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Abstract: We consider optimal dividend payment under the constraint that the with-dividend
ruin probability does not exceed a given value α. This is done in most simple discrete De Finetti
models. We characterize the value function V(s, α) for initial surplus s of this problem, characterize
the corresponding optimal dividend strategies, and present an algorithm for its computation. In an
earlier solution to this problem, a Hamilton-Jacobi-Bellman equation for V(s, α) can be found which
leads to its representation as the limit of a monotone iteration scheme. However, this scheme is too
complex for numerical computations. Here, we introduce the class of two-barrier dividend strategies
with the following property: when dividends are paid above a barrier B, i.e., a dividend of size 1 is
paid when reaching B + 1 from B, then we repeat this dividend payment until reaching a limit L for
some 0 ≤ L ≤ B. For these strategies we obtain explicit formulas for ruin probabilities and present
values of dividend payments, as well as simplifications of the above iteration scheme. The results of
numerical experiments show that the values V(s, α) obtained in earlier work can be improved, they
are suboptimal.

Keywords: stochastic control; optimal dividend payment; ruin probability constraint,
De Finetti model

1. Introduction

We consider the computation of optimal dividend payment under the constraint that the ruin
probability with possible dividend payment does not exceed a given value α.1 This is done in most
simple De Finetti models with risk process

S(t) = s +
t

∑
i=1

Xi,

where X1, X2, ... are independent with P{Xi = 1} = p, P{Xi = −1} = 1− p, 1/2 < p < 1, q = 1− p,
and initial surplus s ≥ 0, which are discrete in time and space, are stationary, have independent
increments, and are skip free. Admissible dividend strategies are integer valued functions
δ(t) ≥ 0, t ≥ 0, depending on X1, ..., Xt; the with-dividend process

Sδ(t) = s +
t

∑
i=1

Xi − δ(i)

1 Dedicated to David Dickson, Professor emeritus of The University of Melbourne
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has ruin time τ = τ(s, δ) = inf{t : Sδ(t) < 0}. Clearly, no dividends are paid at or after ruin.
The present value of dividend payments with dividend strategy δ(t) and initial surplus s is

U(s, δ) = E

[
τ−1

∑
t=0

rtδ(t)

]
,

and the maximal possible present value U(s) is also called value of the company.
This concept was introduced by DeFinetti (1957) for companies with risky business; he proved

that the optimal dividend strategy is a barrier strategy with constant barrier K, and

U(s) = w(s)/(w(K + 1)− w(K)),

where w(s) is the score function discussed below, and K is the minimizer for w(s + 1) − w(s).
This produces a with-dividend risk process which is bounded by K and so has ruin probability 1.
Gerber (1969) solved the optimal dividend problem for compound Poisson processes; he showed
that band strategies are optimal. Also for these, the with-dividend process is bounded and so
has ruin probability 1. The unconstrained optimal dividend problem was investigated for many
different model classes: for diffusion processes (see Asmussen and Taksar (1997)), for diffusion
models with regime switching (see Sotomayor and Cadenillas (2011)), for jump-diffusion processes
(see Belhaj (2010)), and even for spectrally negative Lévy processes (see Loeffen (2008) with a
surprisingly simple condition for optimality of barrier strategies). Azcue and Muler (2005) present a
compound Poisson example with Erlang claimsize distribution for which the optimal dividend strategy
is not a barrier strategy (section 10.1 on p. 274). Optimal dividend problems are often solved via
Hamilton-Jacobi-Bellman equations and their viscosity solutions. A survey on recent results for optimal
dividend payment in collective risk models is Albrecher and Thonhauser (2009), while Schmidli’s
book (Schmidli 2007) is a more elementary introduction to these control problems for discrete models
(chapter 1.2) as well as continuous models (chapters 2.4 and 2.5).

Several modifications of dividend payment were considered to avoid certain ruin. One is the use
of non-constant linear or nonlinear dividend barriers (see Gerber (1981) and Albrecher and Kainhofer
(2002)), a second is the concept of capital injections (see Kulenko and Schmidli (2008)).

Here we include the ruin probability into the optimization problem. The company value with
ruin constraint V(s, α) is the maximal present value of dividend strategies δ(t) with a with dividend
ruin probability

ψδ(s) = P{τ(s, δ) < ∞}

not exceeding α, where α is given by the financial supervisor or other stakeholders. Clearly, V(s, α) = 0
for s = −1 and all α, or for α ≤ ψ0(s) and all s ≥ 0, where ψ0(s) is the ruin probability without
dividend payments. Motivation for this problem can be found in Dickson and Drekic (2008) as well as
in Hipp (2018) and Hipp (2019). Our aim is to characterize and compute the value function V(s, α) of
this problem, and to compute the corresponding dividend strategies.

An early solution to the problem can be found in Hipp (2003); there, the following modified
Hamilton-Jacobi-Bellman equation for the value function V(s, α) is presented:

V(s, α) = sup
δ,β1,β2

{δ + rpV(s + 1− δ, β1) + rqV(s− 1− δ, β2)}, s ≥ 0, (1)

where the supremum is taken over all 0 ≤ δ ≤ s and β1, β2 satisfying the admissibility condition

ψ0(s + 1− δ) ≤ β1 ≤ 1, (2)

ψ0(s− 1− δ) ≤ β2 ≤ 1, (3)

pβ1 + qβ2 = α. (4)
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In Hipp (2003) the above Bellman equation was solved via the following iteration scheme: with an
initial solution V0(s, α), s ≥ 0, 0 ≤ α ≤ 1 we define Vn(s, α) recursively as

Vn+1(s, α) = sup
δ,β1,β2

{δ + rpVn(s + 1− δ, β1) + rqVn(s− 1− δ, β2)}, s ≥ 0. (5)

The intuition behind this simple recursion is the following: with initial state (s, α) at time t ≥ 0
we pay out an amount δ as dividends and continue with state s − δ. At time t + 1 we are in state
s− δ− 1 with probability q and in state s− δ + 1 with probability p. We select probabilities β1, β2

which are admissible and maximize the expected present value of dividend payments after time t.
The corresponding dividend strategies used after time t are optimal for the states (s− δ + 1, β1) and
(s− δ− 1, β2), respectively.

In Hipp (2003) it is also shown that (1) has exactly one solution V(s, α) which is the present
value of an optimal dividend payment function δ(t, s, α), t ≥ 0, for initial surplus s and allowed ruin
probability α. An optimal dividend strategy can be obtained from (1):

δ(t, s, α) = d(Sδ(t), α(t)),

where α(t) is the running allowed ruin probability, with d(s, α) = k and α(t) is defined sequentially as

α(0) = α,

α(t + 1) = β1 if Xt+1 = 1,

α(t + 1) = β2 if Xt+1 = −1,

with (k, (β1, β2)) the maximizer in the supremum in (1) for V(s, α(t)), and t ≥ 0.
If the suprema in (1) for δ = 0 and δ = 1 are equal, then the choices d(s, α) = 0 and d(s, α) = 1 are

both optimal, they result in the same present value of dividend payments and the same ruin probability.
In Hipp (2019) it is shown that for rp > 1/2 the function α→ V(s, α) is continuous for all s ≥ 0.

The fact that the supremum is attained in (1) is obvious when rp > 1/2. Without this condition, it is
attained according to Lemma 2.e in Hipp (2003).

This Bellman equation is rather complex: the numerical computations need maximization over a
continuous variable 0 ≤ β1 ≤ 1, and the running ruin probability α(t) is defined in the optimization
step. A reason for this complexity is the fact that our objective function present value of dividends is
discounted while the constraint ruin probability is not. If we use the time value of ruin instead or a
discounted penalty at ruin, then both functions are discounted with the same discount rate, and a
normal Bellman equation can be used (see Albrecher and Thonhauser (2007) and Gerber et al. (2010)).

Here we introduce the class of two-barrier dividend strategies with the following property: when
dividends are paid above a barrier B, i.e., a dividend of size 1 is paid when reaching B + 1 from B,
then we repeat this dividend payment at B + 1 until reaching L for some 0 ≤ L ≤ B; after this, the next
dividend payment happens at some B1 ≥ B. For L = B we pay a dividend of size 1 when reaching
B + 1 and then pay the next dividend when reaching B1 + 1. For L < B the sum of dividends paid at
barrier B + 1 as well as the time span in which we pay dividends at B + 1 are random. For L = B− 1
we continue paying dividends when reaching B + 1 until a claim (a downward step) happens, and then
we pay the next dividend when reaching B1 + 1. When L = B− 2, then we continue dividend payment
at B + 1 until we have two consecutive steps downward. If we keep paying dividends at B + 1 until we
have three consecutive steps down, then the resulting dividend strategy is not a two-barrier strategy.

