the influence of branches or their vulnerability increase, the headquarters are
led to invest less in security. When we come to the extent of the impact (i.e., the value of
the quasi-elasticity rather than just its sign), in the case of the dependence from branches
ρi, we can note two regions in Figure 19. The behavior is first inelastic (|ερi | < 1), when the
dependence is low (roughly ρi < 0.43). When the security of the headquarters is strongly
influenced by that of the branches, the quasi-elasticity turns heavily negative, with the
investment in security reducing even by 3% when the branch dependence changes, e.g.,
from 0.9 to 0.91. Misestimating the dependence coefficient from branches may then become
dangerous when the dependence is high: overestimating it would lead to reducing the
investment (hence, suffering heavier losses).
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Figure 19. Sensitivity to branch dependence under full liability.

We observe a similar behavior for the quasi-elasticity with respect the vulnerability
of branches in Figure 20. The vulnerability value marking the passage from the inelastic
region to the elastic one is vi = 0.7.
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Figure 20. Sensitivity to branches’ vulnerability under full liability.

6.2. Quasi-Elasticity under Limited Liability

In the case of limited liability, we find similarly the quasi-elasticity expressions re-
ported hereafter:

ερi =
ti

ln
(
−αt[P0 + λ− T]v ln(v)φ(lim)

)
× 1

[P0iri + ti(λi − Ti)]αi ln(vi) + ρiti

(43)

εvi = −
ρiti

ln
(
−αt[P0r + λ− T]v ln(v)φ(lim)

)
× 1

vi ln(vi)([P0iri + ti(λi − Ti)]αi ln(vi) + ρiti)

(44)

In Figures 21 and 22, we observe much lower values than what we saw for the full
liability case. In particular, the behavior is inelastic over the full range of values of both ρi
and vi: the optimal investment is quite insensitive to estimation errors in either quantity.
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Figure 21. Sensitivity to branch dependence under limited liability.
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Figure 22. Sensitivity to branches’ vulnerability under limited liability.

6.3. Quasi-Elasticity under Limited Liability with Deductibles

Finally, we derive the quasi-elasticity when we also introduce deductibles:

ερi =
ti

ln
(
−αt[P0 + λ− T + F]v ln(v)φ(ded)

)
× 1

[P0iri + ti(λi − Ti + Fi)]αi ln(vi) + ρiti

(45)

εvi = −
ρiti

ln
(
−αt[P0r + λ− T + F]v ln(v)φ(ded)

)
× 1

vi ln(vi)([P0iri + ti(λi − Ti + Fi)]αi ln(vi) + ρiti)

(46)

Now, we see in Figures 23 and 24 a very similar behavior to that observed for limited
liability: the optimal investment does not change significantly even if we suffer from
misestimation errors in either ρi or vi.
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Figure 23. Sensitivity to branch dependence under limited liability with deductibles.
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Figure 24. Sensitivity to branches’ vulnerability under limited liability with deductibles.

7. Conclusions

The investigation into the optimal strategies when both insurance and security invest-
ments are used to reduce the security-related losses in a multi-branch company allows
us to understand the actual impact of vulnerabilities in the branches on the headquarters’
behavior. The vulnerability of branches may bear a significant influence on the overall
expenses in security for the headquarters. As the vulnerability of the branches increases,
the headquarters are led to invest less in security (which may appear somewhat counter-
intuitive) but to rely more on insurance. In particular, if the vulnerability is very low or
gets very high, it does not pay to invest in security. However, the relative size of effects
is quite different: the impact of branches’ vulnerability is much higher on the insurance
premium than on investments.

In addition, the mix of security countermeasures suggested by the analysis is quite
imbalanced, with insurance being by far the largest component in the overall expense.

However, we must consider that the actual amount of expenses suggested by the
strategies relies on the accuracy of the input variables to be estimated, in particular the
vulnerability of the branches themselves and the correlation between breaches taking place
on the branches and security incidents in the headquarters. Actually, we can conclude that
the impact of uncertainty in the assessment of the degree of influence that branches have
on headquarters is not to be overemphasized, since an amplification effect is present just
for the smaller values of vulnerability (i.e., when the investment is relatively small). In
addition, the amount of investment is quite insensitive to the precise assessment of the
branches’ vulnerability for a large range of values, unless when the vulnerability gets very
high, in which case a sudden amplification of the impact takes place. Since no investment
is recommended in the regions of very low and very high vulnerability, we can conclude
that the impact of the uncertainty on correlation and vulnerability is not significant in
most cases.

