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Abstract: One of the risks derived from selling long-term policies that any insurance company
has arises from interest rates. In this paper, we consider a general class of stochastic volatility
models written in forward variance form. We also deal with stochastic interest rates to obtain
the risk-free price for unit-linked life insurance contracts, as well as providing a perfect hedging
strategy by completing the market. We conclude with a simulation experiment, where we price
unit-linked policies using Norwegian mortality rates. In addition, we compare prices for the classical
Black-Scholes model against the Heston stochastic volatility model with a Vasicek interest rate model.
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1. Introduction

A unit-linked insurance policy is a product offered by insurance companies. Such contract
specifies an event under which the insured of the contract obtains a fixed amount. Typically, the payoff
of such contract is the maximum value between some prescribed quantity, the guarantee, and some
quantity depending on the performance of a stock or fund. For instance, if G is some positive constant
amount, and S is the value of some equity or stock at the time of expiration of the contract, then a
unit-linked contract pays

H = max{G, f (S)},

where f is some suitable function of S. Here, the payoff H is always larger than G, hence being G
a minimum guaranteed amount that the insured will receive. Naturally, the price of such contract
depends on the age of the insured at the moment of entering the contract and the time of expiration,
likewise, it also depends on the event that the insured is alive at the time of expiration.

The risk of such contracts depends on the risk of the financial instruments used to hedge the
claim H, and there are many ways to model it. The most classical one is considering the evolution
of S under a Black-Scholes model; this is, for instance, the case in Boyle and Schwartz (1977) or
Aase and Persson (1994), where the authors derive pricing and reserving formulas for unit-linked
contracts in such setting. One can also consider a more general class of models. For example, it is
empirically known that the driving volatility of S is, in general, not constant. One could then take
a stochastic model for the volatility, as it is done in Wang et al. (2013), where the authors carry
out pricing and hedging under stochastic volatility. Since there is more randomness in the model,
complete hedging is no longer possible, the authors in Wang et al. (2013) provide the so-called local
risk minimizing strategies. Another result that considers both stochastic interest rates and stochastic
volatility is van Haastrecht et al. (2009). This paper focuses on the pricing problem.
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In this paper, instead, we look at the problem from two different perspectives. On the one hand,
we also consider stochastic volatility, as market evidence shows. Nonetheless, there are available
instruments in the market for hedging against volatility risk, the so-called forward variance swaps.
Such products are contracts on the future performance of the volatility of the stock. In such a
way, we want to price unit-linked contracts taking into account that the insurance company can
trade these instruments as well. On the other hand, it is known that unit-linked products share
similarities with European call options. For example, authors in Boyle and Schwartz (1977) recognize
the payoff of unit-linked products as European call options plus some certain amount. However,
European call options have very short maturities, typically between the same day of the contract up
to two years, while it is not uncommon to have unit-linked insurance contracts that last for up to
40 years. For this reason, there is an inherent risk in the interest rate driving the intrinsic value of money.
In this paper, we take such long-term risk into account as well. Our simulations for the particular
contracts in Sections 5.1 and 5.2 suggest that the premiums are underpriced in the Black-Scholes
model. The insurer should, therefore, be aware that long maturities in unit-linked contracts have a
significant impact on their premiums depending on the model chosen. Classically, most of the literature
about equity-linked policies assumes deterministic interest rates. Nevertheless, some research on
stochastic interest rates has also been carried. For example, in Bacinello and Persson (2002), the authors
consider stochastic interest rates under the Heath-Jarrow-Morton framework and study different
types of premium payments. In addition, a comparison with the classical Black-Scholes model is
offered in Bacinello and Persson (2002). In addition, in Bacinello and Persson (1993), the Vasicek and
Cox-Ingersoll-Ross model is considered for the interest rate. In this paper, we consider a general
framework including both cases.

While many results in the literature deal with the construction of risk minimizing strategies in
incomplete markets, in this paper instead, inspired by Romano and Touzi (1997), we complete the
market by allowing for the possibility to trade other instruments that one can find in the market.
On the one hand, we introduce zero-coupon bonds to hedge against interest rate risk and, on the other
hand, we introduce variance swaps to hedge against volatility risk.

This paper is organized as follows. First, we introduce in Section 2 our insurance and economic
framework with the specific models for the money account, stock, and volatility. Then, in Section 3,
we complete the market by incorporating zero-coupon bonds and variance swaps in the market.
We derive the dynamics of the new instruments used to hedge and apply the risk-neutral theory to
price insurance contracts subject to the performance of an equity or fund with stochastic interest and
volatility. In Section 4, we take a particular model, the Vasicek model for the interest rate, and a Heston
model written in forward variance form. We implement the model and do a comparison study with
the classical Black-Scholes model in Section 5, where we generate price surfaces under Norwegian
mortality rates and different maturities. We conclude Section 5 with a Monte Carlo simulation of the
price distributions.

2. Framework

The two basic elements needed in order to build a financial model robust enough to be able to
price unit-linked policies are a financial market and a group of individuals to write insurance on.
We consider a finite time horizon T > 0 and a given probability space (Ω,A,P) where Ω is the set
of all possible states of the world, A is a σ-algebra of subsets of Ω, and P is a probability measure
on (Ω,A). We model the information flow at each given time with a filtration F = {Ft, t ∈ [0, T]}
given by a collection of increasing σ-algebras, i.e., Fs ⊂ Ft ⊂ A for t ≥ s. We will also assume that F0

contains all the sets of probability zero and that the filtration is right continuous. We also take A = FT .
The information flow F comes from two sources; the financial market and the states of the insured
that are relevant in the policy. The market information available at time t will be denoted by Gt and
the information regarding to the state of the insured byHt. We will assume throughout the paper that
the σ-algebras Gt andHt are independent for all t, which implies that the value of the market assets
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is independent from the health condition of the insured. We also assume that Ft = Gt ∨Ht, for all t,
where Gt ∨Ht is the σ-algebra generated by the union of Gt and Ht. This can be understood as the
total amount of information available in the economy at time t that is the information one can get by
recording the values of market assets and the health state of the insured from time 0 to time t.

2.1. The Market Model

The market information G will be modeled using the filtration generated by three independent
standard Brownian motions, W0

t , W1
t , and W2

t . These three Brownian motions represent the sources
of risk in our model. We will consider a market formed by assets of two different natures. A bank
account, considered to be of a riskless nature and stock or bond prices, which are of risky nature.

