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Abstract: Forecasting survival probabilities and life expectancies is an important exercise for actuaries,
demographers, and social planners. In this paper, we examine extensively a number of link functions
on survival probabilities and model the evolution of period survival curves of lives aged 60 over
time for the elderly populations in Australasia. The link functions under examination include the
newly proposed gevit and gevmin, which are compared against the traditional ones like probit,
complementary log-log, and logit. We project the model parameters and so the survival probabilities
into the future, from which life expectancies at old ages can be forecasted. We find that some of these
models on survival probabilities, particularly those based on the new links, can provide superior
fitting results and forecasting performances when compared to the more conventional approach of
modelling mortality rates. Furthermore, we demonstrate how these survival probability models can
be extended to incorporate extra explanatory variables such as macroeconomic factors in order to
further improve the forecasting performance.

Keywords: projection model; survival probability; life expectancy

1. Introduction

The average human lifespan has been increasing consistently throughout the devel-
oped nations in the last hundred years or so. Oeppen and Vaupel (2002) reported that the
highest female period life expectancy at birth around the world each year has been growing
by about 0.24 years annually for more than a century. In Australia, period life expectancy
at age 60 has grown from 16.5 years in 1950 to 25.0 years in 2017; in New Zealand, it
has increased from 16.9 years in 1950 to 24.0 years in 2013. Life expectancy is one of the
major indicators of a country’s wellbeing. Forecasting life expectancies accurately is of
critical importance for government social planners as well as demographic researchers and
industry practitioners (e.g., Lee et al. 1995; Nikolaevich 2019).

The continuous mortality decline, together with the lack of clear improvement in the
maximum lifespan, has caused the common phenomenon of a “rectangularisation” of the
survival curve. This kind of observations has been well documented in earlier studies (e.g.,
Fries 1980; Cheung et al. 2005). As shown in Figure 1, it can be characterised by an upward
and rightward shift of the period survival curve across successive time periods. The
increasing area under the survival curve over time refers to the extent of rectangularisation.
This concept is one of the major analytical frameworks in demographic research and can
actually be further adapted to describe past changes in survival levels and predict future
survival rates. The recent developments in mortality projection methods can provide a
useful reference for this direction of exploiting the trends in survival probabilities.

While there is a vast literature on modelling and projecting mortality rates (e.g.,
Lee and Carter 1992; Booth and Tickle 2008), relatively less attention has been paid on
forecasting survival probabilities directly. Amongst the few previous works, De Jong and
Marshall (2007) applied the probit link function to the survival probabilities of Australian
females and assumed that it is driven by a single time trend. Hatzopoulos and Haberman
(2015) used the complementary log-log link function and age-cohort effects within the
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GLM (generalised linear model) framework for the cohort survival probabilities of a few
European countries. Wong and Tsui (2015) proposed a new survival function for US women
and men and modelled the changes of its parameters over time by autoregressive processes.
Tan et al. (2016) constructed a hybrid survival curve and applied the logit link function
to the annualised survival probabilities with two or three sets of time-varying parameters
using Swedish and Bulgarian data.
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Figure 1. Survival curves of New Zealanders aged 60 in 1970, 1980, 1990, 2000, and 2013.

There are potential advantages of modelling and projecting the survival probabilities
rather than the mortality rates. First, when producing life expectancy forecasts, it would
be more convenient to work with the survival probabilities directly without having to
compound the mortality rates to form the survival rates. In a similar vein, when pricing
pensions or annuities, the future probabilities of survival are a major input for the calcu-
lation process, and so it would be more natural to build a projection model that focuses
on the survival probabilities. Moreover, as shown in the following sections, the survival
probability patterns and trends are generally quite stable, which make their forecasting
more straightforward than otherwise. We will show in our empirical analysis that some
of these survival rate projection models can actually outperform the more conventional
approach of a mortality rate projection model.

As mentioned above, forecasting survival probabilities are much less explored in
the literature when compared to forecasting mortality rates. In this paper, we attempt
to reduce this knowledge gap by examining extensively a number of link functions on
survival probabilities and modelling the evolution of the parameters and so the survival
rates over time. The link functions considered include the probit, complementary log-log,
logit, gevit functions, and a new link function based on the theory of minima, and both
the age and period effects are incorporated. Furthermore, we illustrate how the survival
rate projection models can be extended to include additional explanatory variables such as
the GDP (gross domestic product) per capita. Some previous examples of incorporating
macroeconomic factors into mortality rate projection models are Hanewald (2011); Niu and
Melenberg (2014); French and O’Hare (2014); and Seklecka et al. (2019). To the best of our
knowledge, our paper provides the first attempt to incorporate macroeconomic factors into
the survival rate projection models.

The remainder of the papers is as follows. Section 2 gives an introduction of the
various survival rate projection models being considered. Section 3 compares the fitting
performances of the models for Australian and New Zealand data. Section 4 sets forth an
out-of-sample analysis for measuring the forecasting performances of the models. Section 5
studies the potential link between the survival probabilities and the economic growth.
Section 6 concludes.