We add some final notes as possible hints for future work.
Our study was conducted under the hypothesis that investment decisions follow

a decentralized approach, where the branches decide for themselves. This is a sensible
approach, since the branches may know better their actual security status than what the
headquarters could, but it may not be the optimal choice. A comparison with a centralized
approach, where the headquarters set the optimal level of investments for all the branches
as well, with the aim of optimizing the overall expenses, should be investigated. In addition,
we considered one of the Gordon–Loeb breach probability functions. Although this is an
established choice, well rooted in the literature, different functions could be explored to
reflect the changing impact of security investments on the actual security level. Finally,
different interdependence models could be considered, e.g., by removing the unilateral
effect (from the branches to the headquarters, but not vice versa) considered in this paper.
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Appendix A. Optimal Investment of Headquarters under Full Liability

After recalling Equations (8) and (9), and plugging in the optimal investment for the
branches of Equation (13), the overall expense for the headquarters is

EH = z + P = z + P0[1− r(1− SH)]

= z + P0

[
1− r(1− tvαz+1)

n

∏
i=1

(
1− ρitiv

αi ẑ
(full)
i +1

i

)]
(A1)

By zeroing the derivative of the expense EH with respect to the investment z

∂EH
∂z

= 1 + P0rαtvαz+1 ln(v)
n

∏
i=1

(1− ρitiv
αi ẑ

(full)
i +1

i ), (A2)

we obtain the optimal investment for the headquarters

P0rαtvαz+1 ln(v)
n

∏
i=1

(1− ρitiv
αi ẑ

(full)
i +1

i ) = −1 =⇒

vαz+1 = − 1

P0rαt ln(v)∏n
i=1(1− ρitiv

αi ẑ
(full)
i +1

i )

=⇒

ẑ(full) = − 1
α

[
ln(−P0rαtv ln(v)∏n

i=1(1− ρitiv
αi ẑ

(full)
i +1

i ))

ln(v)

]
.

(A3)

Appendix B. Validity Conditions for the Investments of the Headquarters under
Full Liability

As stated in the main body of the paper, we have to check the following two conditions,
which guarantee that the decision to invest in security is correct:

(a) ẑ(full) is positive.
(b) ẑ(full) is a point of minimum for EH .

We first check the conditions for the minimization of security expenses. Since the
second-order derivative is

∂2EH

∂z2

∣∣∣∣
ẑ(full)

= P0rα2(ln v)2tvαẑ(full)+1φ(full), (A4)

and a product of positive quantities, it is positive: ẑ(full) is then a point of minimum
(satisfying Condition (b)).

Now we have to check Condition (a) and see when the optimum investment ẑ(full) is
positive (which is equivalent to say that it pays to invest in security).

From Equation (18), recalling that ln(v) < 0, the investment ẑ(full) is positive if

ln(−P0rαtv ln(v)φ(full)) > 0

v ln(v) < − 1
P0rαtφ(full)

.
(A5)
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As can be seen in Figure 2 (by using v in the place of vi), after re-defining the threshold

b = − 1
P0rαtφ(full)

, (A6)

the equation v ln(v) = b, identifies two values v1 and v2, so that the inequality is satisfied
if v1 < v < v2. The solution obtained from Equation (18) is a valid (positive) investment if
the vulnerability lies in that region. If we set the reference value b0 = − 1

P0rαt , i.e., equal to b

in the special case when there is no dependence on the branches’ security (i.e., φ(full) = 1),
we see that b ≥ b0, so that the range of vulnerability values for which it pays to invest in
security shrinks when the security of the branches impacts on that of the headquarters (see
Figure 2).

If the combination of values P0, λ, t, r, and α is such that b < min(v ln(v)), there is
no vulnerability value that allows to obtain an optimal investment: the no-investment
condition takes place when the basic premium is such that

b < −1
e
→ P0 <

e
rαtφ(full)

. (A7)

According to the definition of the threshold b in Equation (A6), one or more of the
following conditions could have the company decide not to invest in security:

• Low insurance premium
• Low potential loss
• Low probability of attack
• Low discount rate offered on the premium
• Low effectiveness of security investments
• Too high or too low vulnerability of the branches

The result obtained in Equation (A7) confirms what was found by Gordon and Loeb (2002)
for the case of security investment only (and for a single firm). In this new context as well, where
an insurance premium is paid and the headquarters security depends on the branches, it may not
pay to invest in security.

Appendix C. Optimal Investment of Headquarters under Limited Liability

Recalling Equations (8) and (11), and plugging in the optimal investment for branches
computed in Equation (21), the overall security expense for headquarters is

EH = z + P = z + P0(1− r)

+

[
1− (1− tvαz+1)

n

∏
i=1

(1− ρitiv
αi ẑ

(lim)
i +1

i )

]
[P0r + λ− T].