We start by defining the bank account, whose price process is denoted by B = {Bt}t∈[0,T], such that
B0 = 1. We will assume that the asset evolves according to the following differential equation:

dBt = rtBtdt, t ∈ [0, T] , (1)

where rt is the instantaneous spot rate and it is assumed to have integrable trajectories. Actually,
we will assume that this rate evolves under the physical measure P, according to the following
stochastic differential equation (SDE):

drt = µ (t, rt) dt + σ (t, rt) dW0
t , r0 > 0, t ∈ [0, T] , (2)

where µ, σ : [0, T]×R→ R are Borel measurable functions such that, for every t ∈ [0, T] and x ∈ R,

|µ (t, x)|+ |σ (t, x)| ≤ C (1 + |x|) ,

for some positive constant C, and such that for every t ∈ [0, T] and x, y ∈ R

|µ (t, x)− µ (t, y)|+ |σ (t, x)− σ (t, x)| ≤ L |x− y| ,

for some constant L > 0. We will also assume there exists ε > 0, such that σ (t, x) ≥ ε > 0 for every
(t, x) ∈ R+ ×R. These conditions are sufficient to guarantee a unique global strong solution of (2),
weaker conditions may be imposed, see, e.g., (Revuz and Yor 1999, Chapter IX, Theorem 3.5).

One of the risky assets will be the stock. We describe the stock price process S = {St}t∈[0,T] by a
general mean-reverting stochastic volatility model. Specifically, we will consider the following SDEs:

dSt

St
= b (t, St) dt + a (t, St) f (νt) dW1

t , S0 > 0, (3)

dνt = −κ (νt − ν̄) dt + h (νt) dW2
t , ν0 > 0, (4)

for t ∈ [0, T]. Here, a, b are uniformly Lipschitz continuous and bounded functions, such that
a (t, x) > 0 for all (t, x) ∈ [0, T]×R. The function f is assumed to be continuous with linear growth
and strictly positive. We assume that h is a non-negative, linear growth, invertible function such that

|h(x)− h(y)|2 ≤ ` (|x− y|) ,

for some function ` defined on (0, ∞) such that∫ ε

0

dz
` (z)

= ∞, for any ε > 0.

Then, (Revuz and Yor 1999, Chapter IX, Theorem 3.5(ii)) guarantees the existence of a pathwise
unique solution of Equation (3). We call νt the instantaneous variance.
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Due to the fact that neither ν nor r are tradable, our market model is highly incomplete. In the
forthcoming section, we will complete the market by introducing financial instruments in order to
hedge against the risk derived from instantaneous variance and interest rates.

We introduce the numéraire, with respect to which we will discount our cashflows.

Definition 1. The (stochastic) discount factor Dt,T between two time intervals t and T, 0 ≤ t ≤ T, is the
amount at time t that is equivalent to one unit of currency payable at time T, and is given by

Dt,T =
Bt

BT
= exp

(
−
∫ T

t
rsds

)
. (5)

2.2. The Insurance Model

In what follows, we introduce our insurance model. More specifically, we want to model the
insurance information H as the one generated by a regular Markov chain X = {Xt, t ∈ [0, T]} with
finite state space S which regulates the states of the insured at each time t ∈ [0, T]. For instance, in an
endowment insurance, the state S = {∗, †} consists of the two states, ∗ = “alive” and † = “deceased”.
In a disability insurance, we have three states, S = {∗, �, †}, where � stands for “disabled”. Observe that
X is right-continuous with left limits and, in particular,H satisfies the usual conditions.

We introduce the following processes:

IX
i (t) =

{
1, if Xt = i,

0, if Xt 6= i
, i ∈ S,

NX
ij (t) = #{s ∈ (0, t) : Xt− = i, Xt = j}, i, j ∈ S, i 6= j.

Here, # denotes the counting measure and Xt− , limu→t
u<t

Xu the left limit of X at the point t.

The random variable IX
i (t) tells us whether the insured is in state i at time t and NX

ij (t) tells us the
number of transitions from i to j in the whole period (0, t).

Definition 2 (Stochastic cash flow). A stochastic cash flow is a stochastic process A = {At}t≥0 with almost
all sample paths with bounded variation.

More concretely, we will consider cash flows described by an insurance policy entirely determined
by its payout functions. We denote by ai(t), i ∈ S, the sum of payments from the insurer to the insured
up to time t, given that we know that the insured has always been in state i. Moreover, we will denote
by aij(t), i, j ∈ S, i 6= j, the payments which are due when the insured switches state from i to j at
time t. We always assume that these functions are of bounded variation. The cash flows we will
consider are entirely described by the policy functions, defined by an insurance policy. Observe that
the policy functions can be stochastic in the case where the payout is linked to a fund modeled by a
stochastic process.

Definition 3 (Policy cash flow). We consider payout functions ai(t), i ∈ S and aij(t), i, j ∈ S, i 6= j for
t ≥ 0 of bounded variation. The (stochastic) cash flow associated with this insurance is defined by

A(t) = ∑
i∈S

Ai(t) + ∑
i,j∈S
i 6=j

Aij(t),

where

Ai(t) =
∫ t

0
IX
i (s)dai(s), Aij(t) =

∫ t

0
aij(s)dNX

ij (s).
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The quantity Ai corresponds to the accumulated liabilities while the insured is in state i and Aij for the
case when the insured switches from i to j.

The value of a stochastic cash flow A at time t will be denoted by V+(t, A), or simply V+(t),
and is defined as

V+(t, A) = BT

∫ ∞

t

dA(s)
Bs

,

where B is the reference discount factor in (1). The stochastic integral is a well-defined pathwise
Riemann–Stieltjes integral since A is almost surely of bounded variation and B is almost surely
continuous. The quantity V+(t, A) is stochastic since both B and A are stochastic. The prospective
reserve of an insurance policy with cash flow A given the information Ft is then defined as

V+
F (t, A) = EQ[V+(t, A)|Ft],

where Q is an equivalent martingale measure.
It turns out, see (Koller 2012, Theorem 4.6.3), that one can find explicit expressions when the

policy functions ai, i ∈ S, aij, i, j ∈ S, i 6= j and the force of interest are deterministic. Combining the
previous result with a conditioning argument allows us to recast the expression for the reserves as the
following conditional expectation:

V+
i (t, A) , EQ

∑
j∈S

∫ ∞

t

Bt

Bs
pij(t, s)daj(s) + ∑

j,k∈S
k 6=j

∫ ∞

t

Bt

Bs
pij(t, s)µjk(s)ajk(s)ds

∣∣∣∣∣Gt

 , (6)

where µij are the continuous transition rates associated with the Markov chain X and pij(s, t) are the
transition probabilities from changing from state i at time s to state j at time t.

In this paper, we will focus on the pricing and hedging of unit-linked pure endowment policies
with stochastic volatility and stochastic interest rate. Other more general insurances can be reduced to
this. For instance, in (6), if ai is of bounded variation and a.e. differentiable with derivative ȧi, then we
can look at

EQ
[

Bt

Bs
ȧi(s)

∣∣∣Gt

]
and EQ

[
Bt

Bs
aij(s)

∣∣∣Gt

]
as contracts with payoff ȧi(s), respectively aij(s), with maturity s ≥ t.

3. Pricing and Hedging of the Unit-Linked Life Insurance Contract

The aim of this section is to price and hedge insurance claims linked to the fund S.
However, we cannot hedge any contingent claim using a portfolio with S only. In the spirit
of Romano and Touzi (1997), we will complete the market, including the possibility to trade products
whose underlying are the forward variance and interest rate, which are indeed actively traded in
the market.

