risks ﬁw\p\py

Article
Neural Network Pricing of American Put Options

Raquel M. Gaspar >*{, Sara D. Lopes (" and Bernardo Sequeira !

1 ISEG, Universidade de Lisboa, Rua do Quelhas 6, 1200-078 Lisbon, Portugal;
sblopes@iseg.ulisboa.pt (S.D.L.); bernardo.sequeira@aln.iseg.ulisboa.pt (B.S.)

2 CEMAPRE/REM Research Center, Rua do Quelhas 6, 1200-078 Lisbon, Portugal

Correspondence: Rmgaspar@iseg.ulisboa.pt

check for
Received: 31 March 2020; Accepted: 24 June 2020; Published: 2 July 2020 updates

Abstract: In this study, we use Neural Networks (NNs) to price American put options. We propose
two NN models—a simple one and a more complex one—and we discuss the performance of two
NN models with the Least-Squares Monte Carlo (LSM) method. This study relies on American put
option market prices, for four large U.S. companies—Procter and Gamble Company (PG), Coca-Cola
Company (KO), General Motors (GM), and Bank of America Corp (BAC). Our dataset is composed of
all options traded within the period December 2018 until March 2019. Although on average, both NN
models perform better than LSM, the simpler model (NN Model 1) performs quite close to LSM.
Moreover, the second NN model substantially outperforms the other models, having an RMSE ca. 40%
lower than the presented by LSM. The lower RMSE is consistent across all companies, strike levels,
and maturities. In summary, all methods present a good accuracy; however, after calibration,
NNs produce better results in terms of both execution time and Root Mean Squared Error (RMSE).

Keywords: machine learning; neural networks; American put options; least-squares Monte Carlo

JEL Classification: C45; C63; G13; G17

1. Introduction

This study compares two different methods to price American put options. While call options
give the right to its holder to buy the underlying asset at a pre-defined price, the strike value, put
options give the right to sell it. European style options can only be exercised at a pre-defined fixed
date, the maturity. American style options, instead, can be exercised at any moment until maturity,
leading to an optimal stopping time problem.

The case of American put options is particularly hard to solve, and there are no
closed-form solutions.

This problem was first studied by Brennan and Schwartz (1977), and it has been recurrent in the
literature ever since. Important references on this matter are Bunch and Johnson (2000); Carr et al.
(1992); Chen et al. (2008); Cremers and Weinbaum (2010); Geske and Johnson (1984); Kim (1990); Kuske
and Keller (1998); Parkinson (1977); Rogers (2002); Sullivan (2000); Zhu (2006), for instance. For a
recent overview of different approximation methods to price American put options, see Zhao (2018).

Here, we focus on the comparison of two methods: the least-squares Monte Carlo method,
a simulation method first presented by Longstaff and Schwartz (2001), and a machine learning method,
Neural Networks (NNs).

Most studies on NN explore mainly European style options. That is the case of Hutchinson et al.
(1994), the first article where NNs were trained to price options, but also of Bennell and Sutcliffe (2004);
Garcia and Gengay (2000); Gradojevic et al. (2009); Yao et al. (2000); Liu et al. (2019). A very recent
exception is Jang and Lee (2019), which looked into market prices of S&P 100 American put options.

Risks 2020, 8, 73; d0i:10.3390/risks8030073 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://orcid.org/0000-0003-3294-3962
https://orcid.org/0000-0001-7345-1425
http://dx.doi.org/10.3390/risks8030073
http://www.mdpi.com/journal/risks
https://www.mdpi.com/2227-9091/8/3/73?type=check_update&version=2

Risks 2020, 8,73 2 0f 24

This study is, thus, one of the first to use NNs to address the American put option problem, using
real observed market data. As opposed to Jang and Lee (2019), here, we look at options on individual
stocks. It is also based on a larger real market dataset, when compared to other NN studies, which
either use less market data or rely on simulated data.

The rest of the text is organized as follows. Section 2 presents a brief literature overview. Section 3
explains the two methodological approaches used, with particular emphasis on the NN architecture
and logic. Section 4 explains the data selection process and its descriptive statistics and specifies
both methods’ implementation details. Section 5 presents and discusses the results. Finally, Section 6
concludes and suggests further developments.