Two-barrier strategies are defined by an initial value S(0) = s0, by a sequence of barriers
s0 ≤ B0 ≤ B1, ... above which we pay dividends, and by a sequence of levels 0 ≤ Li ≤ Bi at which
we stop paying dividends at Bi + 1. The time period Pi in which we pay dividends at Bi + 1 starts
when—after starting in s0 or after visiting Li−1—we come to state Bi + 1 where we pay a dividend
of size 1, and it ends when we enter the state Li. We allow for Bi = Bi+1 but obtain different periods
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Pi and Pi+1. When B0 = 2, B1 = 2, B2 = 3 and L0 = 2, L1 = 1, L2 = 3, and if our surplus process
S(t), t = 0, ..., 10, has the values 1, 2, 3, 4, 5, 6, 5, 4, 5, 6, 7, then dividends of size 1 are paid at times
t = 2, 3, 4, 5, 10. After dividend payment, our surplus process evolves as 1, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2.
The periods are P0 = {2},P1 = {3, 4, 5, 6}, and P2 = {10}.

We may restrict ourselves on sequences of barriers Bi with Bi ≤ Bi+1: assume that for some k ≥ 0
and 0 < s < B the dividend strategy δ1 pays k + 1 at s + 1 after visiting B + 1. Consider the dividend
strategy δ2 paying k at s + 1 instead, and an additional 1 at B + 1. This dividend strategy has the same
ruin probability as δ1, but the present value of dividends of δ2 is larger than the one of δ1 since the
payment of size 1 is paid earlier.

Notice that we first consider s0 ≤ B0; the case s0 > B0 is covered in Section 3.
The description of dividend strategies via the sequences Bi, Li is not handsome. An alternative

method using barrier limits is presented in Section 7.

2. Present Values of Dividends

We denote by f (s) the infinite time survival probability with initial surplus s ≥ 0,

f (s) = 1− ψ0(s) = 1− (q/p)s+1, s ≥ −1.

This function solves
f (s) = p f (s + 1) + q f (s− 1), s ≥ 0, (6)

and it is the unique solution of this equation with f (−1) = 0, f (∞) = 1. For integers 0 ≤ s ≤ b the
probability p(s, b) for reaching b from s before ruin equals f (s)/ f (b). This follows from the fact that a
solution of (6) is uniquely defined by two values at s1, s2 with −1 ≤ s1 < s2. Clearly, p(−1, b) = 0 and
p(b, b) = 1. For 0 ≤ b < s the probability is different:

p(s, b) = (q/p)b−s.

Next we consider the score function w(s) which satisfies w(−1) = 0, w(0) = 1, and

w(s) = rpw(s + 1) + rqw(s− 1), s ≥ 0. (7)

The function w(s) can be written as

w(s) = C1zs
1 + C2zs

2,

where 0 < z1 < 1 < z2 are the two solutions of z = rpz2 + rq, and C1, C2 are chosen such that
w(−1) = 0 and w(1) = 1. For 0 ≤ s ≤ b the present value pv(s, b) of a single payment of 1
when—starting from s—reaching b before ruin equals w(s)/w(b). For s > b we have

pv(s, b) = zs−b
1 .

Furthermore, for b ≤ K the maximal present value of dividends paid above barrier b ≤ K when
starting at b equals w(b)/(w(b + 1)− w(b)).

A third function is needed here: v(s), s ≥ −1, which is defined as v(s) = v1(s), where v1(k) is the
solution to the equations

v1(−1) = 1, (8)

v1(k) = rpv1(k + 1) + rqv1(k− 1), 0 ≤ k ≤ s, (9)

v1(s) = v1(s− 1). (10)
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The function v(s) is not a solution for (7). Still it is useful in the context of dividend payment:
for fixed barrier b ≥ 0 the expected discounted time to ruin for the risk process starting at b ≤ K with
dividend payment of 1 whenever we visit b, equals v(b).

The general solution of (9) is v1(k) = w(k + 1) + aw(k), where

a =
w(s + 1)− w(s)
w(s)− w(s− 1)

leads to (10). So,

v(s) =
w(s)2 − w(s + 1)w(s− 1)

w(s)− w(s− 1)
. (11)

The numerator of this expression for v(s) can be simplified:

Lemma 1. For s ≥ 0
w(s)2 − w(s− 1)w(s + 1) = (q/p)s. (12)

Proof. For s = 0 this is a consequence of the initial values w(−1) = 0 and w(0) = 1. Assume that (12)
holds for s. For s + 1 we must consider

A = w(s + 1)2 − w(s)w(s + 2).

Write one of the terms w(s + 1) and w(s + 2) using (7), i.e.,

A = w(s + 1)(w(s)− rqw(s− 1))/(rp)− w(s)(w(s + 1)− rqw(s))/(rp).

The term w(s)w(s + 1) cancels, and we obtain A = rp(w(s)2 − w(s + 1)w(s− 1))/(rq).

Similar representations are possible for arbitrary functions satisfying (7); e.g.,

f (s)2 − f (s− 1) f (s + 1) = f (0)2(q/p)s.

From Equation (7) which concerns the values of w at points s − 1, s, s + 1 we easily derive a
relation for points s−m, s− k, s + 1 when 0 ≤ k < m ≤ s which is used later for a simplified formula
for the present value of dividends.

Lemma 2. For integers 0 ≤ k < m ≤ s we have

w(s− k) =
(

q
p

)k
A(k, m)w(s + 1) +

(
q
p

)m−k w(k)
w(m)

w(s−m). (13)

where

A(k, m) = (w(m)w(k− 1)− w(k)w(m− 1))/w(m).

Proof. We first deal with the case m = k + 1 :

w(s− k) =
1

w(k + 1)
w(s + 1) +

q
p

w(k)
w(k + 1)

w(s− k− 1), (14)

(see (12)) and use induction on k. For k = 0 (14) is equal to Equation (7) since w(1) = 1/(rp).
Assume that Equation (14) holds for some 0 ≤ k and all s ≥ k. Using (7) for s− k− 1 instead of s we get

w(s− k− 1) = rpw(s− k) + rqw(s− k− 2).

Replacing w(s− k) in this equation by the right-hand side of (14) we obtain
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w(s− k− 1) = rp
(

w(s + 1)
w(k + 1)

+
q
p

w(k)
w(k + 1)

w(s− k− 1)
)
+ rqw(s− k− 2),

or

w(s− k− 1)
(

1− r
rqw(k)

w(k + 1)

)
= rp

w(s + 1)
w(k + 1)

+ rqw(s− k− 2).

Since from (7)

1− r
qw(k)

w(k + 1)
= rp

w(k + 2)
w(k + 1)

we arrive at Equation (14) for k + 1.
The proof for general m > k will use induction on m. We first notice that(

q
p

)k
(A(k, m + 1)− A(k, m)) =

(
q
p

)m−k w(k)
w(m)w(m + 1)

. (15)

Assume that (13) holds for some m ≥ 1 and all k < m and s ≥ m, and it holds for all m and
k = m− 1. i.e., (14). In (13) we replace w(s−m) by the right-hand side of Equation (14) with m instead
of k and arrive at

w(s− k) =
(

q
p

)k
A(k, m)w(s + 1) +

(
q
p

)m+1−k w(k)
w(m + 1)

+ R,

where

R =

(
q
p

)m−k w(k)
w(m)w(m + 1)

w(s + 1).

With (15) this yields the right-hand side of (13) for m + 1.

The survival probability sp(s0) of a dividend strategies with parameters s0 ≤ B0 ≤ B1, ... and
lower limits Li ≤ Bi is given by

sp(s0) = f (s0)
∞

∏
i=0

f (Li)

f (Bi + 1)
. (16)

The survival probability equals the probability that the with dividend process reaches all states
Bi + 1 at which a dividend of size 1 is paid. The first barrier B0 + 1 is reached with probability
f (s0)/ f (B0 + 1). From B0 + 1 we come to L0 with probability 1. From there we reach B1 + 1 with
probability f (L0)/ f (B1 + 1), and repeating this we obtain the above equation with independence of
increments.

The present value of dividend payments equals

PV(s0) = w(s0)
∞

∑
i=0

Di
w(Bi + 1)

i−1

∏
k=0

Ckw(Lk)

w(Bk + 1)
(17)

Here, Di is the present value of dividend payment in period Pi, discounted to the time of first
dividend payment at Bi + 1, and Ci are discount factors over the periods Pi. These numbers can be
expressed via the functions w(s) and v(s) : For this recall that in our setup we have Bi − Li ≤ K :
if Bi − Li > K, then we would pay a dividend when reaching Bi which is not true by definition of Bi.