3.1. Completing the Market Using Variance Swaps and Zero-Coupon Bonds

First, we will introduce a family of equivalent probability measures Q ∼ P given by

Q (A) = E [ZT1A] , A ∈ GT , (7)

where Z = {Zt, t ∈ [0, T]} is given by

Zt = E
(

2

∑
i=0

∫ ·
0

γi
sdWi

s

)
t

, t ∈ [0, T] ,
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and G-adapted γi, for every i = 0, 1, 2, such that E [ZT ] = 1. Here, E (M)t = exp
(

Mt − 1
2 [M, M]t

)
denotes the stochastic exponential for a continuous semimartingale M.

The following processes are Brownian motions under Q

WQ,i
t = Wi

t −
∫ t

0
γi

sds, i = 0, 1, 2. (8)

Note that not all probability measures given in (7) are risk-neutral in our market model.
In particular, γ1 is determined by the fact that S is a tradable asset and takes the form

γ1
t ,

rt − b (t, St)

a (t, St) f (νt)
.

All probability measures in (7) fixing γ1 are valid risk-neutral measures. In particular,
choosing γ0 = γ2 = 0 is one of them. From now on, we denote by Q0 this choice, that is,

dQ0

dP = E
(∫ ·

0
γ1

s dW1
s

)
T

. (9)

Now, we are in a position to introduce the financial instruments whose valuation will be done
under Q0. One of the most traded assets in interest rate markets are zero-coupon bonds.

Definition 4. A T-maturity zero-coupon bond is a contract that guarantees its holder the payment of one unit
of currency at time T, with no intermediate payments. The contract value at time 0 ≤ t ≤ T is denoted by Pt,T
and by definition PT,T = 1, for all T.

A risk-neutral price of a zero-coupon bond in our framework is given in the following definition.

Definition 5. The price of a zero-coupon bond, Pt,T is given by

Pt,T = EQ0
[Dt,T | Gt] = EQ0

[
Bt

BT
| Gt

]
= EQ0

[
exp

{
−
∫ T

t
rsds

}
| Gt

]
, (10)

where Q0 is the equivalent martingale measure given by (9). See (Filipović 2009, Definition 4.1. in Section 4.3.1
and Section 5.1) for definitions.

The next classical result gives a connection between the bond price in (10) and the solution to a
linear partial differential equation (PDE), see e.g., Filipović (2009).

Lemma 1. Assume that, for any T > 0, FT ∈ C1,2 ([0, T]×R) is a solution to the boundary problem on
[0, T]×R given by

∂tFT (t, x) + µ (t, x) ∂xFT (t, x) +
1
2

σ2 (t, x) ∂2
xFT (t, x)− xFT (t, x) = 0,

FT (T, x) = 1.

Then,
Mt , FT (t, rt) e−

∫ t
0 rudu, t ∈ [0, T]

is a local martingale. If in addition either:

(a) EQ0
[∫ T

0

∣∣∣∂xFT (t, rt) e−
∫ t

0 ruduσ (t, rt)
∣∣∣2 dt

]
< ∞, or

(b) M is uniformly bounded,
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then M is a martingale, and

FT (t, rt) = EQ0
[
e−
∫ T

t rudu | Gt

]
, t ∈ [0, T] . (11)

The dynamics of the zero-coupon bond P in terms of the function FT are given by

dPt,T = LP (FT) (t, rt) dt + ∂xFT (t, rt) σ (t, rt) dW0
t , (12)

where LP , ∂t + µ (t, x) ∂x +
1
2 σ2 (t, x) ∂2

x − x.
We turn now to the definition of the forward variance process. The forward variance ξt,u,

for 0 ≤ t ≤ u, is by definition the conditional expectation of the future instantaneous variance,
see, e.g., Ould Aly (2014), that is,

ξt,u , EQ0
[νu | Gt] , 0 ≤ t ≤ u, (13)

where Q0 is the risk-neutral pricing measure defined in (9). Following Bergomi and Guyon (2012),
one can easily rewrite the general stochastic volatility model, given by Equations (3) and (4) in forward
variance form. This is achieved by taking conditional expectation of Equation (4), which yields

dEQ0
[νu | Gt] = −κ

(
EQ0

[νu | Gt]− ν̄
)

du, u > t,

Solving the previous linear ordinary differential equation (ODE), by integrating on [t, u], we have

ξt,u = ν̄ + e−κ(u−t) (νt − ν̄) . (14)

There are two things to notice at this point. The first is that, by construction, νt = ξt,t, for every
t ∈ [0, T]. The second is that, differentiating the previous equation, we can characterize the dynamics
with respect to t for the forward variance as follows:

dξt,u = e−κ(u−t)h (νt) dW2
t . (15)

Solving Equation (14) for νt yields

νt = ν̄ + eκ(u−t) (ξt,u − ν̄) , ψ (t, u, ξt,u) .

Usually, the dynamics of the forward variance in any forward variance model are given through
the following SDE:

dξt,u = λ (t, u, ξt,u) dW2
t . (16)

As a consequence of the previous result, in our case, the function λ in Equation (16) is fully
characterized by

λ (t, u, ξt,u) , e−κ(u−t) (h ◦ ψ) (t, u, ξt,u) . (17)

Note that any finite-dimensional Markovian stochastic volatility model can be rewritten in forward
variance form. Since we will only be interested in the fixed case u = T, we will drop the dependence
on T for ξt,T and write instead ξt = ξt,T .

We will show how to form a portfolio with a perfect hedge. The financial instruments needed in
order to build a riskless portfolio are the underlying asset, a variance swap, and the zero-coupon bond.
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From now on, we will assume that the function FT , solution to the PDE in Lemma 1 is invertible
in the space variable, for every t ∈ [0, T] , e.g., this is the case if rt, t ∈ [0, T] is given by the Vasicek
model. Introduce the notation

GT (t, x) , ∂xFT (t, x) , (18)

then ∂xFT (t, rt) = GT

(
t, F−1

T (t, Pt,T)
)

, where rt = F−1
T (t, Pt,T) .

3.2. Pricing and Hedging in the Completed Market

Let Π = {Πt}t∈[0,T] be a stochastic process representing the value of a portfolio consisting of a
long position on an option with price Vt, where Vt = V (t, St, ξt, Pt,T), and respective short positions
on ∆t units of the underlying asset, Σt units of a variance swap, and Ψt units of a zero-coupon bond.
Therefore, we can characterize the process Π as

Πt = V (t, St, ξt, Pt,T)− ∆tSt − Σtξt −ΨtPt,T , t ∈ [0, T] . (19)

Definition 6. We say that the portfolio Π is self-financing if, and only if,

dΠt = dV (t, St, ξt, Pt,T)− ∆tdSt − Σtdξt −ΨtdPt,T ,

for every t ∈ [0, T] .

Definition 7. We say that the portfolio Π is perfectly hedged, or risk-neutral, if it is self-financing and

ΠT = 0.