2. Survival Rate Projection Models

Suppose qx,t is the mortality rate at age x in year t, and n px,t = ∏n
i=1 (1− qx+i−1,t) is

the corresponding period survival probability in year t for a surviving period of at least



Risks 2021, 9, 11 3 of 18

n years. The first link function we consider is the probit function used by De Jong and
Marshall (2007). We set the model structure as Φ−1(n px0,t) = h(x, t), in which Φ−1 is the
inverse standard normal cdf (cumulative distribution function) and h(x, t) is a regression
structure allowing for the age and period effects with x = x0 + n. If one treats 1− n px0,t
as the cdf of the future lifetime (within n years) of a life aged x0 in year t, n px0,t as the
survival function of that future lifetime, and h(x, t2)− h(x, t1) = λ as a certain constant for
t2 > t1, it can be deduced that n px0,t2 = Φ(Φ−1(n px0,t2))= Φ(h(x, t2)) = Φ(h(x, t1) + λ)=
Φ(Φ−1(n px0,t1) + λ) and so 1 − n px0,t2= Φ(Φ−1(1 − n px0,t1) − λ). It then means that
under this probit model structure, the future death rates can be seen as a Wang transform
(Wang 2000) of the past death rates, with the parameter λ capturing the mortality decline.
Note that the probit link function ensures that the survival rates are between 0 and 1,
regardless of the values of h(x, t), and that it is a symmetric link as Φ(z) approaches 0 and
1 at the same pace.

The next one is the complementary log-log link function used by Hatzopoulos and
Haberman (2015). We follow their model structure as ln(− ln(1 − (1 − n px0,t))) =
ln(− ln(n px0,t)) = h(x, t), that is, the link function is being applied on 1 − n px0,t, but
not n px0,t. Unlike the probit function, the complementary log-log function is an asymmet-
ric link, which would be useful for the rectangularisation patterns as in Figure 1. This
asymmetry may suit survival modelling better when compared to a symmetric one. The
survival rates under this link function are between 0 and 1.

We apply the logit link function from Tan et al. (2016) as ln(n px0,t/(1− n px0,t)) =
h(x, t). It is a symmetric link like the probit function, and it constrains the survival rates
between 0 and 1. Its inverse function exp(z)/(1 + exp(z)) is actually the cdf of the logistic
distribution with the location parameter equal to 0 and the scale parameter equal to 1. Both
the probit and logit functions are used extensively in binary response models.

Recently, Medford and Vaupel (2019) proposed the so-called gevit link function for
modelling mortality rates. We apply this link function differently here as [(− ln(n px0,t))

−ξ −
1]/ξ = h(x, t); that is, it is being applied on the survival probability but not on the death
rate. This link is asymmetric and it constrains the survival rates like those above. Its inverse
function exp(−(1 + ξz)−1/ξ) is indeed the cdf of the GEV (generalised extreme value)
distribution for maxima with the location parameter equal to 0 and the scale parameter
equal to 1. The extra shape parameter ξ provides more flexibility to manage the extent of
asymmetry.

Inspired by the gevit link function, which is based on maxima, we exploit the GEV
distribution for “minima” instead (e.g., Liu and Li 2019) as an alternative. The cdf of
the minima GEV distribution is specified as 1− exp(−(1− ξz)−1/ξ). Accordingly, we
consider a new model structure [1− (− ln(1− n px0,t))

−ξ ]/ξ = h(x, t). It is straightforward
to deduce that this new link is also asymmetric and the resulting survival rates are within
the valid range. We refer to it as the “gevmin” model structure in the following analysis.

If this new link is applied on 1− n px0,t instead of n px0,t, the model structure becomes
[1− (− ln(1− (1− n px,t)))

−ξ ]/ξ= [1− (− ln(n px0,t))
−ξ ]/ξ = h(x, t). Then if ξ = 0, it

reduces to ln(− ln(n px,t)) = h(x, t), which means that the complementary log-log model
structure above can effectively be seen as a specific example of this alternative model
structure from minima.

Figure 2 compares the symmetry of the probit and logit functions with the asymmetry
of the complementary log-log, gevit, and gevmin functions as described above. For the
symmetric ones, the response approaches 0 and 1 at the same pace. For the asymmetric
complementary log-log and gevit functions, the response approaches 1 slower than reaching
0. By contrast, under the new gevmin model structure, the response of the (inverse) link
approaches 1 faster than reaching 0, which is an opposite situation. As reflected in Figure 1,
as the rectangularisation continues to occur, the survival rates of more and more ages x
rise above 0.5 and get closer to 1 over time t, while the rates drop more and more sharply
at the progressively narrowing highest end. This phenomenon may make one or more
of the asymmetric candidates more suitable for modelling how the survival rates evolve
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over time. More details of the maxima and minima GEV distributions are given in the
Appendix A.
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In addition to n px0,t, we also follow Tan et al. (2016) and consider another response

(n px0,t)
1
n , that is, the “annualised” survival probability for comparison. Figure 3 shows

that the resulting annualised survive curve also displays an upward and rightward shift
over successive time periods. Regarding the regression structure h(x, t), we employ both
the Lee and Carter (1992) structure and the Cairns et al. (2009) structure to allow for the
age and period effects. The first one is taken as h(x, t) = ax + bx kt, and the second one as
h(x, t) = kt,1 + kt,2(x− x)+kt,3((x− x)2− σ2), where ax is the age effect, kt is the “survival
index” with age-specific sensitivity bx, kt,1 to kt,3 are three time-varying parameters, x is the
average of the age range, and σ2 is the average of (x− x) over the age range considered.
Altogether, there are 5 (links) × 2 (responses) × 2 (structures) = 20 combinations under
our consideration. This coverage is much more comprehensive than those of the few
earlier papers on projecting the survival rates directly. Subsequently, we will also explore
adding macroeconomic factors into the regression structure to see whether it can improve
the performances. The Appendix A provides the parameter estimation methods for the
models tested.
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Note that some of these stochastic projection models can be seen as modifications of
those standard static mortality or survival functions. Suppose µx and t px represent the force
of mortality and the t-year survival rate of a life aged x for a static one-year life table. For
instance, the Gompertz law states that µx = αβx, which can be transformed into the survival
function t px = exp(−αβx(βt − 1)/ ln β) and a regression structure ln µx = ln α + x ln β.
The old-age component of the Heligman–Pollard curve can be taken as qx/px = αβx, which
can be expressed as the survival function px = (1 + αβx)−1 and a regression structure
logit qx = ln α + x ln β. The famous Lee–Carter model (Lee and Carter 1992) and the CBD
model (Cairns et al. 2006) can be seen in some way as adding time-varying components
into the two regression structures above (log and logit) in order to turn them from being
static to stochastic. While the stochastic Lee–Carter and CBD models deal with mortality
rates, as compared to our approach of modelling survival probabilities, we will include
them in the following analysis for comparison.