Consequently, Di = w(Ti)/(w(Ti + 1)−w(Ti)), where Ti = Bi − Li ≤ K. This is the present value
of dividend payment until ruin, with constant barrier Ti, starting at Ti. Clearly, Di = 1 when Bi = Li.
Furthermore, Ci = v(Ti) when Ti ≤ K. Also here, Ci = 1 when Ti = 0.
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For illustration we compute the present value of dividends PV0 and PV1 for the first two periods
P0 and P1. Starting at 0 ≤ s0 ≤ B0 we have to wait for the first dividend payment until we
reach B0 + 1. If L0 = B0 then the total dividend paid at B0 + 1 is D0 = 1, and so in this case
PV0 = D0w(s0)/w(B0 + 1). If L0 < B0, then we replace the sum of all payments until we reach
L0 by one payment of D0 at B0 + 1. Also in this case we have PV0 = D0w(s0)/w(B0 + 1).

The dividend payment of the second period starts at B1 + 1. Discounting over the time elapsed
until reaching B1 + 1 from s0 is done by three factors: the factor w(s0)/w(B0 + 1) for the time until
reaching B0 + 1, the factor v(B0 − L0) for the time of dividend payment in period P0, and the factor
w(L0)/w(B1 + 1) for the time of reaching B1 + 1 from L0. At B1 + 1 we have a present value of dividend
payments equal to D1. Again with independence of increments we obtain the present value for the
period P1

w(s0)

w(B0 + 1)
w(L0)

w(B1 + 1)
C0D1.

For convenience we write ratios which depend on one index only, so the term for P1 is

w(s0)
D1

w(B1 + 1)
C0w(L0)

w(B0 + 1)
.

Simplifications are possible for the case that Ti = T ≥ 0 does not depend on i. For a strategy
starting dividend payment at B0 + 1 ≥ s0 ≥ 0 and bi = b0 + i, i = 0, 1, 2, ..., let Z(b) be the number of
barriers Bj satisfying Bj = b. Z(b) = 0 is allowed to deal with barriers which do not occur. Then the
survival probability equals

sp(s0) = f (s0)
∞

∏
b=B0

(
f (b− T)
f (b + 1)

)Z(b)
, (18)

and the present value of dividend payments equals

PV(s0) = Pv + w(s0)
∞

∑
b=B0

b

∏
s=B0

h(s)Z(s)α(b). (19)

Here, Pv is the present value of dividends paid above a fixed barrier B0, starting in s0,

Pv =
w(s0)

w(B0 + 1)− w(B0)
, (20)

and the function h(s) is given by

h(s) = v(T)w(s− T)/w(s + 1), s ≥ T ≥ 0, (21)

while
α(s) =

1
w(s + 2)− w(s + 1)

− 1
w(s + 1)− w(s)

. (22)

For the proof of (19) we start from (17): with D = Di and C = Ci we obtain
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PV(s0) = w(s0)D
∞

∑
b=B0

b−1

∏
s=B0

h(s)Z(s) 1
w(b + 1)

Z(b)−1

∑
j=0

h(b)j

= w(s0)D
∞

∑
b=B0

b−1

∏
s=B0

h(s)Z(s) 1
w(b + 1)

1− h(b)Z(b)

1− h(b)

= Pv + w(s0)D
∞

∑
b=B0+1

b−1

∏
s=B0

h(s)Z(s) 1
w(b + 1)

1
1− h(b)

− w(s0)D
∞

∑
b=B0

b

∏
s=B0

h(s)Z(s) 1
w(b + 1)

1
1− h(b)

= Pv + w(s0)D
∞

∑
b=B0

b

∏
s=B0

h(s)Z(s)α1(b), )

where

α1(b) =
1

w(b + 2)
1

1− h(b + 1)
− 1

w(b + 1)
1

1− h(b)
.

Here we used that w(s0)D/(1− h(b0)) corresponds to a dividend strategy with Z(B0) = ∞,
which has a present value of payments equal to Pv. With the same argument we can see that Dα1(s)
does not depend on T, so it is equal to α(s) which corresponds to T = 0. This proves (19).

A similar result can be derived when we have a finite number of possible values for Ti. For this
we first show that dividend strategies can be permuted at a fixed barrier B without changing the
corresponding ruin probability as well as the present value of dividend payments.

Lemma 3. Let s0 be the initial value of our risk process. Consider a dividend strategy defined by a sequence
of barriers s0 ≤ B0 ≤ B1, ... and by a sequence of limits 0 ≤ Li ≤ Bi Assume that for some j ≥ 0 we have
Bj = Bj+1 = b, and 0 ≤ k < m ≤ b such that Lj = b− k and Lj+1 = b−m. Construct a second dividend
strategy by the barriers B0, ..., Bj−1, Bj+1, Bj, Bj+2, Bj+3, ... and by the corresponding limits. Then the two
dividend strategies have the same survival probability and the same present value of dividend payments.

Proof. The assertion concerning the survival probabilities is obvious. Looking at our formula (17) we
see that interchanging the two-barriers has no effect on the terms in the sum with index i < j and
i > j + 1. The quantities which might be changed by reversing the order are in the two terms with
index j, j + 1, they read

1
w(b + 1)

Dj +
1

w(b + 1)
Cj

w(b− k)
w(b + 1)

Dj+1

and

1
w(b + 1)

Dj+1 +
1

w(b + 1)
Cj+1

w(b−m)

w(b + 1)
Dj.

These two terms are equal whenever

w(b− k) =
dm − dk

dmck
w(b + 1) +

dkcm

dmck
w(b−m) (23)

where the notation dk = Dj, dm = Dj+1, ck = Cj, cm = Dj+1 is chosen to indicate that these quantities
depend on k and m only. According to Lemma 2, Equation (23) holds whenever

dm − dk
dmck

=

(
q
p

)k
A(k, m), (24)
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and
dkcm

dmck
=

(
q
p

)m−k w(k)
w(m)

. (25)

Recall that

dk =
w(k)

w(k)− w(k− 1)

and

ck = v(k) =
(

q
p

)k 1
w(k)− w(k− 1)

.

(see (11) and (12)). So

dk/ck = w(k)
(

p
q

)k

which yields (25). Furthermore,

dm − dk
dmck

=
1
ck
− dk

ck

1
dm

=

(
p
q

)k (
w(k)− w(k− 1)− w(k)

w(m)
(w(m)− w(m− 1)

)
=

(
p
q

)k
A(k, m)

proves (24).

We now state the main result of this section, the representation for present values of dividend
payments with a finite number of possible values for Ti = Bi − Li :

Proposition 1. Assume that for initial state s0 and a dividend strategy with first dividend payment at B0 + 1
we have m + 1 possible values 0, 1, ..., m for Ti = Bi − Li. Then the survival probability of the with dividend
process equals

sp(s0) = f (s0)
∞

∏
k=B0

m

∏
j=0

( f (k− j)/ f (k + 1))Zj(k), (26)

and the present value of dividend payments is given by

PV(s0) = Pv + w(s0)
∞

∑
b=B0

b

∏
k=B0

m

∏
j=0

hj(k)
Zj(k)α(k). (27)

Here, Zj(k) is the number of barriers Bi with Bi = k and Ti = j, and for j = 0, ..., m

hj(k) = v(j)w(k− j)/w(k + 1),

and Pv is defined in (20).

Proof. The formula for the survival probability is straightforward. For the present value of dividends
we first consider all discounted dividends which are paid when reaching b + 1 from state b for some
b ≥ B0. Discounting for the time t until reaching b + 1 for the first time is done by the factor
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w(s0)
1

w(b + 1)

b−1

∏
k=B0

m

∏
j=0

hj(k)
Zj(k).

The time t present value of the dividend payments is

Pv(b) =
m

∑
k=0

k

∏
j=0

hj(b)
Zj(b)dk

1− hk(b)Zk(b)

1− hk(b)
.

Recall that dk = w(k)/(w(k)−w(k− 1)) and that dk/(1− hk(b)) does not depend on k. Therefore,
most of the terms in the sum Pv(b) cancel and we arrive at

Pv(b) =
1

1− h0(b)

(
1−

m

∏
j=0

hj(b)
Zj(b)

)
.

For the formula for PV we use that the first term in Pv(B0) equals Pv, and that the other terms
are generated by adding the corresponding two terms in Pv(b) and Pv(b + 1) for b ≥ B0.

We may (and will) assume throughout that B0 ≥ K, since α(s) > 0 for s < K implies that we can
increase PV by the choice Zj(b) = 0, b < K, j = 0, ..., m without decreasing the corresponding survival
probability. Furthermore, in case s0 ≤ K the present value of dividends can be written with B0 replaced
by K, when we use Zj(b) = 0 for b < B0. This leads to a new value for Pv, but this is compensated by
the terms in the sum with b < B0.