2. Literature Overview

The pricing of American style options is a classical problem in financial mathematics. This
type of problem is associated with a moving boundary that is related to the optimal time to exercise
the option. Various approaches have been proposed and developed for the valuation problem of
American options. Methods based on solving partial differential equations include finite differences
schemes as introduced by Brennan and Schwartz (1977) and the finite element method as presented by
Allegretto et al. (2001).

In the class of simulation and tree approaches, the most popular techniques include the
binomial and trinomial tree methods and the Least-Squares Monte Carlo (LSM) method proposed in
Longstaff and Schwartz (2001).

Zhao (2018) studied the pricing of put and call options by comparing eight different valuation
methods on a one-dimensional scale. He compared numerical methods as the binomial and trinomial
tree methods and the explicit and implicit finite difference and concluded that the binomial method
had the best overall performance in terms of both time and accuracy. In the simulation methods class,
he analyzed the simulated tree from Broadie et al. (1997), the bundling technique from Tilley (1993),
and the LSM method, with LSM showing the best results also in terms of both accuracy and
execution time.

The fundamental idea of the LSM approach is that the optimal exercise strategy is obtained by the
conditional expectation of the payoff from maintaining the option alive. This conditional expectation is
estimated using the cross-sectional information in the simulated paths by use of least squares, allowing
accurately valuing American options by simulation. It should be noted that simulation methods tend
to be more attractive when compared to other numerical schemes when the complexity of the option
grows or the number of the underlying assets increases.

The consistency and convergence rates of the LSM were investigated by Clément et al. (2002).
Variations of the original regression techniques have also been explored. Examples are nonparametric
least squares regression estimates as in Egloff (2005) and Egloff et al. (2007), the smoothing spline
regression estimates of Kohler (2008), or the recursive kernel regression estimates by Barty et al. (2008).
In Kohler et al. (2010), the authors presented a further modification of the LSM algorithm using
neural networks instead of regressions, proving the convergence of the proposed algorithm and
applying it to pricing American put options written on several underlyings, using simulated data
under Black-Scholes assumptions and the Heston model.

Artificial Neural Networks (NN) were firstly mathematically formalized in
McCulloch and Pitts (1943) as a biologically-inspired programming paradigm that enables a
computer to learn from observable data. The introduction of the error backpropagation learning
algorithm by Rumelhart et al. (1985) has since contributed to the increase in popularity of NNs in
many research fields. NNs and deep learning currently provide the most efficient solution to many
problems in image recognition, speech recognition, or natural language processing. They have
also been applied to predict and/or classify economic and financial variables such as the gross
domestic product as in Tkacz (2001), the unemployment rate in Moshiri and Brown (2004), inflation

Risks 2020, 8,73 30f24

in Choudhary and Haider (2012), exchange rates in Pacelli et al. (2011), or even to predict financial
crashes as in Rotundo (2004).

In particular, for pricing financial derivatives, many studies have been pointing to the advantages
of using NN as the main or complementary tool. For instance, Hutchinson et al. (1994) proposed
the use of learning networks for estimating the price of European options and argued that learning
networks are able to recover the Black-Scholes formula using a two year training set of daily options
prices and that the resulting network could be used to obtain prices and successfully delta-hedge
options out-of-sample. Garcia and Gengay (2000) estimated a generalized option pricing formula
that has a functional format similar to the Black-Scholes formula through a feedforward NN model
and obtained small delta-hedging errors relative to the hedging performance of the Black-Scholes
model. Yao et al. (2000) used backpropagation NN to forecast option prices of Nikkei 225 index
futures and showed that for volatile markets, an NN option pricing model can outperform the
traditional Black-Scholes model. However, they pointed out that the Black-Scholes model is
still adequate for pricing at-the-money options and suggested to partition the data according to
moneyness when applying neural networks. In Bennell and Sutcliffe (2004), a comparison between the
performance of Black-Scholes with an NN was carried out for pricing European call options on the
FTSE 100 index, and they concluded that for out-of-the-money options, the NN is clearly superior to
Black—Scholes and comparable for other cases excluding the deep in-the-money and long maturity
options. Gradojevic et al. (2009) proposed a Modular Neural Network (MNN) model to obtain prices
for S&P-500 European call options. The modules based on moneyness and time to maturity of the
options improve the out-of-sample performance when compared with standard feedforward neural
network option pricing models.