From now on, and throughout the rest of the paper, we will only differentiate between time
derivative ∂tV and space derivatives ∂xV, ∂yV, ∂zV, to write the partial derivatives of V = V (t, x, y, z).
We will also denote second order spatial partial derivatives of V with respect to St, ξt, Pt,T , respectively
by ∂2

xV, ∂2
yV, ∂2

zV and the second order crossed derivatives as ∂x∂yV, ∂x∂zV, ∂y∂zV. In order to simplify
the notation in the following results, we shall define

ΞT (t, x) , GT

(
t, F−1

T (t, x)
)
· σ
(

t, F−1
T (t, x)

)
,

where one should recall that GT is given in (18).

Theorem 1. Let Π be a portfolio defined as in (19), and assume V ∈ C1,2 ([0, T]×R3). If Π is a replicating
portfolio, then V fulfills

∂tV +
1
2

(
x2a (t, x)2 f (ψ (t, T, y))2 ∂2

xV + λ (t, T, y)2 ∂2
yV + Ξ2

T (t, z) ∂2
zV
)

(20)

−rt
(
V − x∂xV − y∂yV − z∂zV

)
= 0,

for every t ∈ [0, T] and
V (T, ST , ξT , PT,T) = max (ST , G) . (21)

Proof. See Appendix A.1 in Appendix A.
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From now on, in order to ease the notation, we will define the differential operator in (20) as

LV , ∂t +
1
2

(
x2a (t, x)2 f (ψ (t, T, y))2 ∂2

x + λ (t, T, y)2 ∂2
y + Ξ2

T (t, z) ∂2
z

)
(22)

− rt
(
1− x∂x − y∂y − z∂z

)
.

We will now prove that the discounted option price is a martingale.

Theorem 2. Let V be the solution to the PDE given by Equation (20) with terminal condition (21). Then,

B−1
t V (t, St, ξt, Pt,T) = EQ

[
B−1

T V (T, ST , ξT , PT,T) | Gt

]
,

where Q indicates the risk-neutral measure.

Proof. See Appendix A.2 in the Appendix A.

4. The Vasicek Model and Heston Model Written in Forward Variance

This section is devoted to providing the reader with a particular model. We will assume that the
evolution of the short-term rate is given by a Vasicek model and consider a Heston model for the risky
asset written in forward variance form.

Let us consider the following SDE for the short-term rate given by the Vasicek model:

drt = k (θ − rt) dt + σdW0
t , r0 > 0, t ∈ [0, T] , (23)

and the Heston model for the risky asset, given by

dSt = µtStdt + St
√

νtdW1
t , S0 > 0, t ∈ [0, T] , (24)

dνt = −κ (νt − ν̄) dt + η
√

νtdW2
t , ν0 > 0, t ∈ [0, T] . (25)

It is well known that the SDE (23) admits the following closed expression:

rT = e−k(T−t)rt + θ
(

1− e−k(T−t)
)
+ σ

∫ T

t
e−k(T−s)dW0

s .

Now, we know that rT , conditional on Gt, is normally distributed with mean and variance

E [rT | Gt] = e−k(T−t)rt + θ
(

1− e−k(T−t)
)

,

Var [rT | Gt] =
σ2

2k

(
1− e−2k(T−t)

)
.

One can show, see, e.g., Musiela and Rutkowski (2005), that the price of the zero-coupon bond
under the dynamics given in (23) is

Pt,T = A (t, T) e−B(t,T)rt ,
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where B (t, T) , 1
k

(
1− e−k(T−t)

)
and A (t, T) , exp

((
θ − σ2

2k2

)
(B (t, T) + t− T)− σ2

4k B (t, T)2
)

.

If we now apply Itô’s Lemma to f (t, rt) = A (t, T) e−B(t,T)rt , we have

dPt,T = ∂t f (t, rt) dt + ∂r f (t, rt) drt +
1
2

∂2
rr f (t, rt) d [r, r]t

= ∂tPt,Tdt− A (t, T) B (t, T) e−B(t,T)rt drt +
1
2

A (t, T) B (t, T)2 e−B(t,T)rt d [r, r]t

= ∂tPt,Tdt + Pt,T

(
−B (t, T) drt +

1
2

B (t, T)2 d [r, r]t

)
.

Replacing the term drt in the previous equation by its SDE (23), we have

dPt,T

Pt,T
= −

(
B (t, T) k (θ − rt)−

1
2

B (t, T)2 σ2
)

dt− σB (t, T) dW0
t . (26)

The forward variance in this case has the following dynamics:

dξt,u = ηe−κ(u−t)√ξt,tdW2
t . (27)

The Heston model, as any Markovian model, can be rewritten in forward variance form by means
of Equations (24) and (27) . The following corollary gives the specific risk-neutral measure for the
Vasicek-Heston model that will be useful for simulation purposes in the next section.

Corollary 1. The risk-neutral measure under the Vasicek-Heston model is given by the measure in (7) with

γ0
t =

1
Θ (t, νt)

[
η
√

νt

(
2 (−1 + B (t, T) k) rt + B (t, T)

(
B (t, T) σ2 − 2kθ

) )]
,

γ1
t =

−1
Θ (t, νt)

[
2B (t, T) ση (µt − rt)

]
,

γ2
t =

1
Θ (t, νt)

[
2B (t, T) eκ(T−t)rtσξt

]
,

where
Θ (t, x) , 2B (t, T) ση

√
x.

Proof. We will proceed similarly as in Theorem 2. We have to impose that the discounted price
process, S̃t, the discounted variance swap ξ̃t, and the discounted zero-coupon bond price P̃t,T are
Q-martingales:

dS̃t = dB−1
t St + B−1

t dSt

= −rtB−1
t Stdt + B−1

t

[
µtStdt + St

√
νtdW1

t

]
= S̃t

([
µt − rt +

√
νtγ

1
t

]
dt +

√
νtdWQ,1

t

)
,

now the discounted price process S̃t is a Q−martingale if and only if

γ1
t =

rt − µt√
νt

. (28)
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We do the same for the discounted forward variance, hence we obtain

dξ̃t = dB−1
t ξt + B−1

t dξt

= −rtB−1
t ξtdt + B−1

t ηe−κ(T−t)√νtdW2
t

= B−1
t

(
−rtξtdt + ηe−κ(T−t)√νt

[
dWQ,2

t + γ2
t dt
])

= B−1
t

([
ηe−κ(T−t)√νtγ

2
t − rtξt

]
dt + ηe−κ(T−t)√νtdWQ,2

t

)
.