The formulas for survival probability and present value of dividends allow us to restrict our
search for optimal dividend strategies considerably. Assume that for some fixed barrier B we pay
dividends at B + 1 until reaching limit L = B− T. For the survival probability this generates the factor

sp0 = f (B− T)/ f (B + 1),

and in the sum representing the present value we obtain the factor

pv0 = v(T)w(B− T)/w(B + 1).

If we replace this dividend payment by m payments at B + 1 with limit B and one payments at
B + 1 with limit B− T + 1, these factors are

sp1 =

(
f (B)

f (B + 1)

)m ( f (B− T + 1)
f (B + 1)

)
and

pv1 =

(
w(B)

w(B + 1)

)m (
v(T − 1)

w(B− T + 1)
w(B + 1)

)
,

respectively. This leads to larger survival probability whenever sp0 ≤ sp1, and to a larger present
value of dividends when pv0 ≥ pv1 (notice that the factors α(b) are all negative). Rewriting these
inequalities, we obtain the following

Proposition 2. Assume that for all T ≥ 2 and s ≥ K we can find an integer m ≥ 1 such that(
f (s)

f (s + 1)

)m
≥ f (s− T)

f (s− T + 1)
, (28)(

w(s)
w(s + 1)

)m
≤ w(s− T)

w(s− T + 1)
v(T)

v(T − 1)
, (29)
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then we can restrict our search for optimal two-barrier dividend strategies on the set of strategies with exponents
satisfying Zj(b) = 0 for all possible barriers b ≥ K and all j ≥ 2.

The disadvantage of this result is the verification of inequalities (28) and (29), in particular since
the exponent m will not only depend on the model parameters r and p, but also on T. However,
it often (but not always) can be chosen independent of s. Sometimes, only detailed inspection works.
Recall that w(s) = C(zs

1 − zs
2), s ≥ 0, with 0 < z1 < 1 < z2, C1 < 0 < C2 = −C1z2/z1. We write a for

q/p, i.e., f (s) = 1− as.

Lemma 4. For fixed T ≥ 2 and some integer m ≥ 1 let

F(s) =
(

f (s)
f (s + 1)

)m
− f (s− T)

f (s− T + 1)
, s ≥ T,

G(s) =
(

w(s)
w(s + 1)

)m
− w(s− T)

w(s− T + 1)
v(T)

v(T − 1)
, s ≥ T.

Then

(a) F(s) ≥ 0 for all s ≥ T is possible iff m ≤ a−T .
(b) G(s) ≤ 0 for all s ≥ T is possible only if zm−1

2 ≥ v(T − 1)/v(T). Under this condition, if for some
s1 ≥ T we have (

z2
w(s)

w(s + 1)

)m
− z2

w(s− T)
w(s− T + 1)

≤ 0, (30)

then G(s) ≤ 0 for all s ≥ s1.

An integer m satisfying both conditions–without (30)—will exist whenever

a−T − log(v(T − 1)/v(T))/log(z2) ≥ 2.

Proof. For both assertions we look at the asymptotic behavior for s→ ∞.

(a) Let g(s) = log( f (s)/ f (s + 1)). Then F(s) ≥ 0 is equivalent to mg(s) ≥ g(s− T) or

mg(s)/g(s− T) ≤ 1;

(notice that g(s− T) < 0). Since log( f (s)) = log(1− as) = as(1− a) + o(as), s→ ∞, we obtain

lim
s→∞

mg(s)
g(s− T)

= maT

which does not exceed 1 if m ≤ a−T . Under this condition, we have F(s) ≥ 0 for all s ≥ T since
g(s)/g(s− T) is increasing. To show this it is enough to consider T = 1 (the product of positive
increasing functions is increasing). We have

g′(s) = − log(a)(1− a)
as

f (s) f (s + 1)
> 0,

g′′(s) = − log(a)2(1− a)
as f (2s + 1))

f (s)2 f (s + 1)2 < 0.

g′(s + 1) = ag′(s) f (s)/ f (s + 2).

Here we consider g as a function of a real variable. Notice first that the function

u(s) = a f (s)g(s)/ f (s + 1)− g(s + 1), s > 0,
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is decreasing, since

u′(s) = a
(

f (s)
f (s + 1)

)′
g(s) + a

(
f (s)

f (s + 1)

)
g′(s)− g′(s + 1)

= a
(

f (s)
f (s + 1)

)′
g(s) < 0.

Since u(s) → 0 for s → ∞ we have u(s) > 0 for s > 0. Now, we can show that g(s + 1)/g(s) is
increasing: with g(s)/ f (s + 2) ≥ g(s)/ f (s + 1)(

g(s + 1)
g(s)

)′
=

g(s)g′(s + 1)− g′(s)g(s + 1)
g(s)2

=
g(s)g′(s)a f (s)/ f (s + 2)− g′(s)g(s + 1)

g(s)2

≥ g(s)g′(s)a f (s)/ f (s + 1)− g′(s)g(s + 1)
g(s)2

= g′(s)u(s)/g(s)2 ≥ 0.

(b) Let h(s) = w(s)/w(s + 1). Then G(s + T) ≤ 0 is equivalent to

h(s + T)m ≤ h(s)v(T)/v(T − 1).

Using the relation

w(s) =
zs

1 − zs
2

z1 − z2

we obtain

h(s) =
1
z2

1− as
0

1− as+1
0

with 0 < a0 = z1/z2 < 1. We have h(s) → 1/z2 and so the necessary condition is
zm−1

2 ≥ v(T − 1)/v(T). If this holds, then a sufficient condition for G(s + T) ≤ 0 is

(z2h(s + T))m ≤ z2h(s). (31)

If (31) is true for s1, then
log(z2h(s1 + T))/ log(z2h(s1)) ≥ 0.

The proof of part (a) with a = q/p replaced by a = z1/z2 and z2h(s) instead of f (s)/ f (s + 1)
yields that

log(z2h(s + T))/ log(z2h(s))

is increasing, and so (31) holds for all s ≥ s1.

In our numerical experiments, we have K = 4, so we first checked the validity of conditions (28)
and (29) for T = 3, 4 and then we searched for dividend strategies with maximal present value in the
set of two-barrier strategies which have limits Li = Bi or Li = Bi − 1.

3. Immediate Dividend Payment

Here we consider the case that our initial surplus is larger than B0. In this situation, we could
decide to reduce the allowed ruin probability (which will increase B0), or we can use the extra surplus
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s0 − B0 to increase the company value, or we could do both. In this section we want to use the extra
surplus to increase the company value.

Assume first that s0 = B0 + 1. Let α be the allowed ruin probability for initial surplus s0. We can
pay a dividend of size 1 immediately, which leads to

V(s0, α) = 1 + V(B0, α). (32)

Or we can start a T = 1−dividend payment which pays 1 each time we reach B0 + 2, until the
first downward step which leads us to B0 :

V(s0, α) = A(1) + C(1)V(B0, α). (33)

If we maximize the dividend value, our action will be the immediate dividend payment of 1 when
the value in (32)is larger than the one in (33). Otherwise, we choose the T = 1−payment. We have
A(1) > 1 and C(1) < 1, so both cases could happen. The condition for the T = 1−payment is

V(B(s), α) ≤ (A(1)− 1)/(1− C(1)). (34)

We see that using the extra surplus s0 − B0, we can maximize the present value of total dividends
by the choice of an appropriate dividend strategy. Notice that the allowed ruin probability is achieved
automatically after hitting B0. Therefore, the optimization of a dividend strategies is easier, it can be
done without considering ruin probabilities. We use a recursive optimization: assume that an optimal
strategy is available for initial surplus s1 > B0 with V(s1, α) as present value of dividend payments.

Lemma 5. Assume that

V(B0, α) > (A(2)− A(1)− C(1)A(1))/(C(1)− C(2). (35)

Then the optimal strategy at surplus s0 = s1 + 1 is either an immediate payment of 1 producing
V(s0, α) = 1 + V(s1, α), or a T = 1−payment at s0 (pay a dividend of size 1 when reaching s1 + 1 until
you hit s1), which yields V(s0, α) = A1 + C1V(s1, α). The optimal choice will be T = 1 iff

V(s1, α) ≤ (A(1)− 1)/(1− C(1)).

Proof. Consider first a T = 2−payment starting at s0 ≥ B(s) + 2, i.e., repeated payment of 1 at
state s0 + 1 until the first step downward which leads us to s0 − 2 ≥ B(s). The present value of
dividends equals

V1 = A(2) + C(2)V(s0 − 2, α).

As an alternative, consider two concatenated T = 1−payments, the first starting at s0 + 1 and
ending when hitting s0 − 1, the second starting at s0 and ending at s0 − 2. The present value of this
strategy is

V2 = A(1) + C(1)(A(1) + C(1)V(s0 − 2, α)).