While most studies on NN, dealing with real observed market data, focus on European options,
the empirical study of Jang and Lee (2019) targeted S&P 100 American put options prices and also
pointed out the better performance of NNs when compared with the classical financial option models.

Recently, Becker et al. (2019) showed how NN can be used to provide estimates for the optimal
value for other stopping time problems, such as the pricing of Bermudan max-call and callable multi
barrier reverse convertible options and the problem of optimally stopping a fractional Brownian motion,
providing an alternative for simulation methods for high-dimensional problems. Becker et al. (2019)
focused on high dimensionality American and Bermudan options.

In this study, we consider the one-dimensional American put pricing case and compare the
classical LSM method, as proposed in Longstaff and Schwartz (2001), as the idea is to compare the
“best” of the pure simulation methods (according to the comparative study of Zhao 2018) with the
more recent approach of using pure NN and deep learning methods. An advantage of the latter is the
fact that it is a model free, real market data-driven approach.

3. Methodology
3.1. Least-Squares Monte Carlo Method
The LSM implementation can be understood as a three step procedure:

e First, a model must be chosen, and using standard Monte Carlo techniques, a large number of
paths for the underlying risky asset are simulated.

Here, we assume stock prices S follow a geometrical Brownian motion (GBM) whose dynamics,
under the risk neutral measure, are given by:

dSt = (1’—6]) Stdt—i-aStth, (1)

where W; is a Wiener process, r is the risk-free interest rate, and g and ¢ are the associated stock
dividend yield and volatility, respectively.

Risks 2020, 8,73 40f 24

e Second, a backward induction process is conducted in which a value is recursively assigned to
each state at every time step. At each point of the option cash-flow matrix, the exercise value is
known, but the continuation value needs to be estimated. LSM uses regressions, considering the
in-the-money states of the option cash-flow matrix at each time step and measurable functions
of underlyings at the same time step and state, to estimate the continuation value of the option.
In this study, we consider a five degree polynomial, so the continuation function is estimated as:

5
EYIX]=Bo+) BuX" +e€)
n=1

where Y is the continuation value, X is the simulation stock value, and ¢ the residual error.

e Finally, when all states are valued for every time step, we calculate the value of the option by
passing through all the time steps and states and by making an optimal decision on option exercise
at every step for a particular price path and the value of the payoff that would result.

The LSM approach is easily implemented, but it depends on the chosen model (model risk), on the
approximation method for the continuation value, and on the simulation decisions such as the number
of paths, step size, etc.

In terms of underlying models, one could have considered alternative models, such as jump
processes and processes with stochastic volatility, among many others. Here, we opted for the simplest
possible model, GBM, but we did consider Bloomberg’s implied volatility to value each different option,
so, to some extent, we include volatility smiles in the standard GBM model. For each simulation, we
used a total of 1000 paths and 50 time steps.

3.2. Neural Networks

Haykin (1994) defined an NN as a “massively parallel distributed processor made up of simple
processing units that has a natural propensity for storing experiential knowledge and making it
available for use”.

The best part about considering an NN approach is that one does not need to assume any
underlying pattern for the data. That is, NNs are a model-free purely data-driven approach. Patterns
are captured using an almost exhaustive search. The provided data are regular enough (e.g., no infinite
variance). The only assumption one needs to consider is on the ability of the NN to approximate the
output function. As we discuss below, these are extremely mild assumptions due to the existence of
the universal approximation theorem.

For our pricing of American put options, we collected market data on put prices (output), but also
on the same inputs the model in Equation (1) requires: price of the underlying asset, volatility, interest
rate, dividend yield, options’ strike price, and maturity. As we will see in Section 4.4, in our simplest
NN, some of these inputs will not even be considered.

We consider an NN with a feedforward architecture as represented in Figure 1. Although different
architectures can be considered, for tackling the problem of option pricing, the feedforward dynamic
is the most widely used. Examples of this include Tang and Fishwick (1993), Hutchinson et al. (1994),
Yao et al. (2000), and Garcia and Gengay (2000).