3. Fitting Performances

In this section, we apply the 20 models (combinations) to female and male populations
in Australia and New Zealand. The mortality data of ages 60 to 99 and years 1970 to 2017 of
Australia (1970 to 2013 for New Zealand) are extracted from the Human Mortality Database
(HMD 2020). For demonstration purposes, we consider the survival probabilities for a life
aged 60 and set x0 = 60 (for surviving periods n = 1, 2, 3, . . . , 40), as the mortality rates
below age 60 have already reached very low levels and have relatively little impact on



Risks 2021, 9, 11 6 of 18

the overall survival rates. In fact, the survival rate of a newborn for a surviving period
up to 60 years is now very close to one, and the corresponding movements over time
look too insignificant for a meaningful projection. By contrast, there is still much room
for the survival rates at ages 60 and above to improve, and as shown below, the resulting
patterns and trends are rather stable and can readily be projected into the future. Moreover,
longevity of retirees is a serious concern for governments, insurers selling annuities, and
pension funds because of the increasing financial burden. It would be of high practical
interest to focus on the mortality of retirement ages.

Figure 4 plots the survival index kt of the first regression structure and also the time-
varying parameters kt,1 to kt,3 of the second regression structure based on the five different
link functions for the survival probabilities of Australian females. It is interesting to see
that all the temporal parameters of kt and kt,1 demonstrate a strong linearly increasing
trend. It reflects clearly the continually improving survival rates at old ages as a whole.
(For the complementary log-log model structure, Figure 2 displays a negative relationship
between the response and the argument in contrast to the others. The resulting major
trends of kt and kt,1 in Figure 4 are then inverted, but the implication on mortality decline
is the same.) The time-varying parameters kt,2 and kt,3 of the second regression structure
refer to the slope and curvature in year t. While the directions of their trends are different
because of the differences in how the link functions operate on the survival rates, a high
level of linearity can largely be observed. We can then use the (univariate or multivariate)
random walk with drift to project all these linear trends. Compared to the time-varying
trends usually seen when modelling the mortality rates (e.g., Cairns et al. 2009), modelling
the survival rates here generates more linear trends, which make the use of the random
walk with drift more justifiable than otherwise. The observations for Australian male and
New Zealand populations (not shown here) exhibit similar patterns.

Table 1 reports the MAPE (mean absolute percentage error) values on n p60,t of fitting
the 20 models, with the original Lee–Carter model (Lee and Carter 1992) and the CBD
model with curvature (Cairns et al. 2009) for the death rates also included for comparison.
The major observations are stated below:

(1) For the first regression structure, the MAPE values are often smaller when the response
is n px0,t. By contrast, for the second regression structure, the MAPEs are much smaller

when the response is (n px0,t)
1
n .

(2) When the response is n px0,t, the MAPE values from the first regression structure

are clearly smaller. However, when the response is (n px0,t)
1
n , the situation is mostly

reversed.
(3) For the complementary log-log model structure with the first regression form, the

MAPE remains the same regardless of the response (i.e., n px0,t or (n px0,t)
1
n ). The

underlying reason is that ln(− ln((n px0,t)
1
n )) = ax + bx kt is indeed equivalent to

ln(− ln(n px0,t))= ax + bx kt + ln n= a∗x + bx kt, where a∗x = ax + ln n. Hence, they
produce the same fitted values of n p60,t and so the same MAPEs.

(4) Overall, the combination of the response (n px0,t)
1
n and the second regression structure

(i.e., kt,1 + kt,2(x− x)+kt,3((x− x)2 − σ2)) gives the better MAPEs. In particular, the
gevmin model structure, based on the newly proposed gevmin link, leads to the
smallest MAPEs consistently for all the populations (0.73, 0.93, 1.20, 1.68) considered.

(5) The best gevmin model structures noted above outperform the more traditional
approaches of the Lee–Carter and CBD models in modelling the mortality rates (with
MAPEs of 1.39 to 3.02).
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Table 1. MAPE values (%) on fitted survival probabilities at age 60 from fitting 22 models to
Australian and New Zealand data (1970–2017 and 1970–2013 respectively).

Model
Australian Females Australian Males

Non-
Annualised Annualised Non-

Annualised Annualised

probit− kt 1.24 1.47 2.03 2.53
log - log−kt 1.59 1.59 2.75 2.75

logit− kt 1.39 1.59 1.94 2.72
gevit− kt 1.11 1.09 1.91 2.00

gevmin− kt 1.12 1.14 1.82 1.87
probit− kt,1−kt,3 4.38 1.14 5.76 1.12

log - log−kt,1−kt,3 7.20 2.17 11.74 1.80
logit− kt,1−kt,3 8.49 1.96 11.76 1.60
gevit− kt,1−kt,3 2.71 0.85 3.48 1.01

