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Abstract: This article introduces a novel use of the vine copula which captures dependence among
multi-line claim triangles, especially when an insurance portfolio consists of more than two lines of
business. First, we suggest a way to choose an optimal joint loss development model for multiple lines
of business that considers marginal distribution, vine copula structure, and choice of family for each
pair of copulas. The performance of the model is also demonstrated with Bayesian model diagnostics
and out-of-sample validation measures. Finally, we provide an implication of the dependence
modeling, which allows a company to analyze and establish the risk capital for whole portfolio.

Keywords: Bayesian inference; model selection; multi-line reserving; property and casualty insurance;
vine copula

1. Introduction

There have been various approaches to determine loss reserve for a single line of business with
statistical models. According to Mack (1993), the chain-ladder method, which has been used as a
rule of thumb for the determination of reserve, can be interpreted as a nonparameteric stochastic
model. After that, many univariate stochastic reserving models have been developed and used for
both determination of point estimates of reserve and risk management. For detailed discussions on
univariate stochastic reserving models, see England and Verrall (2002).

However, it is also certain that most of the insurance companies do not run only a single line of
business so one needs to consider possible dependence among the lines of business in reserve modeling.
Consequently, stochastic reserving models need to be extended to multivariate frameworks. In this
regard, some actuarial literature focused on the extension of the chain-ladder method to multivariate
cases, such as Braun (2004), Schmidt (2006), and Merz and Wüthrich (2008) which are followed by
Shi et al. (2012), which used a bivariate normal distribution to model multi-line reserves. Besides the
dependence among multiple lines of business, there have been some works on the dependence between
paid claim triangles and incurred claim triangles such as Zhang (2010) and Merz and Wüthrich (2010).

Note that the methods mentioned above are less flexible since it is not allowed to disentangle
marginal distributions and multivariate association structure. Therefore, use of a copula was
introduced to the multivariate reserving problem since this allows us to consider marginal distribution
and association structure in a separate way. Based on this idea, Shi and Frees (2011) proposed
the use of a bivariate Gaussian copula to model dependence among multi-line reserves where the
marginal distributions are chosen as Gaussian and gamma, respectively. Peters et al. (2014) considered
dependence between paid-incurred claim triangles via bivariate copula. Further, Abdallah et al. (2015)
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used the idea of the hierarchical archimedian copula to capture calendar year effect and multi-line
dependence simultaneously.

Although there have been some works on the multivariate reserving in actuarial literature,
applications of all the aforementioned works are restricted only to possible dependence between two
lines of business. Indeed, it is natural that a property and casualty insurance company runs more than
two lines of business, so we need to incorporate such a high-dimensional dependence structure in our
reserve modeling.

In that regard, we apply the idea of a vine copula in this article, which uses bivariate copulas
as its building blocks and connects them with vine structure to describe the high-dimensional
association in a flexible way. The vine copula has been widely used in the actuarial and financial
literature. Loaiza Maya et al. (2015) investigated dependency among the exchange rates of Latin
American countries using the vine copula. Reboredo and Ugolini (2016), Arreola Hernandez et al. (2017),
and Trucíos et al. (2020) used the vine copula to assess systemic risks due to possible dependence
among economic subjects. Surprisingly, usage of the vine copula in property and casualty insurance
literature does exist but is scarce. For example, Shi and Yang (2018) used a vine copula to capture the
serial dependence of claim amounts and derive the experience ratemaking factor.

This paper has been organized as follows. In Section 2, basic concept of the vine copula
is introduced and the model selection procedure to be implemented is specified. In Section 3,
we describe the data used for our empirical analysis. In Section 4, we go through the model selection
procedure to determine marginal distributions and the vine copula structure to be used in our analysis.
In Section 5, we discuss the implications of estimation results from the perspective of enterprise risk
management using the predictive distribution of unpaid claims. Section 6 addresses practical issues for
implementing the proposed methodology. Finally, we conclude this article in Section 7 by providing
some future directions of research.

2. Proposed Methodology

Suppose an insurance company owns a portfolio which consists of N multiple lines of business.
By assuming balanced observations in multiple triangles, one can write the multivariate cumulative
paid claims as Yij = (Y(1)

ij , Y(2)
ij , . . . , Y(N)

ij ) where n = 1, . . . , N indicates a claim triangle from the nth

line of business, i = 1, . . . , I means the ith accident years, and j = 1, . . . , J denotes jth development lag.
In general, it is of interest to predict the cumulative paid claim for the next year given information up
to the current year, which can be written as E

[
Y(n)

i,j+1|Y
(n)
i,j

]
. Therefore, instead of working with Yij, one

can directly model the incremental development of claims, or age-to-age factors as follows:

Dij = (D(1)
ij , D(2)

ij , . . . , D(N)
ij ),

where D(n)
i,j+1 := Y(n)

i,j+1/Y(n)
i,j so that E

[
Y(n)

i,j+1|Y
(n)
i,j

]
= Y(n)

i,j E
[

D(n)
i,j+1

]
. Since each of D(n) =

(D(n)
ij )i=1,...,I,j=1,...,J are observed from the same business line, it is natural that we model the

marginal distribution of D(n) and the dependence structure among D(n) via copulas to jointly model
D(n), n = 1, 2, . . . , N.

According to Sklar (1959), if all marginal distribution functions are continuous, then there is a
unique function C : [0, 1]→ [0, 1] such that

H(x1, x2, . . . , xm) = C(F1(x1), F2(x2), . . . , Fm(xm)),

where Fi denotes marginal distribution function of Xi and H denotes joint distribution function of
(X1, X2, . . . , Xm). Therefore, use of copulas allows us to capture the association among the joint
response random variables, which may follow different marginal distributions. In that sense, by letting
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θ = (θ(1), . . . , θ(N)), where θ(n) is the parameter vector for the marginal distribution of D(n) and φ is
the copula parameter, the likelihood for joint distribution is given as follows:

`(θ, φ|d) =
I

∑
i=1

J+1−I

∑
j=2

log h
(

d(1)ij , . . . , d(N)
ij

∣∣∣∣ θ, φ

)

=
I

∑
i=1

J+1−I

∑
j=2

[
N

∑
n=1

log f (n)
(

d(n)ij

∣∣∣∣ θ(n)
)
+ log cφ

(
F(1)(d(1)ij |θ

(1)), . . . , F(N)(d(N)
ij |θ

(N))
)]

.

Here h means the joint density of (D(1), . . . , D(N)) and we assume that d(n)ij (i = 1, . . . , I, j = 2, . . . , J)
are independent for fixed n.

Depending on the sign of dependence, we may use different families of copulas. For example, in
order to capture positive dependence, one can suggest the following bivariate copulas:

Gumbel: CG(u, v) = exp
[
−
(
(− log(u))φ + (− log(v))φ

)1/φ
]
, φ ∈ [1, ∞)

Clayton: CC(u, v) =
{

u−φ + v−φ − 1
}−1/φ , φ ∈ (0, ∞).

Although those two copulas can only capture positive dependence, one can easily rotate those in order
to capture reversed tail behavior and negative dependence as follows:

90◦ rotated Gumbel: CG90(u, v) = v− CG(1− u, v),

90◦ rotated Clayton: CC90(u, v) = v− CC(1− u, v),

Survival Gumbel: CSG(u, v) = u + v− 1 + CG(1− u, 1− v),

Survival Clayton: CSC(u, v) = u + v− 1 + CC(1− u, 1− v),

270◦ rotated Gumbel: CG270(u, v) = u− CG(u, 1− v),

270◦ rotated Clayton: CC270(u, v) = u− CC(u, 1− v).