For exposition simplicity, we briefly present the dynamics of a feedforward NN with just one
hidden layer, as represented in Figure 1. The architecture’s logic allows for more than one hidden
layer, which would add more connections and weights between the hidden layers only. In our options
pricing application, we use both a model with just one hidden layer and another with several.

Risks 2020, 8,73 5o0f 24

Figure 1. Feedforward neural network structure. Where X;, withi = 1,--- ,d represent the input
nodes, Hy, witk =1, - - , K, the hidden nodes, f the output and the activation functions ¢ and ¢ are as
described in Equations (3) and (4), respectively.

A feedforward NN can be summarized as follows:

o The first layer, (Xj to X;), represents the input layer, where d is the number of input variables.
The second layer is the hidden layer, (H; to Hy), where k is the number of nodes. Finally, f
represents the output variable. The nodes in the same layer are not connected to each other,
but each node is connected to each node from the neighboring layer. This connection is given by
the weighted sum of the values of the previous nodes.

e Starting with the connection between the input layer and the hidden layer, let X; represent an
input node and Hy, the k' node from the hidden layer, then each hidden node is obtained as:

N;

Hi = ¢()_ we;iXi +by) , 3)
i1

where N; is the number of input variables, wy ; is the weight of the input layer i with respect to
the hidden node k, by is the bias node, and ¢ is an activation function.

e Asin the hidden layer, the output node also depends on an activation function, with the weighted
sum of the hidden nodes as the argument. Once we have a value for each Hy, the output of the
function is given by:

Ni
f=9(} vcHc+b), 4)
k=1
where f is the output value, N is the number of nodes in the hidden layer, vy is the weight of the
node Hy, b is the bias, and 1 is also an activation function.

The bias node is an extra node added to each layer (except the output layer). It is an extra
argument to the activation function and acts as the independent term in a regression model (i.e., as a
scaler). While the nodes are connected with the input layer through the weights, the bias node is not
connected to the input layer. The argument of the activation function depends on the input nodes and
the respective weights and is then used to complete the connection from the input nodes to each hidden
node. Itis the activation function that scales the argument to a different range, introducing non-linearity
and making the model susceptible to non-linear combinations between the input variables.

The universal approximation theorem states that, under mild assumptions on the activation
function, a feedforward network with one hidden layer and a finite number of neurons is able to
approximate continuous functions on compact subsets of R". Intuitively, this theorem states that,
when given appropriate parameters, a simple NN can represent a wide variety of functions. One of
the first versions of the theorem was proven by Cybenko (1989), for sigmoid activation functions.
Leshno et al. (1993) later showed that the class of deep neural networks is a universal approximator if

Risks 2020, 8,73 6 of 24

and only if the activation function is not polynomial, although for an NN with a single hidden layer,
the width of such networks would need to be exponentially large. Hornik et al. (1989) showed that the
multilayer feedforward architecture gives NNs the potential of being universal approximators and that
this property is not obtained from the specific choice of the activation function, but on the multilayer
feedforward architecture itself, which gives NNs the potential of being universal approximators.
The usage of NNs as approximators for complex and multidimensional problems was reinforced
by Barron (1993) with the result regarding the accuracy of the approximation of functions, which
implies that the number of elements of an NN does not have to increase exponentially with the space
dimension to maintain errors at a low level.

Besides the classical sigmoid function, f(x) = H%’ which can be seen on the left of Figure 2,
several other activation functions have been considered in the literature. Krizhevsky et al. (2012)
empirically compared the sigmoid function to a nonlinear function called Rectified Linear Units
(ReLU), concluding that it consistently improves the NN training, decreasing its error. Lu et al. (2017)
showed that an NN of width # 4- 4 with ReLU activation functions is able to approximate any Lebesgue
integrable function on an n-dimensional input space with respect to the L! distance, if the network
depth is allowed to grow. Hanin and Sellke (2017) showed that an NN width n+1 would suffice to
approximate any continuous function of n-dimensional input variables.

Sigmoid Function Relu Functions

1.0 101 — ReLu

Leaky ReLu (a = 0.1)

0.8 1
0.8 1

0.6
0.6

2 2
z
8 & 0.4
0.4 4
0.2 4
0.2 4
0.0 4
0.0 4
-100 -75 -5.0 -25 0.0 2.5 5.0 7.5 10.0 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X X

Figure 2. Activation functions. On the Lh.s., the most commonly used sigmoid activation function.
On the rh.s., ReLU and leaky ReLU functions as in (5). The difference between the ReLU functions is in
the negative part of the function, where in the case of leaky ReLU (red line), 2 can take a small value
(0.01), while for ReL.U, a is zero.