Therefore, the discounted variance swap ξ̃t, is a Q−martingale if and only if

γ2
t =

ξtrt

ηe−κ(T−t)√νt
. (29)

Finally, we impose that the discounted zero-coupon bond price process is a Q-martingale in an
analogous computation,

dP̃t,T = dB−1
t Pt,T + B−1

t dPt,T

= −rtB−1
t Pt,T + B−1

t Pt,T

[
−
(

B (t, T) k (θ − rt)−
1
2

B (t, T)2 σ2
)

dt− σB (t, T) dW0
t

]
= −P̃t,T

((
rt + B (t, T) k (θ − rt)−

1
2

B (t, T)2 σ2
)

dt + σB (t, T) dW0
t

)
= −P̃t,T

(
rt + σB (t, T) γ0

t + B (t, T) k (θ − rt)−
1
2

B (t, T)2 σ2
)

dt− P̃t,T

(
σB (t, T) dWQ,0

t

)
,

therefore the discounted zero-coupon bond is a Q-martingale if and only if

−1
1− B (t, T) k

(
σB (t, T) γ0

t + B (t, T) kθ − 1
2

B (t, T)2 σ2
)
= rt. (30)

The result follows, solving the linear system formed by Equations (28)–(30).

5. Model Implementation and Examples

In this section, we present an implementation of the Heston model written in forward variance
together with a Vasicek model for the interest rates, in order to price numerically a unit-linked product.
We will implement a Monte Carlo scheme for simulating prices under this model and compare it against
a classical Black-Scholes model. The Heston process will be simulated using a full-truncation scheme
Andersen (2007) in the Euler discretization in both models. We first show the discretized versions of
the SDE’s for each model and the result of the model comparison given some initial conditions.

Let N ∈ N be the number of time steps in which the interval [0, T] is equally divided.
Then, consider the uniform time grid tk , (kT) /N, for all k = 1, . . . , N of length ∆t = T/N. We present
the following Euler schemes for each model:

1. Classical Black Scholes

Stk+1 = Stk exp
((

r0 −
1
2

ν̄2
)

∆t + ν̄
√

∆t
(

WQ
1 (tk+1)−WQ

1 (tk)
))

,

where the parameters for the simulation are (S0, r, ν̄) , given by: S0 = 100, r0 = 0.01, ν̄ = 0.04.
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2. Vasicek-Heston Model written in forward variance

rtk+1 = rtk +
[
k
(

θ −
(
rtk

)+ )
+ σγ0 (tk)

]
∆t + σ

√
∆t
(

WQ
0 (tk+1)−WQ

0 (tk)
)

,

ξtk+1 (tN) = ξtk (tN) + rtk ξtk (tN)∆t + ηe−κ(tN−tk)
√(

νtk

)+ ∆t
(

WQ
2 (tk+1)−WQ

2 (tk)
)

,

νtk+1 = ν̄ + eκ(tN−tk+1)
(
ξtk+1 (tN)− ν̄

)
,

Stk+1 = Stk + rtk Stk ∆t + Stk

√(
νtk

)+ ∆t
(

WQ
1 (tk+1)−WQ

1 (tk)
)

,

P (tk+1, tN) = P (tk, tN) + P (tk, tN)
[
rtk ∆t− σB (tk, tN)

√
∆t
(

WQ
0 (tk+1)−WQ

0 (tk)
)]

.

where the parameters are (S0, µ, ν0, ν̄, κ, η, r0, θ, k, σ) and were set as S0 = 100, µ = 0.015, ν̄ = 0.01,
ν0 = 0.04, κ = 10−3, η = 0.01, θ = r0 = 0.01, k = 0.3, and σ = 0.02.

For simulation purposes, the Monte Carlo scheme was implemented using 5000 simulations.
The following graphs in Figure 1 result from the implementation of the previous models with the
mentioned initial conditions, and for T = {10, 20, 30, 40} . As one can see in Figure 1, it seems like
the classic Black-Scholes model tends to underprice the risks derived from volatility and interest rate
risk. It is worth noting that the difference between prices increases with both time to maturity and the
guarantee. When it comes to what source of risk is bigger, it seems like the fundamental risk lies in the
driving interest rate.

Figure 1. Pricing comparative between the Black-Scholes model, Vasicek-Heston model written in
forward variance, Heston model with constant rate r0, and a Vasicek model with constant volatility ν0

for T ∈ {10, 20, 30, 40}.

As shown in Theorem 2 and Corollary 1, in order to properly price a unit-linked product, it only
remains to multiply the value of the derivative priced using the Monte Carlo scheme, times the
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probability that an x-year old insured survives during the life of the product (T years). To do so,
we have used Norwegian mortality from 2018 extracted from Statistics Norway.

As it is usual, mortality among men is higher. We consider, however, the aggregated mortality
for simplicity. To model the mortality given in Table 1, we use the Gompertz-Makeham law of
mortality which states that the death rate is the sum of an age-dependent component, which increases
exponentially with age, and an age-independent component, i.e., µ∗†(t) = a + bect, t ∈ [0, T]. This law
of mortality describes the age dynamics of human mortality rather accurately in the age window from
about 30 to 80 years of age, which is good enough for our purposes. For this reason, we excluded
the very first and last observations from the table. We then find the best fit for µ∗† in the class of
functions C = { f (t) = a + bect, t ∈ [0, T] , a, b, c ∈ R}. As stated previously, since the stochastic process
X = {Xt}t∈[0,T], which regulates the states of the insured, is a regular Markov chain, then the survival
probability of an x-year old individual during the next T years is

T px = p̄∗∗ (x, x + T) = exp
(
−
∫ x+T

x
µ∗† (τ) dτ

)
.

Table 1. Norwegian mortality in 2018, per 100,000 inhabitants. Data from Statistics Norway, table: 05381.

Age Men Women Total

4 50 45 95
9 7 2 9

14 10 3 13
19 26 13 39
24 33 6 39
29 63 24 87
34 72 27 99
39 93 43 136
44 109 68 177
49 156 111 267
54 258 177 435
59 454 310 764
64 737 495 1232
69 1206 824 2030
74 1990 1331 3321
79 3602 2447 6049
84 6626 4628 11254
89 12,469 9053 21,522
≥90 21,909 24,230 46,139

Figure 2 shows the fitted Gompertz–Makeham law based on the mortality data from Table 1.

Figure 2. Joint plot of the mortality data given in Table 1, together with the fitted curve using the
Gompertz–Makeham law of mortality.
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Now, using the Vasicek-Heston model written in forward variance, we can compute a unit-linked
price surface in terms of the guarantee, or strike price, and the age of the insured given a terminal
time for the product T > 0. In particular, the graphs below show the price surfaces for fixed
T = {10, 20, 30, 40}.

From the plots in Figure 3, we can observe that the longer time to maturity is, the lower the
unit-linked price is, since the less probable it is that the insured survives. This effect has greater
impact on the price than the effect of future volatility, or uncertainty arising from the stochasticity in
interest rates. This behavior is easily observed by noting how the price surface collapses to zero as
the contract’s time to maturity increases, as well as the age of the insured when entering the contract.
Hence, we can say that time to maturity has a cancelling effect on price, i.e., on one hand, it increases
price as the stock or fund pays longer performance, but, on the other hand, it decreases price due to a
lower probability of surviving during the time to maturity of the unit-linked contract.