Further, the Gaussian copula and Frank copula are also prevalent choices which can capture both
positive and negative dependence:

Gaussian: CN(u, v) = Φ2(Φ−1(u), Φ−1(v); φ), φ ∈ [−1, 1],

Frank: CF(u, v) = − 1
φ

log
[

1 +
(exp(−φu)− 1)(exp(−φv)− 1)

exp(−φ)− 1

]
, φ ∈ R\{0},

where Φ2(·, ·) stands for the cumulative distribution function of a bivariate, standard, normal, random
variable with correlation φ and Φ(·) stands for the cumulative distribution function of a univariate,
standard, normal random variable.

Given families of copulas, allow us to consider various facets of possible dependence among the
lines of business, including the upper and lower tail dependence properties. For example, the Clayton
copula can capture a positive association and has lower tail dependence but no upper tail dependence.
The Gumbel copula can capture positive associations and has upper tail dependence but no lower tail
dependence. Further, both Frank and Gaussian copulas are symmetric and able to capture positive and
negative dependence, but they have no tail dependencies. Note that upper tail dependence of original
copulas corresponds to lower tail dependence of survival copulas, and vice versa. Further, if an original
copula can capture a positive association, then the corresponding 90◦ or 270◦ rotated copula can capture
a negative association; for example, 90◦ rotated Clayton and 270◦ rotated Gumbel copulas can be
used to capture negative associations. We refer the readers to Nelsen (1999), Embrechts et al. (2001),
and Hua and Joe (2011) for a more detailed explanation. The variability of tail behaviors is potentially
important considering the data used in our empirical analysis. Here we capture the dependencies
among the incremental development factors of different lines of business so that it is natural that the
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incremental development factors will be quite large in the initial years and become smaller in the
mature years. In this regard, upper tail dependence corresponds to the associations among the loss
development factors in the initial years, whereas lower tail dependence corresponds to the associations
among the loss development factors in the mature years.

If N = 2, then the dependence can be captured by a bivariate copula, which has been explored
in previous works such as Shi and Frees (2011). However, we may not preclude the possibility that
N > 2, and one can suggest the use of vine copula when we have more than two lines of business
to capture the multiple dependence. The concept of vine copula was introduced by Aas et al. (2009)
who extended the research conducted by Bedford and Cooke (2001) and Bedford and Cooke (2002)
to show how multivariate data, which exhibit complex patterns of dependence in the tails, can be
modeled using a cascade of pair-copulas, acting on two variables at a time. Later Czado (2010) and
Joe and Kurowicka (2011) developed this idea further and provided us with a definite road map for
constructing vine copulas to represent complex multivariate data. The core concept behind construction
of vine copulas is that a d-dimensional density f (x1, x2, . . . , xd) can be represented as a product of pair
copula densities and marginal densities. For example, let us consider d = 3 dimension. A possible
way to represent the joint density f (x1, x2, x3) is as follows:

f (x1, x2, x3) = f3|12(x3|x1, x2) f2|1(x2|x1) f1(x1).

Additionally, since

f2|1(x2|x1) = c12(F1(x1), F2(x2)) f2(x2),

f3|12(x3|x1, x2) = c13|2(F1|2(x1|x2), F3|2(x3|x2)|x2) f3|2(x3|x2),

f3|2(x3|x2) = c23(F2(x2), F3(x3)) f3(x3),

where cij(Fi(xi), Fj(xj)) is the joint copula density of random variables Xi and Xj. One can write out
the joint density of X1, X2, X3 as follows:

f (x1, x2, x3) = f1(x1) f2(x2) f3(x3) (marginals)

× c12(F1(x1), F2(x2))c23(F2(x2), F3(x3)) (unconditional pair)

× c13|2(F1|2(x1|x2), F3|2(x3|x2)|x2) (conditional pair).

Note that in general, c13|2 is affected by x2, not only through F1|2(x1|x2) and F3|2(x3|x2), but also
directly through x2. However, such a general form of conditional coplula density is cumbersome to
be used in statistical inference. For this reason, it is tempting to use a simplified form of conditional
copula density so that c13|2 is affected by x2 only through F1|2(x1|x2) and F3|2(x3|x2). Haff et al. (2010)
showed that we may write each conditional pair copula density in a simplified form for elliptical
distributions with a positive definite scale matrix. Further, it was also shown that use of the simplified
form could be a good approximation even in a case wherein such an assumption could not be fully
validated. Hence, we will use a simplified form of conditional copula density in this article hereafter.

The sequential dependence structure via pair copulas is described with a regular vine, or R-vine.
Let V = (T1, . . . , Td−1) be a set of trees where each tree Tj = (Nj, Ej) is connected and N1 = {1, . . . , d}.
Here Nj and Ej mean the nodes and edges of Tj, respectively. If Nj = Ej−1 for j = 2, . . . , d, V is called a
vine. Further, if

|e ∩ e′| = 1 for {e, e′} ∈ Ej and j = 2, . . . , d− 1, (1)

then V is called a R-vine. There are two important subclasses of R-vine, C-vine and D-vine. If there is
a node n ∈ Nj so that the degree of that node is d− j in an R-vine, it is called a C-vine. D-vine is an
R-vine wherein the degree of every node is at most 2.
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The above decomposition of the joint density in terms of vine structure is not unique. For example,
when d = 3, we have the following three available R-vine structures as in Figure 1. Note that in the case
of 3-dimensional R-vine structures, C-vine and D-vine are identical, which is no more true for d > 3.

C21 C13
2 1 3

21 13
C23|1

(c)

C13 C32
1 3 2

13 32
C12|3

(b)

C12 C23
1 2 3

12 23
C13|2

(a)

Figure 1. R-vine structures for 3 dimensions.

Note that the number of regular vine structures on d-dimensional variables grows
super-exponentially so that there are d! · 2(d−2

2 ) regular vine structures on d variables, as shown in Joe
and Kurowicka (2011). Therefore, it is already meaningless to display every possible vine structure if
d ≥ 5.

Therefore, for the calibration of vine copula model, we need to carefully determine the following
components based on observed data:

• Marginal distribution for each of D(n);
• Optimal d-dimensional vine structure;
• Copula family for each of pair copula in the selected vine structure.

For statistical inference, one may consider either the frequentist or the Bayesian approach and
subsequently choose the optimal structure via a model selection procedure. However, it can be
quite computationally demanding to choose an optimal model in both approaches. For example,
as mentioned in Table 1 of Gruber and Czado (2015), the size of search space of vine copula model
for d = 5 is already (1.3559 × 1011) when we consider seven families of copula for each of the pair
copulas, which is definitely computationally infeasible. In this regard, Dissmann et al. (2013) proposed
a top-down approach to choose the vine structure from a frequentist view. Gruber and Czado (2018)
proposed sequential vine copula model selection from a Bayesian perspective. Schamberger et al. (2017)
also considered a Bayesian approach to model dependence structure with a factor copula in order to
handle the dimensionality issue. Recently, Kreuzer and Czado (2019) showed that the pair copula
family can be chosen together with their parameters using the Hamiltonian MCMC.

The Bayesian approach can be beneficial in reserve modeling since it can incorporate the
uncertainty of parameter estimation and reflect it to compute the predictive distribution of future
unpaid claims, as proposed in Shi et al. (2012). Therefore, we propose the following two-step approach,
which can be considered as a compromise of Dissmann et al. (2013) and Gruber and Czado (2018):

1. Estimate the parameters with Bayesian inference and choose marginal distribution based on
Bayesian model selection criteria, such as deviance information criterion (DIC) and the logarithm
of the pseudomarginal likelihood (LPML). The DIC for each marginal distribution of nth line,
proposed by Spiegelhalter et al. (2002), is defined as

DIC(n) = −4
∫

`(θ(n)|d(n))π(θ(n)|d(n))dθ + 2`(θ̃(n)|d(n)),
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where θ̃(n) = E
[
θ(n)|d(n)

]
and d(n) = {d(n)i,2 , . . . , d(n)i,J−i+1|i = 1, . . . I} are the observed values of

incremental loss developments from nth line of business. Since this integral is hardly available in
a closed form, one can estimate DIC as follows:

D̂IC
(n)

= −4
S

∑
s=1

`(θ
(n)
[s] |d

(n)) + 2`

(
1
S

S

∑
s=1

θ
(n)
[s]

∣∣∣∣ d(n)

)
,

where {θ(n)
[s] }

S
s=1 are MCMC samples generated from the posterior density. Note that we prefer

models with smaller DIC values.