Xu et al. (2015) investigated the use of variants of ReLU, such as leaky ReLU. Although the authors
recognized the need for rigorous theoretical treatment of their empirical results, they showed that
leaky ReLU seems to work consistently better than the original ReLU.

The general equation for both classical ReLUs and leaky ReLU is given by:

Flx) = {x, if x > 0. 5)

ax, otherwise, for0<a<1.

The classical ReLU and an instance of a leaky ReLU are also represented on the right of Figure 2.

Following the most recent literature, in our option pricing NN, we opted for leaky ReLU (with
a = 0.1), instead of the traditional sigmoid function or standard ReLU, which has the advantage of
avoiding zero gradients.

We note that the universal approximation theorem states that, given appropriate parameters, we
can represent a wide variety of interesting functions using simple NN, but it does not touch upon the
algorithmic learnability of those parameters. The most common learning procedure was introduced by

Risks 2020, 8,73 7 of 24

Rumelhart et al. (1985) and is known as backpropagation. Under this setting, the weights of the nodes
are iteratively adjusted in order to minimize the so-called cost function.

The cost function rates how good the NN does in the whole set of observations. Taking the Mean
Squared Error (MSE) as an example of a cost function, we get:

CHO)=Lyd, for =fO) - f 6)

where 7 is the number of observations, f] (0) is the NN output value, for 0 the set of parameters, and f]*
is the real observed market values.

Backpropagation adjusts the connection weights to correct for each error found.The error amount
is effectively split among the connections. Technically, backpropagation computes the gradient of the
cost function at a given state with respect to the weights. The weight updates are commonly done
using Gradient Descent (GD),

6(t) = 6(t — 1) — aVC (£ (6(t ~ 1)), %

where t is the iteration step we refer to, a is the learning rate, and VC the gradient of the cost
function. The choice of a should be made carefully as values near one could cause the algorithm
to be unstable and oscillate, resulting in missing a global/local minimum in one iteration, whereas
values near zero can converge to a non-optimal solution and also slow the convergence to a solution.
See LeCun et al. (2012) for an overview of learning rate issues.

The backpropagation learning algorithm:

e Starts with random or pre-selected weights at t = 0.
o Then, for each observation, weights are updated at step t according to:

Awyi(t) = —aVwg;(t—1), Ay(t) = —aVo(t - 1) ®8)
where the cost function gradients, Vwy ;, Vi, can easily be obtained applying the chain rule:

dC(f(0)) _ 9C(f(6)) douty,; din, Vo — 9C(f(9)) _ 9C(f(6)) diny
owy ; douty; ding; Owy; k vy ding 0vy

Vwk,i = ’ (9)
where in and out stand for the input and output of each NN node, respectively.

o Following this logic for every observation, the total error should decrease for each additional
iteration step.

Stochastic Gradient Descent (SGD) was proposed by Bottou (2010) to deal with large-scale
problems. In SGD, instead of updating the parameters after iterating once through the full training set,
i.e., after one epoch, we update the weights after randomly choosing one observation. It is expected
that the gradient based on the single observation is an approximation of the expected gradient of the
training set. In our option application, we use a variation of the SGD, where instead of updating the
weights after each observation, we set a size for a subset called the batch size and update the parameters
for each randomly chosen subset of that size, within the same epoch. This process accelerates the
computation time, prevents numerical instability, and is more efficient to use in large datasets, as shown
in LeCun et al. (2012) and Bottou (2010). Therefore, when calibrating an NN, one needs to set the
number of epochs (iterations) and the batch (random subsets) size that conditions the number of
parameter updates per epoch.

Finally, in machine learning methods, it is common to use data scaled to a specific range (zero to
one for example) in order to increase the accuracy of the models and allowing the loss function to find
a global, or local, minimum. The transformation we use is given by:

Risks 2020, 8,73 8 of 24

Xj — Xmin

_) 10
Yi Xmax - Xmin ()

where x; is the value to normalize and X,,;;;, and X,qx are, respectively, the minimum and maximum
values of the range. This transformation is also done due to the fact that the input variables have
different scales. Output variables may be scaled or not, as they have a unique scale.