gevmin− kt,1−kt,3 2.95 0.73 3.71 0.93
Lee-Carter 1.39 2.42

CBD 1.62 1.57

Model
New Zealand Females New Zealand Males

Non-
Annualised Annualised Non-

Annualised Annualised

probit− kt 2.23 2.61 2.76 3.11
log - log−kt 2.82 2.82 3.27 3.27

logit− kt 2.36 2.81 2.77 3.24
gevit− kt 2.06 2.02 2.70 2.73

gevmin− kt 2.09 2.11 2.66 2.70
probit− kt,1−kt,3 4.80 1.45 5.95 1.86

log - log−kt,1−kt,3 8.21 2.24 12.65 2.35
logit− kt,1−kt,3 9.22 2.06 12.19 2.20
gevit− kt,1−kt,3 3.09 1.26 3.53 1.71

gevmin− kt,1−kt,3 3.38 1.20 3.71 1.68
Lee-Carter 2.44 3.02

CBD 2.00 2.15

Compared with the traditional link functions, the additional shape parameter ξ in
the gevmin and gevit link functions makes them a lot more flexible in capturing different
degrees of asymmetry. For each population in Table 1, the two smallest MAPEs are all
generated from either the gevmin or gevit model structure. The empirical advantage of

using these two newer links is apparent here. Note also that the response (n px0,t)
1
n (see

Figure 3 again) has a simpler shape over n than the response n px0,t (see Figure 1). Hence,
a simple regression structure in terms of merely x (i.e., kt,1 + kt,2(x− x)+kt,3((x− x)2 −
σ2)) would suffice for the former, while a more dedicated allowance for the age effect
(i.e., ax + bx kt) would be needed for the latter.

As noted earlier, if the new gevmin link is applied on 1− n px0,t rather than n px0,t, the
model structure turns into [1− (− ln(n px0,t))

−ξ ]/ξ = h(x, t). It can further be rearranged
as [(− ln(n px0,t))

−ξ − 1]/ξ = −h(x, t) = h∗(x, t), which then becomes the gevit model
structure effectively. Consequently, they generate the same fitted values of n p60,t and the
same MAPEs, though the resulting signs and trends of their parameters are opposite to
each other. However, the increasing survival index based on the gevmin link on n px0,t has
a more natural interpretation in terms of improving survival over time.

4. Forecasting Performances

In this section, we perform an out-of-sample analysis to assess the forecast accuracy
of the survival rate projection models. We apply the models to four fitting periods of
1970 to 1989 (20 years), 1970 to 1994 (25 years), 1970 to 1999 (30 years), and 1970 to 2004
(35 years) and then forecast the survival rates for the remaining periods until the very
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last year of available data. Here we focus on the annualised response and the second
regression structure since they give the better fitting performances in Table 1. In addition
to continuing to use the Lee–Carter and CBD models for comparison, we also apply
the multivariate random walk with drift to the survival probabilities as a benchmark,
naive model. The MAPEs of not only the projected n p60,t but also the projected life
expectancies at age 60 are examined to compare the performances. They are calculated
as 1

nd
∑x,t|n p̂60,t − n

.
p60,t

∣∣∣/n
.
p60,t and 1

nt
∑t|ê60,t −

.
e60,t

∣∣∣/ .
e60,t respectively, where n p̂60,t and

n
.
p60,t (ê60,t and

.
e60,t) are the projected and observed survival probabilities (life expectancies)

in year t, nd is the number of data points, and nt is the number of years in the testing period.
For each case (column) in Table 2, the three lowest MAPE values are highlighted (in grey).
We notice the following patterns within the results in Table 2:

(1) Out of the 16 cases (4 fitting periods × 2 countries × 2 sexes), the gevit and gevmin
model structures produce the three lowest MAPEs in 12 cases. Their performances
are the most consistent ones amongst all the candidates.

(2) For the gevit and gevmin model structures, the average MAPE is 6.10. For the probit,
complementary log-log, and logit model structures, the average MAPE is 6.29. For the
LC and CBD models, the average MAPE is 6.53. For the naive random walk model,
the average MAPE is 7.95.

(3) The MAPE values tend to be lower for females (4.04 on average) than for males
(8.98 on average).

(4) The MAPE values tend to be lower for Australia (5.65 on average) than for New
Zealand (7.36 on average).

(5) The naive random walk model leads to the highest MAPE values in 10 cases.

Table 2. MAPE values (%) on projected survival probabilities at age 60 using Australian and New Zealand data for four
different fitting periods.

Australian Females Australian Males

Model 1970–1989 1970–1994 1970–1999 1970–2004 1970–1989 1970–1994 1970–1999 1970–2004
probit 5.25 1.87 3.03 3.03 14.65 9.92 2.70 1.65
log-log 6.08 2.05 2.65 2.02 15.45 10.79 3.49 1.54

logit 5.95 1.97 2.64 2.77 15.30 10.63 3.30 1.97
gevit 4.43 2.61 4.21 3.94 13.59 8.91 2.42 2.08

gevmin 4.42 2.44 3.96 3.72 13.98 9.26 2.40 1.77
LC 3.96 3.31 3.24 2.41 10.65 7.51 3.97 3.20

CBD 4.62 1.87 3.28 3.51 15.45 11.01 3.75 2.39
MRW 8.61 4.44 2.51 2.05 18.05 14.03 7.70 5.50

New Zealand Females New Zealand Males
Model 1970–1989 1970–1994 1970–1999 1970–2004 1970–1989 1970–1994 1970–1999 1970–2004
probit 4.78 5.70 3.34 2.77 13.23 8.48 9.53 8.15
log-log 5.13 5.04 3.53 3.23 13.65 8.89 9.97 8.47

logit 5.04 5.15 3.47 3.12 13.57 8.81 9.88 8.41
gevit 4.79 6.49 3.54 2.88 12.57 7.95 9.03 7.94

gevmin 4.80 6.47 3.53 2.85 12.81 8.17 9.20 7.97
LC 6.60 7.28 5.09 3.56 15.95 9.77 8.70 6.26