(A8)

Thus, zeroing the derivative of the expense EH in Equation (A8) with respect to the
investment z

∂EH
∂z

= 1 + α[P0r + λ− T]

× tvαz+1 ln(v)
n

∏
i=1

(1− ρitiv
αi ẑ

(lim)
i +1

i ),
(A9)
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we obtain the optimal investment for the headquarters

α[P0r + λ− T]tvαz+1 ln(v)φ(lim) = −1⇐⇒

vαz+1 = − 1
αt[P0r + λ− T] ln(v)φ(lim)

⇐⇒

ẑ(lim) = − 1
α

[
ln(−αt[P0r + λ− T]v ln(v)φ(lim))

ln(v)

]
.

(A10)

where φ(lim) is the coefficient of branch influence in limited liability regime, defined as follows

φ(lim) =
n

∏
i=1

(1− ρitiv
αi ẑ

(lim)
i +1

i )

=
n

∏
i=1

(
1 +

ρiti
[P0iri + ti(λi − Ti)]αi ln(vi)

)
.

(A11)

It can be observed that φ(lim) has properties similar to φ(full), described in Equation (17).

Appendix D. Validity Conditions for the Investments of the Headquarters under
Limited Liability

Now, we check Conditions (a) and (b) as in Section 5.1 for the validity of the optimal
investment. In addition, in this case, we start by checking the condition for the minimization
of the security expenses. We can state that Condition (b) is satisfied since the second-
order derivative

∂2EH

∂z2

∣∣∣∣
ẑ(lim)

= α2[P0r + λ− T]

× ln2(v)tvαẑ(lim)+1φ(lim)

(A12)

is positive, as it is a product of positive quantities.
Now, we have to check Condition (a), i.e., we want to analyze when the optimum

investment ẑ(lim) is positive.
Recalling Equation (A10), we have ẑ(lim) > 0 if

ln(−αt[P0r + λ− T]v ln(v)φ(lim)) > 0

⇐⇒ v ln(v) < − 1
[P0r + λ− T]tαφ(lim)

.
(A13)

As in the full liability case (see Figure 2), we can define the threshold

b = − 1
[P0r + λ− T]tαφ(lim)

. (A14)

We see that the equation v ln(v) = b is solved by two values v1 and v2 so that the
inequality of Condition (a) is satisfied if v1 < v < v2.

Appendix E. Optimal Investment of Headquarters under Deductibles

Since the expense EH for the headquarters is

∂EH
∂z

= 1 + α[P0r + δ]tvαz+1 ln(v)
n

∏
i=1

(1− ρitivαi ẑ
(ded)
i +1). (A15)
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we can define the following quantity

φ(ded) =
n

∏
i=1

(1− ρitiv
αi ẑ

(ded)
i +1

i )

=
n

∏
i=1

(
1 +

ρiti
[P0iri + tiδi]αi ln(vi)

) (A16)

which represents how much the headquarters are influenced by their branches.
We can obtain the optimal investment by zeroing the derivative of Equation (A15),

whose solution is

αt[P0r + δ]vαz+1 ln(v)φ(ded) = −1⇐⇒

vαz+1 = − 1
αt[P0r + δ] ln(v)φ(ded)

⇐⇒

ẑ(ded) = − 1
α

[
ln(−αt[P0r + δ]v ln(v)φ(ded))

ln(v)

]
.

(A17)

Appendix F. Validity Conditions for the Investments of the Headquarters
under Deductibles

Since the second-order derivative is positive, we can be sure that the expense is at
its minimum:

∂2EH

∂z2

∣∣∣∣
ẑ(ded)

= α2[P0r + δ] ln2(v)tvαẑ(ded)+1φ(ded) > 0. (A18)

Finally, we see when the optimum investment ẑ(ded) is indeed positive:

ln(−αt[P0r + δ]v ln(v)φ(ded))

ln(v)
< 0

⇐⇒ v ln(v) < − 1
[P0r + δ]αtφ(ded)

.
(A19)

After redefining the threshold

b = − 1
[P0r + δ]αtφ(ded)

, (A20)

we can see that the equation v ln(v) = b is solved by two values v1 and v2 so that the
inequality is satisfied if v1 < v < v2. The no-investment condition takes place when

[P0r + δ]αtφ(ded) < e, (A21)

i.e., if the basic premium is

P0 <
1
r

[
e

αtφ(ded)
− tδ

]
. (A22)
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