The learning algorithm from the multilayer perceptron could be affected by the different scales of
the variables, and the loss function can fail to converge to the local, or global, minimum. This area is
currently an area of research in machine learning. The problem with finding a local or global minimum
was first presented by Rumelhart et al. (1985), where the authors concluded that although the learning
algorithm finds a solution in almost every practical try, it does not guarantee that a solution can
be found. In terms of the global minimum, Choromanska et al. (2015) focused their study on the
loss function non-convexity, which leads the learning algorithms to find a local minimum instead
of a global minimum. The authors showed that, although there is a lack of theoretical support for
optimization algorithms in NN, the global minimum is not relevant in practice because it may lead to
overfitting the model.

4. Data

4.1. Description, Treatment, and Statistics

We used Bloomberg’s collected data on 37,952 American put options, traded from December 2018
to March 2019. The individual stocks under analysis were Bank of America Corp (BAC), Procter and
Gamble Company (PG), General Motors (GM), and Coca-Cola Company (KO), selected because of
their high market capitalization and their large options trading volume.

For each option, besides daily close prices on the option itself, we collected underlying stock
prices, strike prices, maturities, volumes, and implied volatilities'. We also retrieved the quarterly
dividend paid per share from each company throughout the studied period. In terms of the risk-free
interest rate, the U.S. Treasury rate for different maturities was used. For each option, we selected the
rate with the closest maturity to that option?.

We applied a liquidity filter—a minimum amount of 20 trades per trading day—to ensure our
analysis was based on reliable data. Furthermore, due to Bloomberg gathering information on trades
during the last day of trading of an option, some trades presented zero maturity, so we had to remove
those observations. Finally, we eliminated all missing values.

From the original 37,952 observations, we ended up with 21,111, which was still a
much larger number than what could be found in the literature. ~Compare, for instance,
with Kelly and Shorish (1994), Yao et al. (2000), or Kohler et al. (2010), who used 1369, 17,790,
and 2000, respectively.

Table 1 presents the basic statistics of our sample input variables, Figure 3 is the associated
histograms and Figure 4 the box plots.

1 For implied volatility, we used the value determined by Bloomberg’s quantitative analytics department “Equity Implied

Volatility Surface”.

2 The data source was the Federal Reserve System (U.S.) and was retrieved from the Federal Reserve Bank of St. Louis.

Risks 2020, 8,73 9 of 24
Table 1. Statistics on input variables.
Implied Volatility Moneyness Maturity Dividend Yield Interest Rate
Mean 0.296 1.056 113.2 0.034 0.024
Std Dev 0.105 0.162 171.9 0.008 0.001
Min 0.030 0.565 1 0.020 0.023
25% 0.235 0.976 15 0.025 0.024
50% 0.288 1.025 38 0.038 0.024
75% 0.337 1.096 134 0.040 0.025
Max 2.862 2.268 779 0.048 0.028

Input variables: Bloomberg’s implied volatility, moneyness (ratio between stock price and strike price), maturity
(time to maturity, here reported in days), dividend yields (also known as relative dividends), and the interest rate
(FED risk-free rates).

Implied Volatility (%) Moneyness (Spot/Strike)

BO00
12000 A
5000
10000
4000
2 8000 A mean
g
3000 1 £ 6000
r
2000 1 4000 4
1000 2000
] s : 0- . . . T
0o 02 0.4 06 08 10 06 08 1a 12 14 16 18 20 22
Volatility level Moneyness
Maturity {(days)
14000
12000
10000
z
5 8000
3
E 000
4000
2000
. | -]
200 300 400 500 600 700
Number of days
Dividend Yield Interest Rate
mean
50004 8000 1
5000 A
... 4000 4 .
o %]
c c
o o
=1 =1
@ 3000 1 g
L '
2000
1000
0_
0.020 0.025 0.030 0.035 0.040 0.045 0.023 0.024 0.025 0.026 0.027 0.028
Yield Rate

Figure 3. Input variables” histogram.