LPML is calculated based on the conditional predictive ordinate (CPO), which was proposed by
Gelfand et al. (1992) and Geisser (2017). The CPO for d(n)i,j is defined as follows:

CPO(n)
i,j =

∫
f (d(n)i,j |θ)π(θ(n)|d(n)

(−i,j))dθ(n),

where d(n)
(−i,j) = d(n) − d(n)i,j . Since CPO is usually not readily available in closed form, one can

estimate CPO(n)
i,j as follows, according to Gelfand and Dey (1994):

ĈPO
(n)
i,j = S

 S

∑
s=1

1

f (d(n)
(i,j)|θ[s])

−1

.

Finally, according to Ibrahim et al. (2014), CPO(n)
i,j can be summarized as LPML as follows:

LPML(n) =
I

∑
i=1

J+1−I

∑
j=2

log(ĈPO
(n)
i,j ).

We prefer models with larger LPML values.
2. Based on the fitted marginal model and corresponding posterior means of marginal parameters

θ̂(n) for n = 1, . . . , N, generate probability integral transfrom (PIT) Û(n)
ij = F(n)

(
d(n)ij

∣∣∣∣ θ̂(n)
)

and

optimize the following:

`

(
φ

∣∣∣∣ Û
)
=

I

∑
i=1

J+1−I

∑
j=2

[
log cφ

(
Û(1)

ij , . . . , Û(N)
ij

)]
, (2)

which ends up with the optimal vine copula structure and copula family for each pair copula using
the top-down algorithm of Dissmann et al. (2013). The algorithm starts with the choice of first tree
T1 and subsequently chooses Tj for j = 2, . . . , d− 1 while we keep the constraint of having R-vine
structure in (1). The optimal tree Tj is chosen by solving the following optimization problem:

argmin
Ej ,Nj

∑
e∈Ej

we,

where we is pairwise BIC of an edge e in our implementation.

In our search for the best family for each of pair copula, we use the aforementioned bivariate
Gaussian, Frank, Clayton, Gumbel, and their rotated copulas. Note that this approach also utilizes
the inference by margin (IFM) method proposed by Joe and Xu (1996), since it decomposes
estimation of marginal distribution and copula structure separately for model selection a with
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lesser computational burden. It should be noted that such computational convenience is obtained
at the expense of potential estimation bias, as shown in Louzada and Ferreira (2016).

3. Data Description

For the empirical analysis, we used a publicly available dataset from ACE Limited 2013 Global
Loss Triangles , which consists of aggregated claim developments for insurance operations in
North America (4 lines of business), insurance operations overseas (3 lines of business), and global
reinsurance operations (2 lines of business). A description and the corresponding index for each line
of business are given in Table 1. We incorporate a 9-dimensional vine copula structure to capture
possible dependence among all lines of business. Indeed, the current COVID-19 situation could be a
clear example of showing the inappropriateness of ignoring potential dependencies among different
countries. Note that the dataset and code for data analysis are attached as Supplementary Materials.

Table 1. Description of the lines of business.

Index Description

1 North American Workers’ Compensation
2 North American General Liability
3 North American Other Casualty
4 North American Non-Casualty
5 Overseas General Casualty
6 Overseas General Non-Casualty
7 Overseas General Personal Accident
8 Global Reinsurance Property
9 Global Reinsurance Non-Property

Although we consider all possible lines of business simultaneously here, an actuary who applies
vine copulas to model dependence among the lines of business should be careful, since the complexity
of the vine copula structure increases super-exponentially as the dimensionality grows. Therefore, it is
a role of an actuary to apply his/her industrial experience or knowledge for the dependence modeling.
Further, it is also possible to observe more than 10 lines of business according to the classification in
Schedule P of the National Association of Insurance Commissioners (NAIC) annual report, including
but not limited to:

• Homeowners/farmowners;
• Private passanger auto liability/medical;
• Commercial auto/truck liability/medical;
• Worker’s compensation;
• Special liability;
• Other liability;
• Fidelity/surety.

Therefore, it is also possible to merge some lines of business into one category in order to not only
enhance homogeneity and credibility in the analysis but also avoid too much complexity of the vine
structure due to the large number of lines of business.

The loss development triangles, which are training sets in terms of predictive analytics, can be
expressed as follows:

D1:I = {Y
(n)
ij : 1 ≤ i ≤ I and 1 ≤ j ≤ min(I, I + 1− i), n = 1, . . . , 9}. (3)

Our task is to predict the cumulative paid claims for the next years, which are described as follows:

DI+k = {Y
(n)
ij : 1 + k ≤ i ≤ I and j = I + 1 + k− i, n = 1, . . . , 9}. (4)
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For enterprise risk management (ERM) purposes, insurance companies are usually interested in
the distribution of aggregate unpaid claims after one year of loss development, which is determined
by incremental paid losses defined as follows:

L(n) =
I

∑
i=2

(
Y(n)

i,I+2−i −Y(n)
i,I+1−i

)
=

I

∑
i=2

D(n)
i,I+2−i ·Y

(n)
i,I+1−i, L =

N

∑
n=1

L(n). (5)

This formulation validates us to model D(n)
i,j rather than Y(n)

i,j because one can see that

E [L|D1:I ] =
N

∑
n=1

I

∑
i=2

E
[

D(n)
i,I+2−i|D1:I

]
·Y(n)

i,I+1−i.

A simple approach for the analysis of L is the silo approach, which means we just aggregate all
lines of business so that the paid losses of the same development lag and accident year are merged and
modeled altogether. In this case, one can write L as follows:

L =
I

∑
i=2

(
Y•i,I+2−i −Y•i,I+1−i

)
=

I

∑
i=2

D•i,I+2−i ·Y•i,I+1−i,

where Y•i,j = ∑N
n=1 Y(n)

i,j and D•i,j = Y•i,j+1/Y•i,j. However, such an approach ignores the heterogeneity
of the lines of business and could be problematic. Suppose there are two lines of business, personal
and commercial auto insurances, and reported losses of these lines are given in Table 2. Note that
the incremental development is calculated as log Yj+1/Yj. One can see that due to the difference in
volume, the volatility of loss development for the commercial auto line is wiped out if we analyze the
aggregated data. Therefore, the vine copula model can be considered as a flexible generalization of
two extreme models, silo and independent approaches, so that one can consider possible dependence
and heterogeneity among the lines of business simultaneously.

Table 2. An illustrative example of heterogeneity among business lines.