The difference is

V2 −V1 = A(2)− A(1)− C(1)A(1) + (C(1)− C(2))V(s0 − 2, α)

which is positive because of (35) and V(s0 − 2, α) ≥ V(B0, α). Therefore, the T = 1−payment is better
at s0 ≥ B0 + 2. If s0 = B0 + 1 then the present values V1, V2 are the same, up to a factor w(s0)/w(s0 + 1)
which represents discounting to reach s0 + 1 from s0 without dividend payment.
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If a T−payment would be optimal at s0 for some T ≥ 3, then a T − 1−payment would be
optimal at s0 − 1, so under condition (35) a T = 1−payment is better than any T−payment for T ≥ 2.
This proves the lemma.

Notice that (35) is a weak condition in the sense that it is not easy to find cases in which it is not
satisfied; for this, V(B(s), α) must be close to zero, and A(2)− A(1)− A(1)C(1) < 0 is always true.

The resulting dividend strategy is a T = 1−payment for all s ≥ B(s) up to the boundary given
in (34), above it is an immediate lump sum of s− B(s). A numerical example is given in Section 7.

4. Running Survival Probabilities

Assume that an initial value s0, and a sequence of barriers s0 ≤ B0 ≤ B1... and limits 0 ≤ Li ≤ Bi
are given. For t ≥ 0 we here compute the running survival probabilities sp(t) and the present values of
dividends PV(t) for time t and for the dividend strategy δ(t) defined by the above quantities. Clearly,
sp(t) will not only depend on Sδ(t), the risk process with dividend payment. We will see that for
t ≥ 1 sp(t) is a function of Xt, Sδ(t− 1), and sp(t− 1).

At time t = 0 we have—according to (16)—with our initial surplus s0 a with dividend
survival probability

1− α = f (s0)
∞

∏
i=0

f (Li)/ f (Bi + 1).

As long as no dividends are paid, the survival probability at state s ≤ B0 is given by

f0(s) = f (s)
∞

∏
i=0

f (Li)/ f (Bi + 1) = f (s)(1− α)/ f (s0), (36)

which follows from (16) when starting at s instead of s0.
After reaching B0 + 1, dividend payment leads us to the state L0 with probability 1. After hitting

L0, we will not pay dividends until we reach the next barrier B1 + 1. Formula (16) with initial surplus
L0 and dividend payment after reaching B1 gives us the survival probability

f (L0)
∞

∏
i=1

f (Li)/ f (Bi + 1), (37)

which is the same as

f (B0 + 1)
∞

∏
i=0

f (Li)/ f (Bi + 1) = f0(B0 + 1). (38)

We obtain that after starting dividend payment at B0 + 1, the survival probabilities at states
s = L0, L0 + 1, ..., B0 + 1 are all equal to the value in (38).

Now we repeat this argument for each barrier Bi, i ≥ 1 : for states s reached at or after visiting
Li−1 and before hitting the state Bi + 1 the survival probability equals

fi(s) = f (i)
∞

∏
m=i

f (Lm)/ f (Bm + 1),

while for all states s = Li, Li + 1, ..., Bi + 1 which are reached after the first dividend payment at Bi + 1
we have the same survival probability fi(Bi + 1). These functions are defined for s = −1, ..., Bi + 1 and
concatenated by the equation

fi+1(Li) = fi(Bi + 1), i ≥ 0, (39)

(see the two equations for i = 0 above).
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We now show that for t ≥ 1 the survival probability sp(t) is determined by the values Sδ(t− 1),
sp(t− 1), and Xt. From the values sp(t− 1) and s = Sδ(t− 1) we can see for which index i the survival
probability sp(t− 1) can be expressed by fi(s) when s = Sδ(t− 1). This covers the two cases

(a) at time t− 1 we have not yet visited Bi + 1, but have visited Li−1 before, and
(b) we have paid a dividend at Bi + 1 before time t− 1, and Li < s ≤ Bi + 1.

For short, let ai = fi(Bi + 1)/ f (Bi + 1).
In case (a) we have sp(t − 1) = ai f (s) for s = −1, 0, 1, ..., Bi, while in case (b) we get

sp(t− 1) = fi(Bi + 1) for s = Li + 1, ..., Bi + 1. So sp(t − 1) and s tell us in which of the two cases
we are.

If Xt = 1, then in case (a), sp(t) = ai f (s + 1), and in case (b) we obtain sp(t) = sp(t − 1).
If Xt = −1 and s = Sδ(t− 1) ≥ 1, then sp(t) = ai f (s− 1), and in case (b) we have sp(t) = sp(t− 1)
when s > Li + 1. For s = Li + 1 we obtain sp(t) = sp(t− 1) from (39).

Remark 1. When the search for optimal dividend strategies is restricted to the set of two-barrier strategies,
in the Bellman Equation (1) the supremum is just over the two pairs

β1 = α f (s + 1)/ f (s), β2 = α f (s− 1)/ f (s), (40)

β1 = β2 = α. (41)

5. Lagrange Approach and Derivatives

In Equations (18) and (19) we now replace the numbers Z(b) of iterations by real numbers R(b)
and use infinitesimal calculus to find optimal exponents, using the method of a Lagrange multiplier.
Our initial values satisfy B0 ≥ K and s0 ≤ B0. For L > 0 we consider

PV(s0) + L log(sp(s0)) (42)

and the corresponding normal equations. The system of partial equations for R(b), b ≥ B0 + 1, can be
solved explicitly, and the solution does not depend on L :

β(b) = log( f (b− T)/ f (b + 1))/ log(h(b)),

P(b) = L
β(b)− β(b + 1)

α(b)

R(b) =
log(P(b))− log(P(b− 1))

log(h(b))
.

For b = B0 R(b) is the solution of

w(s0)h(b)R(b) = P(b). (43)

Since L appears only in the definition of R(B0), we can define R(B0) from the given allowed ruin
probability α and all the quantities R(b), b ≥ B0 + 1 as the solution of the equation(

f (B0 − T)
f (B0 + 1)

)ex
f (s0)

∞

∏
s=B0+1

(
f (s− T)
f (s + 1)

)R(s)
= 1− α. (44)

Then

VR = Pv + w(s0)
∞

∑
b=B0

b−1

∏
s=B0

h(s)R(s)α(b). (45)
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provides an upper bound for the present value of dividend payments V(s, α) with survival probability
1− α. In our numerical experiments below we use the floors of R(b), b ≥ B0, as an initial sequence of
exponents for an improvement process.

For the case with m + 1 possible values 0, 1, ..., m for Ti = Bi − Li, for each b ≥ 0 we have
m + 1 exponents Rj(b), j = 0, ..., m. In this situation the normal equations for the Lagrange multiplier
approach (42) imply that for each b ≥ K there is at most one index j with Rj(b) > 0, and this
index maximizes

Hk(b) =
log( f (b− k)/ f (b + 1))

log(hk(b))
, k = 0, ..., m. (46)

This might indicate that also in the discrete case, with integer exponents Zj(b) instead of real
values Rj(b), one will have only one index j satisfying Zj(b) > 0. However, in our numerical
experiments the maximal present values of dividends were never achieved with only one exponent
Zj(b) > 0 for all b. Examples and computations for mixed strategies are given below.

For the standard parameters p = 0.7 and r = 1/1.03 we find that for all b ≥ K we have the
minimum for (46) at k = 1, as you can read from the following Table 1.

Table 1. Critical ratios in (46).

b H0(b) H1(b) H2(b) H3(b) H4(b) H5(b) H6(b)

6 0.02184 0.02154 0.0231 0.0284 0.0409 0.0680 0.1320

7 0.00939 0.00927 0.0099 0.0121 0.0174 0.0284 0.0517

8 0.00403 0.00397 0.0042 0.0052 0.0074 0.0120 0.0214

9 0.00172 0.00170 0.0018 0.0022 0.0031 0.0051 0.0090

10 0.00075 0.00073 0.00078 0.0009 0.0013 0.0021 0.0038

6. Discussion

The computation of ruin probabilities and present value of dividends for two-barrier strategies in
De Finetti models is rather simple, and at the same time these strategies are flexible enough to yield
large dividend values (at least larger than those in earlier publications). Their computation can be done
for a single initial value s0 and allowed ruin probability α. In addition, they can be computed using a
simplified iteration method (see (5) and Remark (1)). The original iteration method (5) yields a globally
optimal dividend value, but it is too demanding for numerical computations. It is unknown whether
the simplified iteration method also produces a globally optimal dividend value. At least, it produces
an optimal dividend value in the class of all two-barrier strategies. In our paper, we compute dividend
strategies with large present value using explicit formulas for this value, derived for two-barrier
strategies. There, one can use conditions (28) and (29) to restrict the set of possible strategies. However,
the restriction on mixtures of T = 0− and T = 1−strategies is possible only for normal values of p and
α as in our numerical examples. In more extreme situations (e.g., p = 0.55 or r = 1/1.01) Lemma 4
applies not for T ≥ 2, but for T ≥ 4 (or even larger) only. Recall that we have excluded T > K before.