CBD 5.66 8.10 3.77 2.90 14.09 9.19 9.99 7.77
MRW 6.61 3.28 3.60 3.37 15.60 10.81 11.25 9.74

Overall, the gevit and gevmin model structures deliver the best and the most consis-
tent forecasting performances among the eight alternatives. Moreover, the survival rate
projection models as a whole also tend to outperform the usual Lee–Carter and CBD models
in this out-of-sample analysis of the survival rates. These results highlight the potential
usefulness of projecting the survival rates directly when the focus is on the survival probabili-
ties. The generally poor performances by the naive random walk model also emphasise the
importance of having a proper model structure for modelling the survival rates.
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Regarding the MAPEs of the projected life expectancies in Table 3, the gevit and
gevmin model structures continue to perform well relative to the others. Their average
MAPE is 2.31, compared to 2.56 for the probit, complementary log-log, and logit model
structures and 2.81 for the LC and CBD models. It highlights again the flexibility offered by
the extra shape parameter and the potential benefits. Moreover, the survival rate projection
models still perform better than the Lee–Carter and CBD models in general. Projecting
the survival rates directly would be a useful strategy or alternative if the main task is to
forecast future life expectancies. It is also interesting to note that the average MAPE for
the naive random walk model is only 2.44. We conjecture that their larger errors as shown
in Table 2 may have coincidently offset one another to some extent across different ages
as life expectancy is effectively an aggregate measure of survival probabilities. Anyway,
the advantages of imposing an appropriate model structure are obvious in modelling the
survival rates.

Table 3. MAPE values (%) on projected life expectancies at age 60 using Australian and New Zealand data for four different
fitting periods.

Australian Females Australian Males

Model 1970–1989 1970–1994 1970–1999 1970–2004 1970–1989 1970–1994 1970–1999 1970–2004
probit 1.67 0.69 1.12 1.20 5.34 3.68 0.84 0.55
log-log 2.00 0.71 0.88 1.03 5.90 4.23 1.34 0.39

logit 1.97 0.71 0.90 1.05 5.83 4.17 1.28 0.40
gevit 1.24 0.95 1.61 1.52 4.34 2.70 0.66 1.03

gevmin 1.34 0.82 1.42 1.39 4.85 3.22 0.66 0.77
LC 2.04 0.74 0.79 0.82 6.11 4.13 1.54 0.70

CBD 2.23 0.78 0.78 1.00 6.39 4.52 1.69 0.51
MRW 1.33 0.79 1.43 1.49 5.05 3.40 0.74 0.68

New Zealand Females New Zealand Males

Model 1970–1989 1970–1994 1970–1999 1970–2004 1970–1989 1970–1994 1970–1999 1970–2004
probit 2.83 0.75 1.78 1.17 7.16 4.29 4.09 2.20
log-log 2.93 0.81 1.83 1.14 7.43 4.57 4.31 2.33

logit 2.92 0.80 1.83 1.15 7.39 4.53 4.29 2.32
gevit 2.63 0.78 1.64 1.15 6.60 3.78 3.70 1.91

gevmin 2.70 0.75 1.70 1.18 6.86 4.03 3.90 2.07
LC 3.50 0.91 2.38 1.12 9.32 5.28 4.52 2.24

CBD 3.12 0.80 1.78 1.16 7.34 4.78 4.36 2.54
MRW 3.13 0.79 1.74 1.14 7.18 4.25 3.97 2.00

In addition to the MAPE values, the sMAPE (symmetric mean absolute percentage
error) values are also calculated and given in the Appendix A. The major implications are
largely the same as those discussed above.

5. The Effect of Economic Growth

There have been previous studies in the area of demography and macroeconomics
showing the impact of economic fluctuations on mortality levels (e.g., Ruhm 2000; Brenner
2005). A few earlier papers in mortality projection that incorporated exogenous economic
factors include Hanewald (2011), Niu and Melenberg (2014), and Boonen and Li (2017).
They showed that the Gross Domestic Product (GDP) of a nation may serve as an explana-
tory factor of a country’s mortality rates. Furthermore, they demonstrated that it may be
integrated into extrapolative mortality models such as the Lee–Carter model or its exten-
sions to improve the fitting quality. In this section, we experiment with embedding such
macroeconomic factor into the survival rate projection models. As a preliminary analysis,
we find some positive correlation (ρ = 0.17 for Australian females, 0.10 for Australian males,
0.08 for New Zealand females, 0.15 for New Zealand males) between the annual change
in survival index kt and the annual growth in real GDP per capita for the period from
1970 onwards (for Australia and New Zealand respectively). The survival index kt can
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be seen as an underlying driver of the survival probabilities and so an indicator of how
life expectancy changes, and the GDP trend is a very important indicator of economic
growth. This observation provides some incentive for putting the survival trend and the
economic trend together into the modelling framework. By doing so, the extended model
may produce more interpretable implications on the projected survival rates based on the
projected economic growth. In effect, such a model can be regarded as partly extrapolative
(using past survival trends) and partly explanatory (using exogenous GDP figures). Note
that the GDP can be regarded as an overall indicator of the quality of life. As the focus
of our study is the use of new link functions in modelling survival probabilities and the
aggregate data used are of country level, we deem that the GPD itself would be sufficient
for our analysis1.