Paid Losses Incremental Development

Year Personal Commerical Aggregate Personal Commercial Aggregate

2 5,000,000 800,000 5,800,000 - - -
3 5,200,000 1,200,000 6,400,000 3.92% 40.55% 9.84%
4 5,300,000 1,500,000 6,800,000 1.90% 22.31% 6.06%

4. Model Selection and Parameter Estimation

For marginal distribution, we apply the idea of the cross-classified model for each line of business
as in Shi and Frees (2011) and Taylor and McGuire (2016), which regresses Y(n)

ij to linear predictor

γ(n) + α
(n)
i + δ

(n)
j as follows:

Lognormal: E
[
log Y(n)

ij

]
= γ(n) + α

(n)
i + δ

(n)
j ,

Gamma: E
[
Y(n)

ij

]
= exp(γ(n) + α

(n)
i + δ

(n)
j ),

(6)

where α
(n)
i corresponds to the effect for the ith accident year and δ

(n)
j corresponds to the cumulative

effect up to jth development lag, for nth line of business, respectively.
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Recall that it is in our interests to predict E
[
Y(n)

i,j+1|Y
(n)
i,j

]
= Y(n)

i,j E
[

D(n)
i,j+1

]
. Therefore, one can

rewrite (6) in the following way:

Lognormal: E
[
log D(n)

i,j+1

]
= η

(n)
j+1,

Gamma: E
[

D(n)
i,j+1

]
= exp(η(n)

j+1),
(7)

where η
(n)
j+1 = δ

(n)
j+1− δ

(n)
j and D(n)

i,j+1 = Y(n)
i,j+1/Y(n)

i,j . Therefore, η
(n)
j+1 can be interpreted as the incremental

loss development factor from jth lag to j + 1th lag. In this regard, we utilize two candidate distributions
in (7) and compare the model selection diagnostics to choose a suitable distribution for each of
marginal models.

Further, it is natural to expect that for a fixed accident year, paid claim amounts gradually increase
until they are fully mature and developed, while the magnitude of development gets smaller as
development lag increases, which means the incremental loss development factor is expected to be
greater than 1 but monotonically decreasing until it converges to 1. In terms of cross-classified model,
such a statement is equivalent to the following mathematical condition:

η
(n)
2 ≥ η

(n)
3 ≥ . . . η

(n)
L(n) = 0, (8)

for a large enough integer L(n), or there are ζ
(n)
t ∈ [0, ∞) for t = 2, . . . , L(n) and n = 1, . . . , 9 such that

η
(n)
j = ∑

L(n)
t=j ζ

(n)
t . Therefore, we may suggest the following four models as the candidates for marginal

distribution of each line of business:

• LNU: The cross-classfied lognormal model in (7);
• LNC: The cross-classfied lognormal model in (7) with (8);
• GamU: The cross-classfied gamma model in (7);
• GamC: The cross-classfied gamma model in (7) with (8).

All of the four models are fitted via RStan because of its flexibility. For example, one can
incorporate the constraint in (8) by forcing a lower limit of ζ

(n)
t as 0 in RStan and using a diffuse

uniform prior on a positive real number for ζ
(n)
t , n = 1, . . . , 9, and t = 1, . . . , J. For the unconstrained

models, a diffuse uniform prior on the positive real number is directly used for η
(n)
j+1, n = 1, . . . , 9,

and j = 2, . . . , J. For each marginal model, four chains with 1000 iterates are used; the first 500 iterates
are discarded for burn-in, which usually requires computation time for MCMC sampling of less than
a second.

Table 3 provides a summary of the estimates of parameters in all models for the marginal
components, which are summarized with posterior mean and upper/lower bounds of 90% of the
Bayesian credible interval for each parameter. One can see that η̂

(n)
9 tends to be greater than or equal

to η̂
(n)
8 in the unconstrained models, whereas η̂

(n)
8 > η̂

(n)
9 for all n = 1, . . . , 9 in the constrained models,

which is a more natural pattern in loss development analysis.
When posterior MCMC samples of parameters are obtained, it is quite important to make sure that

these samples converge to (proper) posterior distributions. In this regard, we use R̂ statistics proposed
by Gelman and Rubin (1992) and traceplots which enable us to judge the convergence of MCMC
sampling with the generated samples. Basically, R̂ statistics tell us that the samples from distinct
chains are well-mixed so that the chains are considered converged if R̂ ' 1. Table A1 in Appendix A
shows that R̂ ' 1 for all parameters, which tells us that the chains are well-mixed. One can also see
that MCMC chains are well-mixed by looking at selected traceplots of maginal models, as shown in
Figure A1. It indicates different MCMC chains end up with similar empirical distributions, which is a
necessary condition of the convergence of the MCMC algorithm to the correct posterior distribution.
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After the convergence of Bayesian models is assessed, we compare the goodness-of-fit of Bayesian
models using DIC and LPML. Based on the DIC and LPML values for fitted marginal models in
Table 4, it turns out that lognormal distribution is favored compared to gamma distribution. Further,
DIC values of constrained lognormal distribution are always less than ones of unconstrained lognormal
distribution, while LPML values have no definitive patterns between constrained and unconstrained
lognormal distributions. Therefore, we suggest to use constrained lognormal distribution as the
marginal distribution of every line of business, based on the model selection diagnostics and
interpretability of the regression coefficients while unconstrained lognormal distributions are
considered as a benchmark.

Once a marginal distribution for each triangle is specified, the dependence structure can be
modeled with a 9-dimensional vine copula. Since marginal distributions are fixed and calibrated, it is
possible to optimize (2). For the optimization routine, we use the algorithm of Dissmann et al. (2013)
which is readily available in an R package VineCopula, as a function RVineStructureSelect, which
explores both the optimal vine structure and the choice of family for each of the pair copulas
sequentially. For a detailed explanation of such an implementation, see Chapter 8 of Czado (2019).

In our search for the vine structure, we also consider the sparsity of the vine copula. Since we
need (d

2) pair copulas to construct a d-dimensional vine structure, the number of required pair copulas
quadratically increases as the dimension increases, which adds both complexity and computational
burden to the optimization scheme. Therefore, in this article, we also incorporate the idea of a sparse
copula so that a pair copula is considered to be an independent copula unless the estimated association
Kendall’s Tau is significantly different from 0 for the pair copula. More specifically, we use the following
test statistic T based on the estimated value of Kendall’s Tau, τ̂ as proposed in Genest and Favre (2007):

T =

√
9m(m− 1)
2(2m + 5)

× |τ̂|,

where T asymptotically follows a standard normal distribution if m is large enough. For more
approaches of incorporating sparsity in a high-dimensional vine copula, see Gruber and Czado
(2018) and Nagler et al. (2019).

According to the optimization with the data, the optimal vine structure is given Table 5 which
only displays non-independent pair copulas. In the table, φ and τ mean estimated copula parameter
and Kendall’s Tau for each pair copula, respectively. Some empirical relationships are observed by
the estimated copula parameters, which seem intuitive considering the nature of the lines of business.
For example, it might be quite natural to have strongly positive dependence among the development
patterns of line 4 (North American non-casualty) and line 6 (overseas general non-casualty) due
to inherent characteristics of the same claim type. Dependence between line 8 (global reinsurance
property) and line 9 (global reinsurance non-property) is captured by the Gumbel copula, which
indicates there is positive association between claim settlements in the initial years (that corresponds
to upper tail part) for a global reinsurance business unit. Such a positive tail dependence might have
originated from an internal decision on the claim processing in the same business unit. Note that a
company has limited resources to deal with ligitations related to the claim adjustments so that claim
adjustments can be delayed in a line by focusing on expediation in claim adjustments in another line,
which might explain negative associations between lines 6 and 9, lines 2 and 7, and lines 5 and 9.
One can see that the estimated vine structure exhibits enough of a degree of sparsity because only 10
pair copulas are non-independent among (9

2) = 36 pair copulas in the vine structure so that most of the
dependencies arise from tree 1, as shown in Figure 2. There are nine lines of business that correspond
to the nodes of tree 1 so that we have nine nodes and eight edges as an R-vine structure which captures
the first layer of dependence among the lines of business. Since the dependence of a pair of copulas is
quite weak except for those in tree 1, we only display the R-vine structure for tree 1.
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Table 3. Estimated regression coefficients for marginal models.