A general setup for optimal dividend payment with ruin constraint could be the following:
for barriers b = K, K + 1, ... we define stopping times τ(b) which define the time span S(b) in which
dividends of size 1 are paid at b:

S(b) = τ(K) + ... + τ(b) ≤ t < τ(K) + ... + τ(b + 1).

For two-barrier strategies these stopping times have a special structure: if Zj(b), j = 0, ..., m are the
exponents for barrier b and limit b − j, then τ(b) is the time needed to hit limit b − j Zj(b) times
from b + 1, for j = 0, ..., m. Not all stopping times are of this form: if we stop when, after visiting
b + 1, we have three steps downward in a row, we clearly have a stopping time. This cannot be
represented by a two-barrier strategy since we will never stop on the way to ruin via a sequence
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s, s− 1, s− 2, s− 1, s− 2, s− 3, s− 2, s− 3, s− 4, ... On the other hand, using the concept of stopping
times (which turn out to be independent) one could come to solution of our problem in the class of
all admissible strategies. In particular, our Lemma 3 might become obvious. Our approach using
two-barrier strategies is more direct and closer to computer programming.

When two or more values for T are considered, we could select the optimal T from the equation

V(b + 1, α) = max{A(T) + C(T)V(b− T, α), 0 ≤ T ≤ b} (47)

which holds for the optimal two-barrier strategy and for all barriers b with dividend payment at b + 1.
Furthermore, this equation yields a relation between V(b− T1, α) and V(b− T2, α) if b is a barrier

for which dividends of two different types T1, T2 are paid; e.g., if T = 0− and T = 1−payments are
made at b + 1 then

V(b + 1, α) = 1 + V(b, α), (48)

V(b + 1, α) = A(1) + C(1)V(b− 1, α), or (49)

V(b, α) = A(1)− 1 + C(1)V(b− 1, α). (50)

The numerical procedures used in our experiments are in line with these equations. For the
standard model parameters and α = 0.022602487 we have b = 6, Z0(6) = Z1(6) = 1,
and V(6, α) = 12.78113592, V(7, α) = 1 + V(6, α), and V(5, α) = 11.72591617879 which yields (50).

There are more such intuitive relations between present values of dividends, and all of them are
consistent with our numerical findings. If, e.g., (Z(b), E(b)) : b ≥ 4, is the sequence of exponents for
the present value V(s0, α) with E(b0) = 1, and dividend payment starting at b0 + 1, then for

α1 = 1− (1− α) f (b0 + 1)/ f (b0),

the first sequence of exponents, with E(b0) replaced by 0, is the sequence of exponents for V(s0, α1), and

V(s0, α1) = Pv− w(b0 + 1)/w(b0)(Pv−V(s0, α)). (51)

Here, Pv = w(s0)/(w(b0 + 1)− w(b0). Changing the exponent E(b0) from 1 to 0 means that we
omit a dividend payment of 1 at b0 + 1, and w(s0)/w(b0 + 1) is the discount factor for this payment.
For a T = 1−dividend payment at b0 we obtain α1 = 1− (1− α) f (b0 + 1)/ f (b0 − 1), and

V(s0, α1) = Pv− w(b0 + 1)/(v(1)w(b0 − 1))(Pv−V(s0, α)). (52)

Similar equations hold for the case when more than one dividend payments are omitted.
These simple relations hold, however, only for the barrier b0 at which dividends are paid first.

Two-barrier strategies should also be considered in other risk models such as Lundberg models or
diffusion models. The computation of their survival probabilities as well as present value of dividends
is as simple as in De Finetti models. In addition, they might perform better than the dividend strategies
considered so far.

7. Numerical Experiments

We continue the numerical example in Hipp (2018) where p = 0.7, r = 1/1.03, s0 = 4 and α = 0.2.
As a result of many iterations given in (5), a value V(4, 0.2) = 12.817618 was obtained. The second
value V(4, 0.2) = 12.9099 given in Hipp (2018) is wrong since the underlying dividend strategy has a
ruin probability larger than 0.2.

For the computation of a dividend strategy with given ruin probability α and T = Bi − Li
independent of i, we start with the choice of a barrier B0 at which dividends are paid first. Let R(i)
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be the solutions of the normal equations for the Lagrange approach (42) and B0 = b ≥ K the smallest
integer for which the solution ex to the equation

f1(b)ex
∞

∏
s=b+1

f1(s)R(s) = 1− α

is positive, where f1(s) = f (s − T)/ f (s + 1), s ≥ 0.. As initial sequence of exponents we take
Z0

i = floor(R(i)), i > b, and Z0
b = floor(ex).

For T = 0 we have B0 = K = 4, and the exponents Z0
i are Z0

4 = 13, Z0
5 = 18, Z0

6 = 13,
Z0

i = 11, i ≥ B0, they define a strategy with ruin probability

1−
∞

∏
s=4

( f1(s))Z0
s = 0.196998263935.

We now increase these exponents sequentially and stepwise as long as the resulting ruin
probability is smaller than α. This produces a sequence of exponents Zi which, for 4 ≤ i ≤ 20 read

13, 19, 13, 11, 11, 12, 12, 11, 12, 13, 11, 11, 12, 12, 11, 11, 13.

The resulting ruin probability is almost 0.2, and the dividend value is V0(4, 0.2) = 12.817726.
The same procedure is repeated with Z1

i = floor(R(i)) − 1, i > B0. This sequence Z1
i produces a

dividend strategy with the same ruin probability but with somewhat earlier payments. In the given
situation we obtain a dividend value V̂0(4, 0.2) = 12.81675, and the initial terms for the sequence of
exponents are

14, 17, 13, 1, 10, 10, 11, 11, 12, 10, 10, 10, 11, 11, 12, 10, 10, 10, 11, 10, 11, 10.

The second present value is not always smaller than the first, so we take the maximum of both as
V0(s, α).

For T = 1 we obtain the same K and Z0
4 = 3, Z0

5 = 5, Z0
i = 3, i ≥ 6, and the sequence of exponents

Zi for 4 ≤ i ≤ 20 is
4, 5, 4, 5, 3, 4, 4, 3, 4, 3, 3, 3, 5, 3, 4, 4, 4.

The dividend value for this setup is V1(4) = 12.8225955. We see that here, a pure T = 1− strategy
is slightly better than the corresponding pure T = 0−strategy.

With starting value s0 = 1 and α = 0.2 we obtain b = 6. The pure T = 0 − strategy has
V0(s0, α) = 7.79110112, the T = 1− strategy yields V1(s0, α) = 7.79412286. Higher dividend values
can be obtained with mixed strategies, i.e., mixing T = 0−payments with T = 1− payments. In our
experiments we used the above construction of T = 1− strategies for a given sequence of exponents
for T = 0− payments. If a sequence of exponents Z0(i) for T = 0− payments is given, then we adjust
the allowed ruin probability α0 accordingly:

α1 = 1− (1− α0)
∞

∏
s=b

( f (s)/ f (s + 1))Z0(i)

which is the allowed ruin probability for T = 1−payments; here, b is the barrier for the first dividend
payment. For α1 we construct a pure T = 1− dividend strategy. The exponents Z0(i) are chosen
sequentially according to the resulting dividend value of the combined strategy. For this problem
we include a MatLab code in which the details can be seen. For the multiple loops in the program,
MAPLE is not handsome. On the other hand, the limited numerical accuracy of MatLab allows the
computation of a limited number of values for R(s) only. This problem is solved via approximations.
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For s0 = 1 and α = 0.2 we obtain b = 6, and the following nonzero values Z0(i) ≤ 3, i ≤ 30, are

Z0(i) = 1, i = 6, 11, 12, 19, 25, 31, 32, 36; Z0(i) = 2, i = 13, 21, Z0(44) = 3,

while the first 40 exponents Z1(i), i = 6, ..., 45, are all equal to 3, except Z1(6) = 1 and Z1(i) = 4 for
i = 7, 16, 28, 34. The dividend value equals V(1, α) = 7.798392888749329.