Figure 3. Unit-linked price surfaces under a Vasicek-Heston model written in forward variance for
different policy maturities, in terms of the guaranteed amount desired by the insured and his age at the
time of acquisition.

The following plots in Figures 4 and 5 are aimed at providing the reader with an overview of the
distributional properties of the price process at a constant survival rate equal to one. The first thing
that comes to sight is how the variance and time to maturity are directly proportional. In addition,
the longer the time to maturity of the unit-linked product is, the more leptokurtic the distribution of
the insurance product price is. This is an important thing to take into account in the modeling of prices
due to the impact in the hedging of such insurance products.
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Figure 4. Unit-Linked Price histograms with constant survival rate equal to 1.

Figure 5. QQ-Plot between the unit-linked price input data and the standard normal distribution for
maturities T = {10, 20, 30, 40} years.
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5.1. Pure Endowment

Consider an endowment for a life aged x with maturity T > 0. The policy pays the amount
ET , max{Ge, ST} if the insured survives by time T where Ge > 0 is a guaranteed amount and ST is
the value of a fund at the expiration time. This policy is entirely determined by the policy function:

a∗(t) =

{
ET if t ≥ T

0 else
.

In view of (6) and the above function, the value of this insurance at time t given that the insured
is still alive is then given by

V+
∗ (t, A) = EQ

[∫ T

t

Bt

Bs
p∗∗(x + t, x + s)da∗(s)

∣∣∣Gt

]
= EQ

[
Bt

BT
ET

∣∣∣Gt

]
p∗∗(x + t, x + T), (31)

The above quantity corresponds to the formula in Theorem 2.
Observe that the payoff of an endowment can be written as

max{Ge, ST} = (Ge − ST)+ + Ge,

where (x)+ , max{x, 0}, which corresponds to a call option with strike price Ge plus Ge. In the case
that S is modelled by the Black-Scholes model (with constant interest rate), we know that the price at
time t of a call option with strike Ge and maturity T is given by

BS(t, T, St, Ge) , Φ(d1(t, T))St −Φ(d2(t, T))Gee−r(T−t),

where Φ denotes the distribution function of a standard normally distributed random variable and

d1(t, T) ,
log(St/Ge) +

(
r + 1

2 σ2
)
(T − t)

σ
√

T − t
, d2(t, T) , d1(t, T)− σ

√
T − t.

Then, we have that the unit-linked pure endowment under the Black-Scholes model has the price

BSE(t, T, St, Ge) , Φ(d1(t, T))St + Gee−r(T−t)Φ(−d2(t, T)). (32)

The single premium at the beginning of this contract under the Black-Scholes model is then

π0
BS , BSE(0, T, S0, Ge).

It is also possible to compute yearly premiums by introducing payment of yearly premiums πBS
in the policy function a∗, i.e., a∗(t) = −πBSt if t ∈ [0, T) and a∗(t) = −πBST + ET if t ≥ T, then the
value of the insurance at any given time t ≥ 0 with yearly premiums, denoted by Vπ

∗ , becomes

−πBS

∫ T

t
e−r(s−t)p∗∗(x + t, x + s)ds + BSE(t, T, St, Ge).

We choose the premiums in accordance with the equivalence principle, i.e., such that the value
today is 0,

πBS =
BSE(0, T, S0, Ge)∫ T

0 e−rs p∗∗(x, x + s)ds
.
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Under the Vasicek-Heston model instead, the value of policy at time t ≥ 0 with yearly premiums
πVH is

V+
∗ (t, A) = EQ

[∫ T

t

Bt

Bs
p∗∗(x + t, x + s)da∗(s)

∣∣∣Gt

]
= −πVH

∫ T

t
EQ
[

Bt

Bs

∣∣∣Gt

]
p∗∗(x + t, x + s)ds +EQ

[
Bt

BT
ET

∣∣∣Gt

]
p∗∗(x + t, x + T).

A single premium payment π0
VH corresponds to V+

∗ (0, A), i.e.,

π0
VH = EQ

[
ET
BT

]
p∗∗(x, x + T)

and the yearly ones correspond to

πVH =
V+
∗ (0, A)∫ T

0 EQ
[

1
Bs

]
p∗∗(x, x + s)ds

.

In Figure 6, we compare the single premiums using the classical Black-Scholes unit-linked model
in contrast to the Vasicek-Heston model proposed for different maturities T with parameters S0 = 1,
Ge = 1, r = 1% and µ = 1.5%, σ = 4% for the Black-Scholes model, and S0 = 1, Ge = 1, µ = 1.5%,
ν̄ = 1%, ν0 = 4%, κ = 10−3, η = 10−2, θ = r0 = 1%, k = 0.3, σ = 2% for the Vasicek-Heston model.

Figure 6. Single premiums for a pure endowment with benefit equal to 1 monetary unit, using the
classical Black-Scholes with constant interest r = 1% and µ = 1.5%, σ = 4% and a Vasicek-Heston
model with parameters S0 = 1, µ = 1.5%, ν̄ = 1%, ν0 = 4%, κ = 10−3, η = 10−2, θ = r0 = 1%, k = 0.3,
σ = 2%.

5.2. Endowment with Death Benefit

Consider now an endowment for a life aged x with maturity T > 0 that pays, in addition, a death
benefit in case the insured dies within the period of the contract. That is, the policy pays the amount
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ET := max{Ge, ST} if the insured survives by time T as before and, in addition, a death benefit of
Dt := max{Gd, St} if t ∈ [0, T). This policy is entirely determined by the two policy functions:

a∗(t) =

{
ET if t ≥ T

0 else
, a∗†(t) =

{
Dt if t ∈ [0, T)

0 else
.

In view of (6) and the above functions, the value of this insurance at time t given that the insured
is still alive is then given by

V+
∗ (t, A) = EQ

[
Bt

BT
ET

∣∣∣Gt

]
p∗∗(x + t, x + T) +

∫ T

t
EQ
[

Bt

Bs
Ds

∣∣∣Gt

]
p∗∗(x + t, x + s)µ∗†(x + s)ds. (33)

Following similar arguments as in the case of a pure endowment, by adding the function a∗† in
the computations, we obtain that the single premiums π0

BS and π0
VH for the Black-Scholes model and

Vasicek-Heston model, respectively, are given by.

π0
BS = BSE(0, T, S0, Ge) +

∫ T

0
e−rsBSE(0, s, S0, Gd)p∗∗(x, x + s)µ∗†(x + s)ds,

where the function BSE is given in (32), and

π0
VH = EQ

[
ET
BT

]
p∗∗(x, x + T) +

∫ T

0
EQ
[

Ds

Bs

]
p∗∗(x, x + s)µ∗†(x + s)ds.

In Figure 7, we compare the single premiums using the classical Black-Scholes unit-linked model
in contrast to the Vasicek-Heston model proposed for different maturities T with parameters S0 = 1,
Ge = Gd = 1, r = 1% and µ = 1.5%, σ = 4% for the Black-Scholes model, and S0 = 1, Ge = 1, µ = 1.5%,
ν̄ = 1%, ν0 = 4%, κ = 10−3, η = 10−2, θ = r0 = 1%, k = 0.3, σ = 2% for the Vasicek-Heston model.