Unconstrained Lognormal Model

T1 T2 T3 T4 T5 T6 T7 T8 T9

Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95%

η2 0.79 0.73 0.85 1.26 1.19 1.33 0.66 0.62 0.70 0.36 0.32 0.40 0.72 0.70 0.74 0.81 0.79 0.83 0.53 0.53 0.54 1.45 1.28 1.61 1.80 1.74 1.86
η3 0.32 0.26 0.38 0.61 0.54 0.69 0.22 0.18 0.26 0.05 0.02 0.09 0.27 0.24 0.29 0.19 0.18 0.21 0.09 0.08 0.09 0.28 0.10 0.47 0.68 0.62 0.74
η4 0.19 0.13 0.26 0.43 0.35 0.51 0.13 0.09 0.17 0.03 0.00 0.07 0.16 0.14 0.19 0.07 0.05 0.10 0.03 0.03 0.04 0.14 0.02 0.31 0.38 0.31 0.44
η5 0.14 0.07 0.21 0.24 0.16 0.33 0.08 0.03 0.13 0.03 0.00 0.07 0.11 0.08 0.14 0.03 0.01 0.05 0.01 0.01 0.02 0.12 0.01 0.28 0.26 0.19 0.33
η6 0.10 0.02 0.18 0.21 0.12 0.31 0.06 0.01 0.11 0.03 0.00 0.07 0.07 0.04 0.10 0.02 0.00 0.04 0.01 0.00 0.02 0.12 0.01 0.30 0.17 0.10 0.25
η7 0.08 0.01 0.16 0.10 0.02 0.21 0.04 0.00 0.09 0.03 0.00 0.08 0.05 0.01 0.08 0.02 0.00 0.04 0.01 0.00 0.02 0.14 0.01 0.34 0.12 0.03 0.20
η8 0.08 0.01 0.18 0.10 0.01 0.21 0.04 0.00 0.10 0.04 0.00 0.10 0.04 0.01 0.08 0.02 0.00 0.05 0.01 0.00 0.02 0.17 0.01 0.43 0.08 0.01 0.17
η9 0.10 0.01 0.24 0.11 0.01 0.26 0.06 0.01 0.13 0.06 0.00 0.14 0.04 0.00 0.09 0.03 0.00 0.06 0.01 0.00 0.03 0.23 0.02 0.57 0.10 0.01 0.22

Unconstrained Gamma Model

T1 T2 T3 T4 T5 T6 T7 T8 T9

Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95%

η2 0.81 0.76 0.86 1.27 1.21 1.34 0.67 0.63 0.70 0.37 0.33 0.41 0.72 0.70 0.74 0.81 0.79 0.83 0.53 0.53 0.54 1.60 1.43 1.76 1.81 1.76 1.87
η3 0.32 0.27 0.38 0.62 0.55 0.69 0.22 0.18 0.26 0.05 0.01 0.10 0.27 0.24 0.29 0.19 0.17 0.21 0.09 0.08 0.09 0.29 0.11 0.47 0.68 0.63 0.74
η4 0.19 0.13 0.25 0.44 0.36 0.51 0.13 0.09 0.17 0.03 0.00 0.07 0.16 0.14 0.19 0.08 0.05 0.10 0.03 0.03 0.04 0.14 0.02 0.31 0.38 0.32 0.44
η5 0.14 0.07 0.20 0.25 0.17 0.33 0.08 0.03 0.13 0.03 0.00 0.07 0.11 0.09 0.14 0.03 0.01 0.05 0.01 0.01 0.02 0.12 0.01 0.29 0.26 0.20 0.33
η6 0.09 0.02 0.17 0.21 0.13 0.30 0.06 0.02 0.11 0.03 0.00 0.07 0.07 0.04 0.10 0.02 0.00 0.04 0.01 0.00 0.02 0.13 0.01 0.31 0.17 0.10 0.25
η7 0.07 0.01 0.15 0.10 0.02 0.20 0.03 0.00 0.08 0.03 0.00 0.09 0.04 0.01 0.08 0.02 0.00 0.04 0.01 0.00 0.02 0.14 0.01 0.35 0.12 0.04 0.20
η8 0.08 0.01 0.17 0.10 0.01 0.20 0.04 0.00 0.10 0.04 0.00 0.11 0.04 0.01 0.08 0.02 0.00 0.05 0.01 0.00 0.02 0.18 0.01 0.45 0.08 0.01 0.17
η9 0.10 0.01 0.22 0.10 0.00 0.26 0.05 0.00 0.13 0.06 0.01 0.15 0.03 0.00 0.08 0.02 0.00 0.06 0.01 0.00 0.02 0.25 0.02 0.64 0.09 0.01 0.22

Constrained Lognormal Model

T1 T2 T3 T4 T5 T6 T7 T8 T9

Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95%

η2 0.79 0.74 0.85 1.26 1.19 1.32 0.66 0.63 0.70 0.36 0.32 0.40 0.72 0.70 0.74 0.81 0.79 0.83 0.53 0.53 0.54 1.45 1.29 1.61 1.80 1.75 1.85
η3 0.33 0.27 0.38 0.61 0.54 0.69 0.21 0.18 0.25 0.07 0.04 0.11 0.27 0.24 0.29 0.19 0.17 0.21 0.09 0.08 0.09 0.33 0.20 0.48 0.68 0.62 0.73
η4 0.20 0.15 0.26 0.43 0.36 0.50 0.14 0.10 0.17 0.05 0.03 0.08 0.16 0.14 0.19 0.08 0.05 0.10 0.03 0.03 0.04 0.21 0.12 0.33 0.38 0.32 0.44
η5 0.15 0.10 0.20 0.27 0.20 0.34 0.09 0.06 0.12 0.04 0.02 0.06 0.11 0.09 0.14 0.04 0.02 0.06 0.02 0.01 0.02 0.16 0.08 0.25 0.26 0.20 0.32
η6 0.11 0.07 0.16 0.20 0.13 0.27 0.06 0.04 0.09 0.03 0.01 0.05 0.08 0.05 0.10 0.02 0.01 0.04 0.01 0.01 0.02 0.12 0.05 0.20 0.18 0.13 0.24
η7 0.08 0.03 0.12 0.13 0.06 0.20 0.04 0.02 0.07 0.02 0.01 0.04 0.05 0.03 0.07 0.02 0.01 0.03 0.01 0.00 0.01 0.09 0.03 0.16 0.12 0.07 0.18
η8 0.05 0.01 0.10 0.08 0.02 0.15 0.03 0.01 0.05 0.01 0.00 0.03 0.03 0.01 0.06 0.01 0.00 0.02 0.00 0.00 0.01 0.06 0.01 0.12 0.08 0.03 0.13
η9 0.03 0.00 0.07 0.04 0.00 0.10 0.01 0.00 0.03 0.01 0.00 0.02 0.02 0.00 0.04 0.01 0.00 0.01 0.00 0.00 0.01 0.03 0.00 0.08 0.04 0.00 0.09



Risks 2020, 8, 111 12 of 23

Table 3. Cont.