The restriction to two-barrier strategies with T = 0 and T = 1 only is justified by Proposition 2 and
Lemma 4. For T = 2, e.g., we have v(T− 1)/v(T) = 1.3121..., z2 = 1.07142857 and z4

2 = 1.31781028738,
so m = 5 is a possible exponent for which in addition maT = 0.918367 < 1. In this case, however,
condition (29) is not true for s = 4, but this is not essential since we have a first barrier b = 6 for
which the inequality holds. The following Table 2 gives some results for strategies with only T = 0−
and T = 1− payments, pure as well as mixed strategies. The columns labeled T0 and T1 show the
dividend value for pure T = 0− and T = 1−strategies. The column T10 shows the dividend value for
a pure T = 1−strategy which is mixed with single T = 0− payments chosen one by one according
to the resulting dividend value. The column T01 shows the corresponding values for a pure T = 0−
strategy mixed with T = 1− payments. The initial surplus s0 = 1 is the same for all cases. The smallest
possible allowed ruin probability for s0 = 1 is f (s0) = 0.18367.

We see that the T10−value is the largest in all cases except for α = 0.2 and 1/r = 1.07. Furthermore,
for α = 0.185 the pure T0−strategy is not improved by single T = 1−payments and better than the
pure T = 1−strategy. This is not in line with formula (46): for α = 0.2 we have b = 6, and α = 0.185
produces b = 9. However, for both values of b the maximum of (46) is at k = 0 : for b = 6, we have
the values 0.02183599 for k = 0 and 0.0215461488 for k = 1, while for b = 9 the values are 0.0017308
and 0.0017063.

Table 2. Selection of numerical results.

α 1/r T0 T01 T1 T10

0.2 1.02 12.71315904 12.71316594 12.71786387 12.71925617

0.2 1.03 7.79110112 7.79110112 7.79412286 7.79839288

0.2 1.05 4.06123912 4.06123912 4.06097156 4.06462461

0.2 1.07 2.58514629 2.58526457 2.55870679 2.58327072

0.185 1.02 11.09392484 11.09392487 11.09352571 11.09955263

0.185 1.03 6.36895584 6.36895584 6.36691545 6.37541945

0.185 1.05 2.93819009 2.93819009 2.93903905 2.94327857

0.185 1.07 1.67103288 1.67103288 1.64945221 1.67268370

For our standard model parameters we now give a representation of optimal strategies via
probability levels M(b), b = K, K + 1, ... which are the minimal allowed ruin probabilities α for which
the optimal dividend strategy with value V(b, α) starts dividend payment at b + 1.

If α is an allowed ruin probability for initial surplus s0, then we start dividend payment at b ≥ s0

with an allowed ruin probability α(b) = 1− (1− α) f (b)/ f (s0) when this probability exceeds the
critical probability level M(b). Values for M(b) are listed in the following Table 3. Notice that the
allowed ruin probabilities α(b) differ from the running ruin probabilities: they are computed for the
initial surplus s0, not for the current state s.
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Table 3. Critical probability levels.

b M(b) b M(b)

4 0.259731506201395 15 0.183678509907968

5 0.210250720453755 16 0.183675629162660

6 0.194672114697339 17 0.183674394994606

7 0.188157745948590 18 0.183673887714509

8 0.185579934696899 19 0.183673639474299

9 0.184488131429990 20 0.183673542359286

10 0.184022232778670 21 0.183673500613837

11 0.183822880902840 22 0.183673483500257

12 0.183737493786624 23 0.183673475435889

13 0.183700929021706 24 0.183673471845663

14 0.183685869343539 25 0.183673470498570

Again, we consider only T = 0− and T = 1−payments. We choose Z and E (Z the number of
T = 1−payments and E of T = 0−payments at b) such that the resulting next allowed ruin probability

α(b + 1) = 1− (1− α(b))( f (b + 1)/ f (b− 1))Z( f (b + 1)/ f (b))E

still exceeds M(b).
In our example with s0 = 1 and α = 0.2 we get b = 6 (since 0.2 > M(5)) and the following

possible choices for the pairs (Z, E) with corresponding allowed ruin probabilities α(7) :
All other choices lead to a value α(7) < M(6).
For the allowed ruin probabilities the factors leading from barrier b to b + 1 when exponents Z

and E are used at barrier b we obtain:

( f (b + 1)/ f (b− 1))Z( f (b + 1)/ f (b))E. (53)

The discount factor for dividend payment at b equals

(w(b + 1)/ f (b− 1))Z( f (b + 1)/ f (b))E. (54)

We include a short example for the calculations of present values of dividend payments for the case
that the initial surplus s0 is larger than the first barrier B0 at which dividends are paid (see Section 3).
Again, we use the model parameters p = 0.7 and r = 1/1.03. Our allowed ruin probability α is the one
corresponding to α = 0.2 when s0 = 1. We obtain b = 6, and for s0 = 7, ..., 13 we obtained always the
T = 1−payment as an optimum. For s0 above 13 the payment of a lump sum s0 − 6 is always optimal.
The critical boundary for V(B0, α) in (34) is 23.33... The calculations are given in our Maple file.

Finally, we give numerical results for Equations (51) and (52) in our standard example where we
have b = 6 and Z(6) = E(6) = 1. The present value for α = 0.2 is 7.79839288. For E(6) = 0 we obtain

α1 = 1− (1− α) f (7)/ f (6) = 0.19878278

and

V(s0, α1) = Pv− w(7)
w(6)

(Pv−V(s0, α)) = 7.75057041.

The values for Z(6) = 0 and E(6) = 1 are

α1 = 1− (1− α) f (7)/ f (5) = 0.19592814,
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V(s0, α1) = Pv− w(7)
v(1)w(6)

(Pv−V(s0, α)) = 7.62217520.

Setting both exponents to zero, Z(6) = E(6) = 0, then

α1 = 1− (1− α) f (7)2/( f (5) f (6)) = 0.193063,

and

V(s0, α1) = Pv− w(7)
v(1)w(6)

w(7)
w(6)

(Pv−V(s0, α)) = 7.46965095.

In the MatLab calculations, we observed that the exponents Z(k), E(k), k ≥ 7, for V(s0, α1) and
V(s0, α) do not coincide for all k ≥ 7 due to numerical inaccuracy. But the differences occur for k ≥ 40
only and have no significant influence on the present values.

8. Maple File

Here we enclose a Maple file as well as some MatLab files with which the above calculations
were performed. The Maple code can be copied directly at a prompt in Maple. There, the high
precision is needed when computation is done for states from s = 0 to s = 300. The code computes the
maximal present value V(s, α) for dividend strategies with limits Bi − 1. This code is made for possible
interaction: the first barrier b = B0 has to be chosen manually, small but large enough to get a positive
value ex.

The Maple code deals with the situation of p = 0.7, r = 1/1.03, α = 0.2 and s0 = 1. The code
also computes the dividend value of a two-barrier dividend strategy with maximized value and limits
Li = Bi − 1 as well as with mixed strategies with limits Bi as well as Bi − 1. The pure T = 1−strategy
is obtained for E[i] = 0, i ≥ 4, and the values presented above with, e.g., E[6] = E[11] = E[18] = 1.

Maple code for mixed strategies

restart; Digits := 150;
p := .7; q := 1-p; r := 1/1.03;
f:=proc (s) options operator, arrow; 1-(q/p)^(s+1) end proc;
z := solve(r*(p*x^2+q) = x, x);
W:=proc (s) options operator, arrow; c1*z[1]^s+c2*z[2]^s end proc;
c1 := solve(W(-1) = 0, c1); c2 := solve(W(0) = 1, c2);
V:=proc (s) options operator, arrow; (q/p)^s/(W(s)-W(s-1)) end proc;
K2 := 300;
h := proc (s) options operator, arrow; V(1)*W(s-1)/W(s+1) end proc;
for i from 4 to K2 do H[i] := h(i); H0[i] := W(i)/W(i+1) end do;
alpha := proc (s) options operator, arrow;
-1/(W(s+1)-W(s))+1/(W(s+2)-W(s+1)) end proc;
L := 100;
beta := proc (s) options operator, arrow;
log(f(s-1)/f(s+1))/log(h(s)) end proc;
Se := proc (s) options operator, arrow;
L*(beta(s)-beta(s+1))/alpha(s) end proc;
R0 := proc (s) options operator, arrow;
log(Se(s)/Se(s-1))/log(h(s)) end proc;
for i from 4 to K2 do R[i] := R0(i) end do;
f1 := proc (s) options operator, arrow; f(s-1)/f(s+1) end proc;
for i from 4 to K2 do F[i] := f1(i); F0[i] := f(i)/f(i+1) end do;
for i from 4 to K2 do AL[i] := alpha(i) end do;
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a0 := .2; s0 := 1; b := 7; K := 4;
E := array(K .. K2); for i from K to K2 do E[i] := 0 end do;
E[6] := 1; E[11]:=1: E[18]:=1:

g0 := 1-a0; u2 := f(s0)*F0[b]^E[b]; for i from b+1 to K2 do
u2 := u2*F1[i]^R[i]*F0[i]^E[i] end do;
ex := solve(u2*F1[b]^x = g0, x)