Figure 7. Single premiums for an endowment with benefits equal to 1 monetary unit, using the classical
Black-Scholes with constant interest r = 1% and µ = 1.5%, σ = 4% and a Vasicek-Heston model with
parameters S0 = 1, µ = 1.5%, ν̄ = 1%, ν0 = 4%, κ = 10−3, η = 10−2, θ = r0 = 1%, k = 0.3, σ = 2%.
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Appendix A. Technical Results

Appendix A.1. Proof of Theorem 1

Proof. It is important to notice that we will use the notation Vt to refer to the process V (t, St, ξt, Pt,T),
and similarly for the partial derivatives. For instance, ∂xVt = ∂xV (t, St, ξt, Pt,T). By means of Itô’s
lemma, we are able to write the change in our portfolio {Vt}t∈[0,T] as follows:

dΠt = ∂tVtdt + ∂xVtdSt + ∂yVtdξt + ∂zVtdPt,T

+
1
2

∂2
xVtd [S, S]t +

1
2

∂2
yVtd [ξ, ξ]t +

1
2

∂2
zVtd [P, P]t

+ ∂x∂yVtd [S, ξ]t + ∂x∂zVtd [S, P]t + ∂y∂zVtd [ξ, P]t
− ∆tdS (t)− Σtdξt −ΨtdPt,T

= ∂tVtdt + {∂xVt − ∆t} dSt +
{

∂yVt − Σt
}

dξt + {∂zVt −Ψt} dPt,T

+
1
2

∂2
xVtd [S, S]t +

1
2

∂2
yVtd [ξ, ξ]t +

1
2

∂2
zVtd [P, P]t

+ ∂x∂yVtd [S, ξ]t + ∂x∂zVtd [S, P]t + ∂y∂zVtd [ξ, P]t .

Using the dynamics for dSt, dξt, dPt,T and the quadratic covariations, given by

d [S, S]t = S2
t a (t, St)

2 f (ψ (t, T, ξt))
2 dt,

d [ξ, ξ]t = λ (t, T, ξt)
2 dt,

d [P, P]t = Ξ2
T (t, Pt,T) dt,

d [S, ξ]t = 0,

d [S, P]t = 0,

d [ξ, P]t = 0,

we obtain

dΠt = ∂tVtdt + {∂xVt − ∆t} dSt +
{

∂yVt − Σt
}

dξt + {∂zVt −Ψt} dPt,T

+
1
2

S2
t a (t, St)

2 f (ψ (t, T, ξt))
2 ∂2

xVtdt +
1
2

λ (t, T, ξt)
2 ∂2

yVtdt +
1
2

Ξ2
T (t, Pt,T) ∂2

zVtdt

=

{
∂tVt +

1
2

(
S2

t a (t, St)
2 f (ψ (t, T, ξt))

2 ∂2
xVt + λ (t, T, ξt)

2 ∂2
yVt + Ξ2

T (t, Pt,T) ∂2
zVt

)}
dt

+ {∂xVt − ∆t} dSt +
{

∂yVt − Σt
}

dξt + {∂zVt −Ψt} dPt,T .
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Now, in order to make the portfolio instantaneously risk-free, we must impose that the return
on our portfolio equals the risk-free rate rt, i.e., dΠt = rtΠtdt = rt (Vt − ∆tSt − Σtξt −ΨtPt,T) dt,
and force the coefficients in front of dSt, dξt and dPt,T to be zero, i.e.,

∆t = ∂xVt,

Σt = ∂yVt,

Ψt = ∂zVt.

This implies that

dΠt =

{
∂tVt +

1
2

(
S2

t a (t, St)
2 f (ψ (t, T, ξt))

2 ∂2
xVt + λ (t, T, ξt)

2 ∂2
yVt + Ξ2

T (t, Pt,T) ∂2
zVt

)}
dt.

Therefore, rearranging the terms in the previous expression and taking into account that we
have imposed ∆t = ∂xVt, Σt = ∂yVt, Ψt = ∂zVt, we have the PDE for the unit-linked product,
ending the proof.

Appendix A.2. Proof of Theorem 2

Proof. We start by imposing that the discounted price process, S̃t = B−1
t St, the discounted variance

swap ξ̃t, and the discounted zero-coupon bond price P̃t,T are Q−martingales, where dBt = rtBtdt and
dB−1

t = −rtB−1
t dt. To do so, we will also make use of the relationship between the Brownian motions

and their Q-measure counterparts, given by (8):

dS̃t = dB−1
t St + B−1

t dSt

= −rtB−1
t Stdt + B−1

t

[
b (t, St) Stdt + a (t, St) f (ψ (t, T, ξt)) StdW1

t

]
= S̃t

[
(b (t, St)− rt) dt + a (t, St) f (ψ (t, T, ξt))

[
dWQ,1

t + γ1
t dt
]]

= S̃t

[
b (t, St)− rt + a (t, St) f (ψ (t, T, ξt)) γ1

t

]
dt + S̃ta (t, St) f (νt) dWQ,1

t .

Now, the discounted price process S̃t is a Q−martingale if, and only if,

γ1
t =

rt − b (t, St)

a (t, St) f (ψ (t, T, ξt))
. (A1)

We do the same for the discounted forward variance process,

dξ̃t = dB−1
t ξt + B−1

t dξt

= −rtB−1
t ξtdt + B−1

t λ (t, T, ξt) dW2
t

= B−1
t

[
λ (t, T, ξt) γ2

t − rtξt

]
dt + B−1

t λ (t, T, ξt) dWQ,2
t .

Therefore, the discounted variance swap is a Q−martingale if, and only if,

γ2
t =

rtξt

λ (t, T, ξt)
. (A2)
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Finally, we impose that the discounted zero-coupon bond price process is aQ-martingale analogously

dP̃t,T = dB−1
t Pt,T + B−1

t dPt,T

= −rtB−1
t Pt,Tdt

+ B−1
t

[
∂tFT (t, rt) + µ (t, rt) ∂xFT (t, rt)

+
1
2

σ2 (t, rt) ∂2
xFT (t, rt)− rtFT (t, rt)

]
dt + B−1

t ∂xFT (t, rt) σ (t, rt) dW0
t

= B−1
t

[
∂tFT (t, rt) +

(
µ (t, rt) + σ (t, rt) γ0

t

)
∂xFT (t, rt)

+
1
2

σ2 (t, rt) ∂2
xFT (t, rt)− rt (FT (t, rt) + Pt,T)

]
dt

+ B−1
t Ξ2

T (t, Pt,T) dWQ,0
t .

Therefore, the discounted zero-coupon bond is a Q-martingale if, and only if,

1
FT (t, rt) + Pt,T

[
∂tFT (t, rt) +

(
µ (t, rt) + σ (t, rt) γ0

t

)
∂xFT (t, rt) +

1
2

Ξ2
T (t, Pt,T)

]
= rt. (A3)

Now, we are able to characterize γi, for all i ∈ {0, 1, 2} , by solving the linear system given by
Equations (A1)–(A3).