Constrained Gamma Model

T1 T2 T3 T4 T5 T6 T7 T8 T9

Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95%

η2 0.81 0.76 0.86 1.27 1.21 1.33 0.67 0.63 0.70 0.37 0.33 0.40 0.72 0.70 0.74 0.81 0.79 0.83 0.53 0.53 0.54 1.60 1.44 1.76 1.81 1.76 1.86
η3 0.33 0.27 0.38 0.62 0.55 0.69 0.22 0.18 0.25 0.07 0.04 0.10 0.27 0.24 0.29 0.19 0.18 0.21 0.09 0.08 0.09 0.33 0.21 0.48 0.68 0.63 0.74
η4 0.20 0.15 0.25 0.44 0.37 0.51 0.13 0.10 0.17 0.05 0.03 0.07 0.16 0.14 0.19 0.08 0.06 0.10 0.03 0.03 0.04 0.22 0.12 0.32 0.38 0.32 0.44
η5 0.15 0.10 0.19 0.27 0.20 0.34 0.09 0.06 0.12 0.04 0.02 0.06 0.11 0.09 0.14 0.04 0.02 0.06 0.02 0.01 0.02 0.16 0.08 0.25 0.26 0.21 0.32
η6 0.11 0.06 0.15 0.20 0.14 0.27 0.06 0.03 0.09 0.03 0.01 0.05 0.08 0.05 0.10 0.02 0.01 0.04 0.01 0.01 0.02 0.12 0.05 0.20 0.18 0.13 0.24
η7 0.08 0.04 0.12 0.13 0.06 0.19 0.04 0.02 0.07 0.02 0.01 0.04 0.05 0.03 0.07 0.02 0.01 0.03 0.01 0.00 0.01 0.09 0.03 0.16 0.12 0.07 0.18
η8 0.05 0.02 0.09 0.08 0.02 0.15 0.03 0.01 0.05 0.01 0.00 0.03 0.03 0.01 0.06 0.01 0.00 0.02 0.00 0.00 0.01 0.06 0.01 0.12 0.08 0.03 0.13
η9 0.03 0.00 0.06 0.04 0.00 0.10 0.01 0.00 0.04 0.01 0.00 0.02 0.02 0.00 0.04 0.01 0.00 0.01 0.00 0.00 0.01 0.03 0.00 0.08 0.04 0.00 0.09
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Table 4. DIC and LPML for marginal components.

T1 T2 T3 T4 T5 T6 T7 T8 T9

LNU −57.1 −46.5 −90.3 −84.2 −125.1 −140.5 −224 16.8 −61.8

GamU −38.6 −7.7 −74.4 −75.3 −105.9 −123.6 −214.1 47.6 −14.9

LNC −62.9 −50.5 −95.9 −88.4 −129.2 −144.1 −228.5 11.9 −66.7
DIC

GamC −44.2 −11.8 −79.2 −79.6 −110.5 −127.3 −218 42.8 −19.2

LNU −326.2 −129.3 −117.2 −291.7 −83.2 −127.3 −43.2 −241.8 −155.2

GamU −379.2 −168.6 −144.3 −364.8 −103.1 −162 −62.1 −342.7 −215.2

LNC −368.1 −132.7 −123.4 −300.6 −82.6 −118.1 −43.4 −242 −144.8
LPML

GamC −419.6 −176.4 −145.5 −392.5 −100.1 −161.3 −57.5 −350.5 −219.5

Table 5. Specification of vine structure.

Tree Edge Family φ τ

1 9,8 Gumbel 1.87 0.46
1 9,6 90◦ rotated Clayton −1.20 −0.37
1 8,1 Frank 9.40 0.65
1 1,7 270◦ rotated Clayton −0.20 −0.09

1 7,2 90◦ rotated Clayton −0.95 −0.32
1 6,4 Frank 5.87 0.50
1 9,5 270◦ rotated Gumbel −1.24 −0.20
1 4,3 Survival Gumbel 1.61 0.38

2 9,4;6 90◦ rotated Gumbel −1.35 −0.26
3 9,7;8,1 Survival Clayton 0.52 0.21

We also visualize the dependence structure via normalized contour plots in Figure 3, which
displays the association between two probabilty integral transforms in a normalized scale. For example,
if a pair copula c(u1, u2) is given, then the corresponding normalized contour plot gives us a contour
plot with the following density g:

g(Φ−1(u1), Φ−1(u2)) = c(u1, u2)φ(Φ−1(u1))φ(Φ−1(u2)).

Tree 1

SG(0.38)

G270(−0.2)

F(0.5)

C90(−0.32)

C270(−0.09)
F(0.65)

C90(−0.37)

G(0.46)

3

5

4

2

7
1

6

8

9

Figure 2. R-vine structure for tree 1.
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Normalized contour plots for trees 1, 2, and 3 in the chosen vine structure are provided in Figure 3.
One can see that some pair copulas (for example, c4,3 and c8,1) demonstrate strong tail dependence
or skewed shape of the contours, which cannot be captured with naive use of eillptical copulas such
as Gaussians or t−copulas. Therefore, Figure 3 substantiates that the choice of pair copula families
are enough to describe the dependence structure observed in the data. In the figure, the first row
corresponds to normalized contour plots for tree 3 where one can see concentric circles as contour plots,
which indicates independence of corresponding pair copulas. On the other hand, one can see many
skewed contour plots for tree 3 from the third row of the figure, which indicates varying dependence
of corresponding pair copulas.

9,3 ; 6,4 4,5 ; 6,9 8,4 ; 9,6 8,2 ; 1,7 9,7 ; 8,1 6,1 ; 9,8

6,3 ; 4 6,5 ; 9 9,4 ; 6 1,2 ; 7 8,7 ; 1 9,1 ; 8 8,6 ; 9

4,3 9,5 6,4 7,2 1,7 8,1 9,6 9,8

Figure 3. Normalized contour plots for trees 1, 2, and 3.

5. Validation and Actuarial Implication

Once a predictive model is calibrated based on the upper loss triangles D1:9, which is defined
in (3), it needs to be validated based on available D9+k, which is defined in (4). For this purpose,
D10 = {Y(n)

ij : 2 ≤ i ≤ 9 and j = 11− i, n = 1, . . . , 9}, the latest diagonals are used as a validation set.
Under the proposed lognormal model for marginal components, one can show that

E
[
Y(n)

i,j+1|Y
(n)
i,j

]
= E

[
D(n)

i,j+1

]
Y(n)

i,j = exp
(

η
(n)
i,j+1 +

1
2

σ2(n)
)

Y(n)
i,j ,

so that a point estimate of Y(n)
i,11−i is given as Ŷ(n)

i,11−i = Y(n)
i,10−i × exp

(
η̂
(n)
11−i +

1
2 σ̂2(n)

)
, where η̂(n) and

σ̂(n) are obtained as posterior means from the MC samples of parameters. Since it is of interest to
predict the future unpaid claim L as defined in (5), here we apply three models to project the unpaid
claims; the independent model which assumes independence among all lines of business, the silo
model which assumes a perfect positive association among all lines of business, and the copula model
which utilizes the vine copula structure specified and optimized in Section 4.

Due to linearity of expectation, it is natural to expect that point estimates of reserves under the
copula model would be more or less the same as the estimates under independent model. However,
insurance companies are often interested in not only the predictive mean, but also the confidence
interval of the estimated mean and risk measures for enterprise risk management. In this regard,
the proposed vine copula model allows us to consider the impacts of associations among the lines
of business that might lead to more accurate estimation of risk measures. For example, if there are
positive associations among the lines of business, then the independent model will underestimate
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Value at Risk (VaR) or Conditional tail expectation (CTE) since a worse scenario can affect all lines of
business adversely.

Table 6 summarizes the point estimates of unpaid claims for the subsequent calendar year based on
the copula model and the silo model. Note that point estimates of unpaid claims from the independent
model should be the same as ones from the copula model, as long as we model each line of business
with the same marginal distribution. Further, although we primarily use constrained models for the
marginal components, here we also provide the point estimates of unpaid claims from the models
where we do not impose any constraints on the parameters.

From the table, it is shown that copula model with constraints turns out to be the best model
in terms of prediction of aggregate unpaid claims for the subsequent year. We observe that under
unconstrained models, the predicted values of unpaid claims can be severely exaggerated, especially
for mature years (in our case, AY = 2005). That is because the value of η

(n)
9 can be overestimated in

the unconstrained models, as observed in Table 3. Therefore, it implies that naive implementation of
unconstrained model for multi-line reserving problem may end up with poor prediction.

Table 6. Summary of unpaid claims prediction with the fitted models.