Z:= array(K .. K2); for i from K to b do Z[i] := 0 end do;
for i from b+1 to K2 do Z[i] := floor(R[i]) end do;
Z[b] := floor(ex);
u := f(s0); for i from b to K2 do
u := u*F[i]^Z[i]*F0[i]^E[i]: end do;
for i from b to K2 do m := 0;
for j to 5 do if u*F[i]^j > g0 then m := j end if end do;
Z[i] := Z[i]+m; u := u*F[i]^m end do;
U2[4] := 1; for i from K+1 to K2 do
U2[i] := U2[i-1]*H[i]^Z[i]*H0[i]^E[i] end do;
WM := W(s0)/(W(K+1)-W(K)); unassign(’i’);
X1 := WM+W(s0)*(sum(AL[i]*U2[i], i = K .. K2));

Z1 := array(1 .. K2); for i to b do Z1[i] := 0 end do;
for i from b+1 to K2 do Z1[i] := floor(R[i])-1 end do;
Z1[b] := floor(ex);
u := f(s0); for i from b to K2 do
u := u*F[i]^Z1[i]*F0[i]^E[i]: end do;
for i from b to K2 do m := 0;
for j to 5 do if u*F[i]^j > g0 then m := j end if end do;
Z1[i] := Z1[i]+m; u := u*F[i]^m end do;
U2[4] := 1; for i from K+1 to K2 do
U2[i] := U2[i-1]*H[i]^Z1[i]*H0[i]^E[i] end do;
WM := W(s0)/(W(K+1)-W(K)); unassign(’i’);
X2 := WM+W(s0)*(sum(AL[i]*U2[i], i = K .. K2));
VZ := max(X1, X2);
for i from 4 to 20 do print(i, Z[i], E[i]) end do;
% repeat the above with s0:=6 and a0 := 1-(1-.2)*f(7)/f(1);
% obtain a new VZ=12.6989808. Then continue:
for k from 0 to 10 do A[k] := W(k)/(W(k)-W(k-1)) end do;
for k from 7 to 20 do V0 := max(1+V0, A[1]+V(1)*V0);
print(k, V0): end do:
(A[1]-1)/(1-V(1))

The MatLab codes are easier to use, and despite the lower accuracy of MatLab they provide
ten or more valid digits in the dividend values. In short time one can compute a large number of
dividend values for different allowed ruin probabilities (e.g., for plots or comparison of methods).
The submodules DeFinettiIni.m and DefinettiCalc.m are separated for better readability. The main
code is DeFinettiOne.m for the computation of one case for the mixed strategies for V(s, α); it can also
serve for the computation of a function for plotting purpose. Slight modifications are needed for the
case of pure T = 1− payments or pure T = 0− payments. Notice that the curves for pure T = 0−
strategies, T = 1− strategies as well as for mixed strategies all look the same, the differences are visible
only when the plots are blown up substantially.
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The code Barrier.m produces the probability levels in Table 4. It uses the codes above:
e.g., DeFinettiOne.m in which the fixing of a0 must be commented out. In our calculations we
saw that the dividend strategies produced discontinuities of α→ V(s, α) at the probability levels M(b).
To eliminate these, we modified the strategies in DeFinettiOne.m: we allow for first dividend payment
at b as well as at b + 1 and take the maximum of the resulting present values.

Table 4. Allowed ruin probabilities.

Z, E α(7)

0,1 0.1987827794

0,2 0.1975637068

0,3 0.1963427793

1,0 0.1959281420

1,1 0.1947047260

DeFinettiIni.m

B1=200; %number of states
S=1:B1;
f=zeros(1,B1); w=f; g=f; v=f; f0=f; f1=f; Z=f; R=f; R0=f;
alpha=f; Beta=f; Z=f; U=f; h0=f; h=f; C=f; Se=f; Se0=f; beta=f;
beta0=f; P=f; P0=f;
g0=1-a0;
f=1-(q/p).^(S);
f1(1)=0;
for s=2:B1-5

f1(s)=f(s)/f(s+2);
f0(s)=f(s+1)/f(s+2);

end
z1=(1+sqrt(1-4*r^2*p*q))/(2*r*p);
z2=(1-sqrt(1-4*r^2*p*q))/(2*r*p);
for s=1:B1

w(s)=(z1^(s)-z2^(s))/(z1-z2);
end
[w1,K1]=min(w(2:30)-w(1:29));
K=K1-1;
A0=1; A1=w(2)/(w(2)-w(1));
C0=1; C1=(q/p)/(w(2)-w(1));
for s=2:B1-5

h(s)=C1*w(s)/w(s+2);
h0(s)=w(s+1)/w(s+2);
alpha(s)=1/(w(s+3)-w(s+2))-1/(w(s+2)-w(s+1));

end
for s=K:20

beta(s)=log(f1(s))/log(h(s));
P(s)=(beta(s)-beta(s+1))/alpha(s);
beta0(s)=log(f0(s))/log(h0(s));
P0(s)=(beta0(s)-beta0(s+1))/alpha(s);

end
for s=K+1:20
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R(s)=log(P(s)/P(s-1))/log(h(s));
R0(s)=log(P0(s)/P0(s-1))/log(h0(s));

end
for s=21:B1-10 %approx. for terms close to zero

R(s)=log(q/p*alpha(s-1)/alpha(s))/log(h(s));
R0(s)=log(q/p*alpha(s-1)/alpha(s))/log(h0(s));

end

DeFinettiCalc.m

for i=K:b-1
C(i)=0;
Z(i)=0;

end
Z(b)=floor(ex);
for i=b+1:B1-5

Z(i)=floor(R(i));
end;

u2=f(s0+1);
for i=b:B1-5

u2=u2*(f1(i)^Z(i))*(f0(i)^C(i));
end
u3=u2;
if u3>g0

for i=b:B1-1
for k=1:10

if u2*f1(i)>g0
Z(i)=Z(i)+1;
u2=u2*f1(i);

end;
end;

end;
Pv=w(s0+1)/(w(K+2)-w(K+1));
U(K)=1;
for i=K+1:B1-5

U(i)=U(i-1)*(h(i)^Z(i))*(h0(i)^C(i));
end;

PV=Pv+w(s0+1)*sum(U(K:B1-5).*alpha(K:B1-5));
else

PV=0;
end;
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DeFinettiOne.m

format longEng;
p = .7; q = 1-p; r = 1/1.03;
s0=1;
a0=0.2; % comment out when used in Barrier.m
g0=1-a0;
DeFinettiIni;
%----------------------------------------------
b=K; ex=-1;
while ex<0

u2=f(s0+1);
for i=b+1:B1-6

u2=u2*(f1(i)^R(i));
end
ex=log(g0/u2)/log(f1(b));
b=b+1;

end
b=b-1;
%-----------------------------------------------
C=zeros(1,B1);
DeFinettiCalc;
D1=PV;
for m=4:100

m1=0;
for k1=0:5

C(m)=k1;
DeFinettiCalc;
if PV>D1

D1=PV;
m1=k1;

end
end
C(m)=m1;

end;
DeFinettiCalc;
D1=PV;
b1=b;
VX1=[num2str(b),’;’];
for k=b:b+30

VX1=[VX1,’ ’,num2str(Z(k)),’ ’, num2str(C(k))];
end
%--------------------------------------------
b=b+1;
C=zeros(1,B1);
DeFinettiCalc;
D2=PV;
for m=4:100

m1=0; m2=0;
for k1=0:5

C(m)=k1;
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DeFinettiCalc;
if PV>D2

D2=PV;
m1=k1;

end
end
C(m)=m1;

end;
DeFinettiCalc;
D2=PV;
b2=b;
VX2=[num2str(b),’;’];
for k=b:30

VX2=[VX2,’ ’,num2str(Z(k)),’ ’, num2str(C(k))];
end
PV=max(D1,D2);
if PV==D2

b=b2;
VX=VX2;

else
b=b1;
VX=VX1;

end
[b, D1,D1-D2] % comment out when used in Barrier.m
VX % comment out when used in Barrier.m

Barrier.m

format longEng;
clear;
A11=zeros(1,24);
B1=zeros(2,24);
for I=25:25

a0=0.184
step=0.001;
b0=6;
for k4=1:15

DeFinettiOne;
while b>I

a0=a0+step;
DeFinettiOne;
[k4,a0,b]

end
a0=a0-step;
a0=floor(a0/step)*step-5*step;
step=step/5;

end
a0=a0+25*step;
A11(I)=a0;
B1(1,I)=Z(I);
B1(2,I)=C(I);

end
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