Accordingly, we modify the first regression structure as h(x, t) = ax + bx kt + cx gt,
in which gt is the (log) real GDP per capita in year t and cx is the (age-specific) associated
coefficient. The values of gt are adjusted such that ∑t gt = 0, and so ax still refers to
the overall (average over time) age effect. The real GDP per capita data are obtained
from World Development Indicators (WDI 2020), the primary database maintained by
World Bank on comparative development indicators across countries worldwide. Figure 5
(upper panel) illustrates the increasing trend of the GDP in recent decades, as well as some
potential co-movements with the life expectancy trend. Following the Box and Jenkins
(1976) approach, we find that the ARIMA(1,1,0) process (autoregressive integrated moving-
average) provides an adequate description of the dynamics of the GDP process. Figure 5
(lower panel) also shows that the fitted GDP values from ARIMA(1,1,0) are very close to
the observed values.

Risks 2021, 9, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 5. Trends of life expectancy at age 60, national GDP, and gt of Australia and New Zealand. 

gevit model structure 

females     males 

non-annualised annualised non-annualised annualised 

 

 
  

Figure 5. Trends of life expectancy at age 60, national GDP, and gt of Australia and New Zealand.

1 In future research, if mortality and social data are available at finer levels such as social deprivation groups and subpopulations, other indicators
like income, education, and smoking status can be added to the analysis.
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Figure 6 plots the survival indices under the modified (with GDP) first regression
structure with the gevit and gevmin links. While the new factor cx gt is supposed to explain
part of the rising survival trend, the computed survival indices still exhibit a clear linearly
increasing trend, though their drifts (around 0.37) are smaller than previously (about 0.43
without the GDP factor). It is also interesting to see in Figure 6 that the age-sensitivity
cx is high at ages 60 to 80 but it drops drastically after around age 80, reflecting that the
very-old-age mortality is still much less responsive to economic growth (likely due to
current technological and medical limitations).
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Table 4 compares the fitting performances with and without the GDP factor.
Interestingly, all the MAPE values become smaller after incorporating the GDP covariate.
Furthermore, Tables 5 and 6 present the forecasting performances before and after embed-
ding the GDP covariate under the same out-of-sample test setting as in Section 4. For both
the projected survival probabilities and the projected life expectancies at age 60, adding
the GDP factor leads to a clear improvement in forecast accuracy in most of the cases. It is
obvious that besides the selection of appropriate link function, age and period effects, and
annualisation of the survival rates, integrating a GDP explanatory factor within the model
has much potential in further enhancing the performance of a survival rate projection
model.

Table 4. MAPE values (%) on fitted survival probabilities at age 60 from fitting 2 models with
real GDP per capita as explanatory variable to Australian and New Zealand data (1970–2017 and
1970–2013 respectively).

Model
Australian Females Australian Males

Non-Annualised Annualised Non-Annualised Annualised

with GDP
gevit− kt 0.86 0.79 1.69 1.61

gevmin− kt 0.87 0.73 1.66 1.41
without GDP

gevit− kt 1.11 1.09 1.91 2.00
gevmin− kt 1.12 1.14 1.82 1.87

Model
New Zealand Females New Zealand Males

Non-Annualised Annualised Non-Annualised Annualised

with GDP
gevit− kt 1.76 1.37 2.54 2.55

gevmin− kt 1.70 1.40 2.52 2.50
without GDP

gevit− kt 2.06 2.02 2.70 2.73
gevmin− kt 2.09 2.11 2.66 2.70

Table 5. MAPE values (%) on projected survival probabilities at age 60 from using 2 models with
real GDP per capita as explanatory variable on Australian and New Zealand data (left value—fitting
period 1970–1989; right value—fitting period 1970–1999).

Model
Australian Females Australian Males

Non-Annualised Annualised Non-Annualised Annualised

with GDP
gevit− kt 4.31/4.67 4.12/6.21 11.67/3.35 11.65/4.79

gevmin− kt 3.99/2.88 4.06/6.74 12.27/3.80 11.79/4.20
without GDP

gevit− kt 4.89/5.62 5.21/8.02 12.50/2.81 9.41/7.21
gevmin − kt 5.24/5.45 5.83/8.08 12.49/2.14 9.53/5.97

Model
New Zealand Females New Zealand Males

Non-Annualised Annualised Non-Annualised Annualised

with GDP
gevit− kt 6.79/4.18 5.94/4.34 12.93/8.67 12.47/7.00

gevmin− kt 6.53/3.71 6.37/4.94 12.60/8.67 12.64/6.95
without GDP

gevit− kt 7.38/5.32 7.51/5.36 13.19/8.60 12.34/7.52
gevmin− kt 7.25/5.23 6.68/5.73 13.00/8.51 12.49/7.53
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Table 6. MAPE values (%) on projected life expectancies at age 60 from using 2 models with real
GDP per capita as explanatory variable on Australian and New Zealand data (left value—fitting
period 1970–1989; right value—fitting period 1970–1999).

Model
Australian Females Australian Males

Non-Annualised Annualised Non-Annualised Annualised

with GDP
gevit− kt 2.16/1.78 1.61/3.34 5.81/0.91 3.07/3.90

gevmin− kt 2.07/1.29 1.55/3.18 5.56/0.58 4.11/2.83
without GDP

gevit− kt 2.55/2.04 2.27/3.48 7.16/1.49 4.94/4.96
gevmin− kt 2.76/1.76 2.24/2.83 7.35/0.94 5.74/2.79

Model
New Zealand Females New Zealand Males

Non-Annualised Annualised Non-Annualised Annualised

with GDP
gevit− kt 3.71/1.87 2.61/1.14 7.91/4.23 7.03/2.20

gevmin− kt 3.70/1.76 2.67/1.03 7.38/4.11 7.34/2.72
without GDP

gevit− kt 4.01/2.32 3.57/1.97 8.28/4.67 7.65/3.87
gevmin− kt 4.00/2.27 3.37/2.08 8.16/4.63 7.86/4.16

A final note is that while our regression structure here is designed to examine how the
economic trend would affect and/or move synchronously along with the survival trend
over the long term, we acknowledge that the underlying process can be more complicated
in terms of the direction of causation and the lagging effect. These matters are beyond the
scope of this paper and we leave them for future research.