Unconstrained Constrained

Copula Silo Copula Silo Actual

AY = 2005 529,426 219,222 148,767 81,657 90,662
AY = 2006 264,689 167,787 185,653 131,065 109,420
AY = 2007 299,024 196,099 319,881 227,435 209,649
AY = 2008 454,503 404,983 461,885 414,982 338,359
AY = 2009 405,808 386,094 447,697 409,172 304,544
AY = 2010 651,228 610,943 703,166 615,770 450,724
AY = 2011 942,324 1,071,867 986,753 1,070,549 762,328
AY = 2012 2,182,202 2,649,858 2,181,708 2,648,604 1,837,070

Total 5,729,205 5,706,854 5,435,511 5,599,236 4,102,756

In order to evaluate the prediction performance, here we use validation measures such as root
mean squared error (RMSE) and mean absolute error (MAE) defined as follows:

RMSE =:

√√√√1
8

9

∑
i=2

(Ŷ•i,11−i −Y•i,11−i)
2, MAE =:

1
8

9

∑
i=2
|Ŷ•i,11−i −Y•i,11−i|,

where Ŷ•i,11−i is the estimate of Y•i,11−i under each method. We prefer the models with smaller values
of RMSE and/or MAE. According to Table 7, the copula model with constraints still turns out to
be the best model in terms of RMSE and MAE, which evaluate the performance of predicting the
point estimates.

Table 7. Summary of validation performance measures of the fitted models.

Unconstrained Constrained

Copula Silo Copula Silo

RMSE 234,540 318,849 190,381 315,934
MAE 203,306 203,900 166,594 189,311

However, it is of less concern to get point estimates of L, the aggregate unpaid claims. Actuaries
(and companies) want to know a range of estimates, or the predictive distribution of the aggregate
unpaid claims to assess the quality of decision making on reserve and retain appropriate amounts of
risk capital for the whole company. Thus, here we provide a way to simulate predictive samples of
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L(n) and describe the predictive distribution of L(n) for n = 1, . . . , 9 and subsequently L = ∑9
n=1 L(n)

with the following steps, which are similar to those of Gao (2018):

1. Generate a 9-dimensional uniform random vector (ur:(1)
ij , . . . , ur:(9)

ij ) based on the specified

copula structure in a sequential way. For example, one can first generate (ur:(1)
ij , ur:(2)

ij ) from

C12. After that, ur:(3)
ij is generated subsequently due to the following identity:

U [0, 1] d
= w3 = C3|12(u3|u1, u2) = h3|1;2

(
C3|2(u3|u2), C1|2(u1|u2)

)
,

where h3|1;2(w, v) = ∂
∂w C13;2(w, v). One can continue such implementation to obtain a random

sample of d-dimensional uniform vector, which is readily available with RVineSim function in R
package VineCopula. (For details, see Chapter 6 of Czado (2019).)

2. Based on the lognormal assumption of marginal components, (Dr:(1)
i,j , . . . , Dr:(9)

i,j ) are generated

as follows; Dr:(n)
i,j = exp

(
η̂

r:(n)
j + Φ−1(ur:(n)

ij )σ̂r:(n)
)

where η̂
r:(n)
j and σ̂r:(n) are rth MC samples of

η
(n)
j and σ(n) from the marginal model for the nth line of business, respectively.

3. Repeat steps 1 to 2 to get Lr:(n), the MC samples of L(n) for r = 1, . . . , R where

Lr:(n) =
9

∑
i=2

Ŷr:(n)
i,11−i −Y(n)

i,10−i =
9

∑
i=2

(
Dr:(n)

i,11−i − 1
)

Y(n)
i,10−i and Lr:• =

9

∑
n=1

Lr:(n).

Since {Y(n)
i,10−i : 2 ≤ i ≤ 9, n = 1, . . . , 9} ⊂ D1:9, only {D(n)

i,11−i : 2 ≤ i ≤ 9, n = 1, . . . , 9} needs
to be simulated to describe the distribution of L. In the simulation scheme, possible uncertainties of
estimated parameter values are already considered since the marginal parameters are estimated with
the Bayesian approach.

Figure 4 shows the predictive kernel densities of L based on the Monte Carlo samples generated
with the aforementioned approach from the constrained model. In the silo approach, all nine triangles
are aggregated into one triangle based on the development lags and accident years, so that loss
development patterns of all business lines are implicitly assumed to be identical, which may not be
true in some cases. One can see that the predictive distribution of L under the copula model is more
jagged than one under the independent model, but the copula model is still closer to the independent
model than the silo model. It agrees with the proposed vine copula structure described in Figure 2,
which shows a sufficient degree of sparsity.

The discrepancy among predictive distributions based on copula, independent, and silo
models also can be quantified via Hellinger distance. Hellinger distance, originally proposed by
Hellinger (1909), is used to quantify the "distance" between two distributions. For example, if there
are two functions f and g which are probability density functions of two distributions F and G, the
square of Hellinger distance is calculated as follows:

H2(F, G) = 1−
∫ √

f (x)g(x)dx.

One can see that 0 ≤ H(F, G) ≤ 1 is always satisfied with Hellinger distance so that it is well
calibrated and interpreted, where H(F, G) = 0 means F and G are identical almost surely and
H(F, G) = 1 means F and G are totally different. Due to this property, Hellinger distance has
been widely used in the statistics literature, such as Beran (1977), and estimation of H(F, G) using
generated samples from F and G can be easily implemented via R packages such as statip. Here,
Ĥ2(L|Copula, L|Independent), the square of the Hellinger distance between the kernel density of L
under copula model with constraints (illustrated with blue solid line in Figure 4) and the density under
the independent model with constraints (illustrated with black dotted line in Figure 4) is about 4.33%
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while Ĥ2(L|Copula, L|Silo) = 13.54%. Therefore, one can see that the proposed vine copula structure
can capture weak dependencies among the lines of business.

Kernel density

Aggregate Unpaid Claims

D
en

si
ty

4 × 106 5 × 106 6 × 106 7 × 106 8 × 106

0
2

×
10

−
7

4
×

10
−

7
6

×
10

−
7

Independent
Copula
Silo

Figure 4. Predictive density of aggregate unpaid claims for constrained models.

Note that Hellinger distance is a special case of the functional Bregman divergence proposed in
Goh and Dey (2014) and Jeong (2020), which is given as follows:

Dψ(F, G) =
∫

ψ

(
f (x)
g(x)

)
g(x)dx,

where ψ(·) is a strictly convex and differentiable function with positive support and ψ(1) = 0. One can
see that Dψ(F, G) = H2(F, G) if ψ(z) = 1 −

√
z, and Dψ(F, G) is Kullback–Leibler divergence if

ψ(z) = − log z.
Based on the predictive distributions of L and L(n) for n = 1, . . . , 9, one can calculate the risk

margins for the unpaid claims as in Table 8. Both VaR and CTE are estimated in an empirical way—in
other words, based on the generated samples of the predictive distribution of L or L(n). Usually,
it is expected that a company can get a benefit from the diversification of risks for multiple lines of
business so that the risk capital for aggregate reserve is less than the sum of the risk capitals for the
reserve of each line, which is known as subadditivity of risk measure. Although subadditivity is not
guaranteed for VaR, it is guaranteed for CTE and we can quantify the diversification effects by taking
the differences of risk capitals by subtracting the risk capital for aggregate reserve from the sum of the
risk capitals for the reserve of each line. Table 9 summarizes measured diversification effects for given
models. We can observe that the measured diversification effect of the copula model is much greater
than that of the silo model because of weak dependence captured in the vine structure, although it is
still less than that of the independent model, which assumes perfect independence among the lines
of business.
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Table 8. Estimated risk margins for the unpaid claims.