Therefore, we will apply Itô’s lemma to the discounted price of the option,

d
[

B−1
t V (t, St, ξt, Pt,T)

]
= dB−1

t V (t, St, ξt, Pt,T) + B−1
t dV (t, St, ξt, Pt,T) .

In order to relax the notation, we will drop the dependencies of V, allowing us to rewrite the
previous expression as

d
[

B−1
t Vt

]
= dB−1

t Vt + B−1
t dVt

= −rtB−1
t Vtdt + B−1

t
[
∂tVtdt + ∂xVtdSt + ∂yVtdξt + ∂zVtdPt,T

]
+ B−1

t

[
1
2

∂2
xVtd [S, S]t +

1
2

∂2
yVtd [ξ, ξ]t +

1
2

∂2
zVtd [P, P]t

]
+ B−1

t
[
∂x∂yVtd [S, ξ]t + ∂x∂zVtd [S, P]t + ∂y∂zVtd [ξ, P]t

]
.

Furthermore,

d
[

B−1
t Vt

]
= B−1

t (∂tVt − rtVt) dt

+B−1
t
(
∂xVt

[
b (t, St) Stdt + Sta (t, St) f (ψ (t, T, ξt)) dW1

t
]
+ ∂yVt

[
λ (t, T, ξt) dW2

t
])

+B−1
t ∂zVt

[
LP (FT (t, rt)) dt + ΞT (t, Pt,T) dW0

t
]

+B−1
t

[
1
2 S2

t a (t, St)
2 f (ψ (t, T, ξt))

2 ∂2
xVt +

1
2 λ (t, T, ξt)

2 ∂2
yVt +

1
2 Ξ2

T (t, Pt,T) ∂2
zVt

]
dt

= B−1
t

[
∂tVt − rtVt + b (t, St) St∂xVt + LP (FT (t, rt)) ∂zVt

+ 1
2

(
S2

t a (t, St)
2 f (ψ (t, T, ξt))

2 ∂2
xVt + λ (t, T, ξt)

2 ∂2
yVt + Ξ2

T (t, Pt,T) ∂2
zVt

)]
dt

+B−1
t
[
St f (ψ (t, T, ξt)) ∂xVtdW1

t + λ (t, T, ξt) ∂yVtdW2
t + ΞT (t, Pt,T) ∂zVtdW0

t
]

.
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If we replace the Brownian motions under the P-measure by the ones under the Q-measure given
by Equation (8), we can rewrite the previous expression as follows:

d
[

B−1
t Vt

]
= B−1

t

[
∂tVt − rtVt + b (t, St) St∂xVt + LP (FT (t, rt)) ∂zVt

+ 1
2

(
S2

t a (t, St)
2 f (ψ (t, T, ξt))

2 ∂2
xVt + λ (t, T, ξt)

2 ∂2
yVt + Ξ2

T (t, Pt,T) ∂2
zVt

)]
dt

+B−1
t Sta (t, St) f (ψ (t, T, ξt)) ∂xVt

[
dWQ,1

t + γ1
t dt
]

+B−1
t λ (t, T, ξt) ∂yVt

[
dWQ,2

t + γ2
t dt
]

+B−1
t ΞT (t, Pt,T) ∂zVt

[
dWQ,0

t + γ0
t dt
]

= B−1
t

[
∂tVt − rtVt + St

[
b (t, St) + γ1

t a (t, St) f (ψ (t, T, ξt))
]

∂xVt

+γ2
t λ (t, T, ξt) ∂yVt +

[
LP (FT (t, rt)) + γ0

t ΞT (t, Pt,T)
]

∂zVt

+ 1
2

(
S2

t a (t, St)
2 f (ψ (t, T, ξt))

2 ∂2
xVt + λ (t, T, ξt)

2 ∂2
yVt + Ξ2

T (t, Pt,T) ∂2
zVt

)]
dt

+B−1
t

[
Sta (t, St) f (ψ (t, T, ξt)) ∂xVtdWQ,1

t + λ (t, T, ξt) ∂yVtdWQ,2
t + ΞT (t, Pt,T))∂zVtdWQ,0

t

]
.

Applying Equations (A1)–(A3) and reorganizing the terms in the previous equation, we have

d
[

B−1
t Vt

]
= B−1

t

[
∂tVt + rt

(
St∂xVt + ξt∂yVt + Pt,T∂zVt −Vt

)
+ 1

2

(
S2

t a (t, St)
2 f (ψ (t, T, ξt))

2 ∂2
xVt + λ (t, T, ξt)

2 ∂2
yVt + Ξ2

T (t, Pt,T) ∂2
zVt

)]
dt

+B−1
t

[
Sta (t, St) f (ψ (t, T, ξt)) ∂xVtdWQ,1

t + λ (t, T, ξt) ∂yVtdWQ,2
t + ΞT (t, Pt,T) ∂zVtdWQ,0

t

]
.

Now, noticing that the dt term in the previous equation is the differential operator (22) applied to
V, we can write the following:

d
[

B−1
t V (t, St, ξt, Pt,T)

]
= B−1

t LVV (t, St, ξt, Pt,T) dt

+ B−1
t Sta (t, St) f (ψ (t, T, ξt)) ∂xV (t, St, ξt, Pt,T) dWQ,1

t

+ B−1
t λ (t, u, ξt) ∂yV (t, St, ξt, Pt,T) dWQ,2

t

+ B−1
t ΞT (t, Pt,T) ∂zV (t, St, ξt, Pt,T) dWQ,0

t .

Next, integrating on the interval [s, t] , with s ≤ t, we can write the previous equation in integral
form as

B−1
t V (t, St, ξt, Pt,T) = V (s, Ss, ξs, Ps,T) +

∫ t

s
B−1

τ LVV (τ, Sτ , ξτ , Pτ,T) dτ

+
∫ t

s
B−1

τ Sτa (τ, Sτ) f (ψ (τ, T, ξτ)) ∂xV (τ, Sτ , ξτ , Pτ,T) dWQ,1
τ

+
∫ t

s
B−1

τ λ (τ, u, ξτ) ∂yV (τ, Sτ , ξτ , Pτ,T) dWQ,2
τ

+
∫ t

s
B−1

τ ΞT (t, Pt,T) ∂zV (τ, Sτ , ξτ , Pτ,T) dWQ,0
τ .

Taking the conditional expectation with respect to the risk neutral measure, we have that

EQ
[

B−1
t V (t, St, ξt, Pt,T) | Gs

]
= Vs +EQ

[∫ t

s
B−1

τ LVV (τ, Sτ , ξτ , Pτ,T) dτ | Gs

]
.

Notice that the previous expression is a martingale if, and only if, LVV (t, St, ξt, Pt,T) ≡ 0, for all
t ∈ [0, T] .
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