6. Concluding Remarks

In this paper, we have conducted a thorough examination on several old and new
link functions for their applications in modelling how old-age survival probabilities evolve
across time in Australasia. The link functions under investigation include the newly
proposed gevit and gevmin links, which are compared against the traditional ones like
probit, complementary log-log, and logit links. We use the random walk with drift to
project the temporal parameters due to their highly linear trends in the past decades.
Future survival probabilities and life expectancies are then projected using the estimated
parameters. We notice that many of these survival rate projection models can produce better
fitting and forecasting performances than the more conventional approach of modelling
mortality rates, in terms of achieving lower MAPE and sMAPE values. Hence, projecting
the survival rates directly would serve as a useful strategy or alternative if the objective is
to forecast future life expectancies. In particular, the gevmin and gevit links are found to
be able to offer extra flexibility in depicting the (annualised or non-annualised) survival
curve patterns and improve the model performance. This extra flexibility comes from the
additional shape parameter ξ that copes with any extent of asymmetry. Lastly, we illustrate
how these survival rate projection models can be modified to incorporate additional
explanatory variables, in an attempt to further enhance the model results. We notice that
adding a covariate on the real GDP per capita can improve the general fitting performances
as well as many of the forecasting performances. Note that our approach can be applied
similarly to other ages above 60 for x0. The focus of this work is on forecasting survival
probabilities at ages 60 and above, as the current death rates below age 60 are very low
and their impact on the overall survival rates has become much less important. If one
is interested in modelling the entire age range, the Lee–Carter model and its various
extensions in modelling mortality rates can be used instead.

There are two potential areas for future research. First, since a link function is often
constructed from the inverse of a cdf, the use of other cdfs can be explored. There are a range
of skewed distributions which may be useful for tackling different levels of asymmetry.
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Second, while we have used two particular regression forms in our analysis, there are
other possible structures that also allow for the age and period effects. Some examples
include adding extra time-varying parameters and co-modelling the survival rates of
related subpopulations.
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Appendix A

Suppose X1, X2, . . . , Xn are n independent and identically distributed (i.i.d.) random
variables having cdf F(x). Let Mn = max(X1, X2, . . . , Xn) be the maximum value amongst
them. Under the Fisher–Tippett–Gnedenko Theorem and certain technical conditions,
when n goes to infinity, (Mn − bn)/an (for some an > 0 and real bn) follows the so-called
GEV(µ, σ, ξ) distribution (for −∞ < µ < ∞ and σ > 0). There are three specific cases:
Gumbel (ξ = 0), Fréchet (ξ > 0), and reversed Weibull (ξ < 0). Their cdfs G(x) are,
respectively,

G(x) = exp(− exp(− x− µ

σ
)), (for ξ = 0 , −∞ < x < ∞)

G(x) = exp(−(1 + ξ
x− µ

σ
)
− 1

ξ
), (for ξ > 0, x > µ− σ

ξ
)

G(x) = exp(−(1 + ξ
x− µ

σ
)
− 1

ξ
). (for ξ < 0, x < µ− σ

ξ
)

Let Un= min(X1, X2, . . . , Xn) be the corresponding minimum value. Under some
technical conditions, with n approaching infinity, (Un− bn)/an follows the GEVmin(µ, σ, ξ)
distribution (for −∞ < µ < ∞ and σ > 0). There are also three specific cases: reversed
Gumbel (ξ = 0), reversed Fréchet (ξ > 0), and Weibull (ξ < 0). Their cdfs H(x) are,
respectively,

H(x) = 1− exp(− exp(
x− µ

σ
)), (for ξ = 0 , −∞ < x < ∞)

H(x) = 1− exp(−(1− ξ
x− µ

σ
)
− 1

ξ
), (for ξ > 0, x < µ +

σ

ξ
)

H(x) = 1− exp(−(1− ξ
x− µ

σ
)
− 1

ξ
). (for ξ < 0, x > µ +

σ

ξ
)

The SVD (singular value decomposition) method is employed to estimate the parame-
ters in h(x, t) = ax + bx kt. Regarding h(x, t) = kt,1 + kt,2(x− x)+kt,3((x− x)2 − σ2), the
least squares method is used to estimate the parameters for each year t. When there exists
a shape parameter ξ, an extensive range of different trial values are taken for it in turn and
then different sets of parameter values are estimated accordingly. The final value of the
shape parameter is determined by the one giving the smallest overall fitting error. Table A1
below provides the final values of the shape parameter for different populations and fitting
periods. All the estimated values are negative, implying that the GEV distribution involved
belongs to the reversed Weibull. For the second regression structure (right value), all the
estimated values are quite consistent with one another, ranging from about −0.4 to −0.3.
For the first regression structure (left value), the estimated values range from −0.6 to −0.5

when the response is n px0,t and are −1.1 to −0.8 when the response is (n px0,t)
1
n . Note that
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these estimation approaches are adopted in this paper because each response depends
on the mortality rates of n ages, so it is impossible to apply the Poisson assumption via
maximum likelihood that is commonly used with mortality rate projection models.

Table A1. Estimated shape parameter values of gevit model structure fitted to Australian and New
Zealand data (left value—first regression structure; right value—second regression structure).