VaR CTE

90% 95% 99% 90% 95% 99%

Marginal T1 384,383 420,016 494,059 432,782 464,901 521,869
Marginal T2 1,403,464 1,520,387 1,720,617 1,560,576 1,657,167 1,893,831
Marginal T3 655,532 694,812 766,766 707,338 740,161 805,153
Marginal T4 1,657,500 1,802,081 2,126,876 1,858,735 1,993,388 2,313,396
Marginal T5 777,885 807,011 869,457 818,302 844,170 895,520
Marginal T6 691,142 714,401 757,403 721,538 741,557 791,119
Marginal T7 405,697 413,424 428,243 416,023 423,117 439,641
Marginal T8 586,402 696,629 1,009,717 757,769 878,869 1,199,343
Marginal T9 556,892 591,841 658,353 603,369 633,144 703,385
Marginal Total 7,118,897 7,660,602 8,831,491 7,876,431 8,376,473 9,563,257

Independent Aggregate 6,163,307 6,363,592 6,755,125 6,428,484 6,608,753 6,978,484
Copula Aggregate 6,145,848 6,376,847 6,774,463 6,435,712 6,610,684 6,995,674
Silo Aggregate 6,434,983 6,692,370 7,309,860 6,815,535 7,076,775 7,586,896

Table 9. Risk reduction from diversification.

VaR CTE

90% 95% 99% 90% 95% 99%

Independent 955,590 1,297,010 2,076,366 1,447,947 1,767,720 2,584,773
Copula 973,049 1,283,755 2,057,028 1,440,719 1,765,789 2,567,583
Silo 683,914 968,232 1,521,631 1,060,896 1,299,698 1,976,361

6. Practical Issues for Implementation

Note that a loss reserving dataset from a single company was utilized in this article because a
primary insurer will be more interested in analysis of dependence among the lines of business in
the same company for effective enterprise risk management, rather than whole industry. However,
this methodology can be applied for analysis of reserving trend in a dataset of several companies as
well. For example, analyzing dependencies among the loss development profiles of several companies
can be of interest for the regulatory authorities and reinsurance companies.

One can be also concerned about the predictive ability of these models, which can be distorted
by catastrophic claims. In this regard, insurance companies often decompose the loss development
profiles into two layers, primary and excess layers, to minimize the distortion impact from the presence
of catastrophic claims (Dew and Hedges 1998), and our proposed methodology can be applied to
analyze dependencies among the loss development for the primary layer. Note that such distinction of
layers is usually internal and may not be disclosed to the public, which also applies to the dataset used
in this article.

7. Conclusions

In this article, we explored and introduced a novel approach which considered possible
dependence among the multiple lines of business via vine copula. Use of a vine copula is very
flexible and it allows us to model high-dimensional dependence among the business lines, not only
bivariate dependence. In the case of traditional copula models, one needs to calibrate many copula
models with different families, and go through model validation procedure to choose the best one
among the candidates. On the other hand, our proposed vine copula structure enables us to explore
the optimal copula structure for the given data in a unified manner.

For model selection, a stepwise approach can be applied to choose the marginal distributions,
copula structure, and family for each pair of copulas subsequently. Our empirical analysis on a
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synthetic insurance portfolio consisting of nine lines of business showed weak associations among
the lines.

Further, it was also shown that the naive implementation of a cross-classified model may result in
a counterintuitive pattern of loss development, so one might consider a constrained cross-classified
model to mitigate this issue. In our work, constraints on the development lag parameters are naturally
incorporated via prior elicitation in a Bayesian framework. We expect that a more thorough discussion
of the constrained cross-classified model in terms of variable selection could be one of the future
directions of this work.

Supplementary Materials: The dataset and code for data analysis are available at https://github.com/ssauljin/
vine_copula_reserving.
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The following abbreviations are used in this manuscript:

MCMC Markov chain Monte Carlo
DIC Deviance information criterion
LPML Logarithm of the pseudo marginal likelihood
CPO Conditional predictive ordinate
IFM Inference by margin
ERM Enterprise risk management
AY Accident year
RMSE Root mean squared error
MAE Mean absolute error
VaR Value at risk
CTE Conditional tail expectation

Appendix A

Table A1. R̂ values for marginal models.

Unconstrained Lognormal Model

T1 T2 T3 T4 T5 T6 T7 T8 T9

η2 1.000 1.001 1.000 1.000 1.001 1.002 1.002 1.000 1.003
η3 1.000 0.999 1.000 1.002 1.000 0.999 1.000 1.003 1.002
η4 1.000 1.001 0.999 1.000 1.002 0.999 1.001 1.000 1.002
η5 1.001 1.001 1.002 1.000 1.003 0.999 1.001 1.001 1.000
η6 1.006 1.001 0.999 1.003 0.999 1.000 1.002 1.000 1.000
η7 1.000 1.001 1.002 1.000 1.000 1.003 0.999 1.000 1.001
η8 0.999 1.002 1.000 1.006 0.999 1.001 1.000 1.000 1.000
η9 1.000 0.999 0.999 1.001 1.002 1.002 1.002 1.002 1.001

https://github.com/ssauljin/vine_copula_reserving
https://github.com/ssauljin/vine_copula_reserving
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Table A1. Cont.

Unconstrained Gamma Model

T1 T2 T3 T4 T5 T6 T7 T8 T9

η2 0.999 1.000 1.000 1.000 1.006 1.000 0.999 1.000 0.999
η3 1.000 1.000 0.999 1.002 1.001 0.999 1.004 1.000 1.003
η4 1.002 1.001 1.004 1.000 1.001 1.000 1.004 0.999 1.001
η5 1.004 1.000 1.002 1.002 0.999 1.001 1.000 1.003 1.002
η6 1.003 1.002 1.002 1.002 1.000 0.999 0.999 1.000 0.999
η7 1.000 1.004 1.001 1.001 1.002 0.999 1.001 1.000 1.000
η8 1.003 1.000 1.003 1.001 1.000 1.003 1.002 1.003 1.000
η9 1.000 1.002 1.000 1.002 0.999 1.004 1.011 1.000 1.001

Constrained Lognormal Model

T1 T2 T3 T4 T5 T6 T7 T8 T9

η2 0.999 0.999 0.999 1.000 1.001 0.999 1.000 1.000 0.999
η3 1.002 1.002 1.001 1.001 1.001 1.002 1.003 1.000 1.002
η4 0.998 1.001 1.002 1.000 1.001 0.999 1.000 0.998 1.002
η5 1.003 1.000 0.999 0.999 0.999 1.001 1.001 1.000 1.003
η6 1.002 0.999 0.999 0.999 1.002 1.000 0.999 0.999 1.003
η7 0.999 1.001 1.000 1.000 0.999 0.999 0.999 0.999 1.000
η8 1.001 1.002 1.000 1.000 1.001 0.999 1.000 1.001 0.998
η9 1.001 1.000 1.000 1.001 1.000 0.999 1.001 1.000 0.999

Constrained Gamma Model

T1 T2 T3 T4 T5 T6 T7 T8 T9

η2 0.999 1.003 0.999 1.002 1.000 1.002 0.999 0.999 1.000
η3 0.999 1.000 0.999 1.004 1.003 1.001 0.999 1.000 0.999
η4 1.000 0.999 1.003 1.001 1.004 1.002 0.999 0.999 1.004
η5 0.999 1.001 0.999 1.001 1.001 1.002 0.999 0.999 1.000
η6 0.999 1.001 1.000 1.000 1.000 0.998 0.999 1.000 1.000
η7 1.000 1.001 0.999 1.000 0.999 0.999 1.000 1.001 1.000
η8 1.000 0.999 1.000 1.000 0.998 1.000 1.000 1.001 0.998
η9 1.001 1.000 1.001 1.000 1.000 1.001 1.000 1.002 1.000
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Figure A1. Randomly chosen traceplots for marginal models.
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