Fitting Period
Australian Females Australian Males

Non-Annualised Annualised Non-Annualised Annualised

1970–2017 −0.59/−0.32 −0.85/−0.31 −0.60/−0.39 −0.93/−0.30
1970–1999 −0.66/−0.35 −0.99/−0.42 −0.62/−0.45 −1.08/−0.40
1970–1989 −0.57/−0.34 −0.89/−0.37 −0.62/−0.43 −1.06/−0.37

Fitting Period
New Zealand Females New Zealand Males

Non-Annualised Annualised Non-Annualised Annualised

1970–2013 −0.58/−0.34 −0.90/−0.31 −0.53/−0.41 −0.86/−0.35
1970–1999 −0.54/−0.37 −0.83/−0.37 −0.48/−0.45 −0.86/−0.45
1970–1989 −0.55/−0.36 −0.86/−0.36 −0.53/−0.43 −0.91/−0.38

As noted in Hyndman and Koehler (2006), the MAPE would have the disadvantage
of putting a heavier penalty on positive errors than on negative errors. Accordingly, the
sMAPE values are also calculated and reported in Tables 2 and 3 below. Regarding the
sMAPEs of the projected survival probabilities in Table 2, the average sMAPE is 6.57 for
the gevit and gevmin model structures, compared to 7.01 for the probit, complementary
log-log, and logit model structures, 6.93 for the LC and CBD models, and 9.23 for the naive
random walk model. Regarding the sMAPEs of the projected life expectancies in Table 3,
the average sMAPE is 2.35 for the gevit and gevmin model structures, compared to 2.62 for
the probit, complementary log-log, and logit model structures, 2.89 for the LC and CBD
models, and 2.50 for the naive random walk model. The gevit and gevmin model structures
contribute to the three lowest sMAPEs in 11 or 12 of the 16 cases, and overall, they show
the best forecasting performances in our out-of-sample analysis on the survival rates.

Table 2. sMAPE values (%) on projected survival probabilities at age 60 using Australian and New Zealand data for different
fitting periods.

Australian Females Australian Males

Model 1970–1989 1970–1994 1970–1999 1970–2004 1970–1989 1970–1994 1970–1999 1970–2004
probit 5.79 1.87 2.89 2.90 17.67 11.25 2.76 1.67
log-log 6.91 2.13 2.60 1.98 18.82 12.39 3.64 1.63

logit 6.71 2.03 2.58 2.70 18.59 12.16 3.42 2.06
gevit 4.75 2.52 3.91 3.68 16.27 10.01 2.41 2.04

gevmin 4.75 2.35 3.67 3.49 16.73 10.40 2.41 1.74
LC 3.92 3.08 3.00 2.29 11.72 8.07 4.13 3.33

CBD 4.90 1.89 3.10 3.32 18.49 12.58 3.82 2.34
MRW 9.88 4.72 2.52 2.03 23.17 17.20 8.55 5.87

New Zealand Females New Zealand Males

Model 1970–1989 1970–1994 1970–1999 1970–2004 1970–1989 1970–1994 1970–1999 1970–2004
probit 5.06 5.21 3.41 2.90 15.20 9.25 10.79 9.36
log-log 5.56 4.76 3.68 3.49 15.75 9.79 11.41 9.90

logit 5.44 4.84 3.60 3.35 15.63 9.68 11.27 9.78
gevit 4.97 5.65 3.55 2.95 14.36 8.57 10.16 8.97

gevmin 4.98 5.67 3.55 2.93 14.64 8.83 10.35 9.04
LC 6.37 6.21 4.92 3.35 18.57 10.26 9.43 6.82

CBD 5.64 7.00 3.78 2.91 16.41 9.92 11.40 8.73
MRW 7.19 3.15 3.80 3.57 18.79 12.51 13.26 11.39
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Table 3. sMAPE values (%) on projected life expectancies at age 60 using Australian and New Zealand data for different
fitting periods.

Australian Females Australian Males

Model 1970–1989 1970–1994 1970–1999 1970–2004 1970–1989 1970–1994 1970–1999 1970–2004
probit 1.69 0.69 1.11 1.19 5.51 3.75 0.84 0.55
log-log 2.02 0.71 0.87 1.02 6.10 4.33 1.35 0.39

logit 1.99 0.71 0.89 1.04 6.03 4.27 1.29 0.40
gevit 1.25 0.95 1.59 1.50 4.44 2.74 0.66 1.02

gevmin 1.35 0.81 1.41 1.37 4.98 3.28 0.66 0.77
LC 2.07 0.74 0.79 0.81 6.33 4.22 1.56 0.70

CBD 2.25 0.79 0.78 0.99 6.63 4.63 1.70 0.52
MRW 1.34 0.79 1.41 1.47 5.20 3.47 0.74 0.68

New Zealand Females New Zealand Males

Model 1970–1989 1970–1994 1970–1999 1970–2004 1970–1989 1970–1994 1970–1999 1970–2004
probit 2.88 0.75 1.80 1.18 7.49 4.41 4.19 2.22
log-log 2.98 0.81 1.85 1.15 7.79 4.71 4.42 2.36

logit 2.97 0.80 1.85 1.15 7.75 4.67 4.40 2.35
gevit 2.67 0.78 1.65 1.16 6.89 3.88 3.78 1.93

gevmin 2.74 0.75 1.72 1.19 7.16 4.14 3.98 2.10
LC 3.57 0.92 2.41 1.13 9.87 5.46 4.64 2.27

CBD 3.18 0.80 1.80 1.17 7.70 4.93 4.47 2.57
MRW 3.19 0.80 1.76 1.15 7.51 4.37 4.06 2.03
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