Risks 2020, 8,73 10 of 24

3.0

o 2.25
2.5 1
2.00 1
o
2.0 1 1754
(o]
8 i
154 be 1.50
1.251
1.0 1
1.00 4
0.5 1
0.75 A
001 I 0.50 !
Implied Volatility Moneyness (Spot/Strike)

800
700 A I

600 -

500 1

300 1

200 A

100 A

0 —

T
Maturity

0.028
0.045

0.027

0.040 A

0.026
0.035 A

0.025 4
0.030

8

(=]

B

i
0.024 E
L 0.023 —T

rel 'dIV int_rate

0.025 A

0.020

Figure 4. Boxplots of the input variables.

Besides implied volatility, which varied mostly across the four different underlying companies,
the variables that most impacted the output variable (put prices) were moneyness and maturity.
Figure 5 represents the put price histogram and a moneyness versus maturity heat graph on put prices.
In terms of the interest rate, there were no big variations in the term structure throughout the three
months under consideration. In addition, the short end of the term structure was quasi-flat.

We considered as At-The-Money (ATM) those options with a five percent deviation from the
current stock price. In put options, an option was In-The-Money (ITM) if the stock price was below the
strike price, which meant that the moneyness, defined before as stock price divided by strike price,
was below one. Therefore, below the 0.95 threshold were the ITM options, and above the 1.05 threshold
were the Out-of-The-Money (OTM) options.

Risks 2020, 8,73 11 of 24

Put Option Price

5000

N
v

4000 20

N
o

15
3000

-
o
Put Price

=
15}

10

Frequency

2000 mean

1000

Price

Figure 5. Put prices: output variable.
Table 2 shows the percentage of each category for each underlying company.

Table 2. Sample moneyness (a) and maturity (b).

ITM ATM OTM <1 Month 1-6 Months >6 Months
BAC 18% 33% 49% BAC 35.18% 43.78% 21.05%
GM 18% 43% 39% GM 46.73% 35.15% 18.12%
KO 11% 58% 31% KO 38.40% 43.25% 18.36%
PG 5% 71% 24% PG 48.14% 41.69% 10.17%
Total 16% 45% 39% Total 42.72% 39.16% 18.12%
(a) Moneyness (b) Maturity

From Figure 3, we can also see that the moneyness distribution was heavily centered around one,
with some extreme values in OTM options, and that, as expected, our maturity was heavily skewed
and almost fully concentrated in maturities below one year (less than 365 days). Table 2 emphasizes
that only 16% of the options in our sample were ITM and only about 18% had maturities larger than
six months. Although both moneyness and maturity “biases” were expectable as short-term maturities
and ATM/OTM are, by far, the most traded options in the market, this is an issue that may influence
the NN models’ precision, when learning about ITM and/or larger maturity options.

Descriptive statistics per company can also be found in Table 3. Each underlying company has
different characteristics, which positively impacts the machine learning process.

4.2. Training and Test Datasets

In order to train/develop and then test our NN models, we needed to have our data divided into
a training dataset and a test dataset. The training dataset is a set of examples used to train the learning
process parameters (weights, etc.) and to fine-tune (calibrate) the model. The test dataset is a dataset
used to provide an unbiased evaluation of final model fit to the training dataset. As is common in
machine learning techniques, here the division of both datasets was made randomly, with the training
set consisting of 80% of the full dataset. It was, thus, over the remaining 20%—still more than 4000
options—that we tested the performance of both our NN models and the LSM method.

Using Kolmogorov-Smirnov tests, one can check if the distributions of the test and training sets
are similar, feature-by-feature. Here, with the random sample selection, there was an assurance of
similar distributions, as confirmed in Table 4 and Figure 6. If we were to use our NN models in other
samples, checking that the training set used to train a particular NN model and the test set we wanted
to apply the model to were in fact representative of the same reality seemed good practice.

Risks 2020, 8,73 12 of 24

Table 3. Descriptive statistics per company.

BAC
Put Price Imp.Vol. Spot Strike Moneyness Maturity Div.Yield Int.Rate
Mean 1.258 0.306 27.618 26.021 1.090 132.873 0.022 0.024
Median 0.620 0.279 28.306 26.500 1.047 49.000 0.021 0.024
Std Dev 1.764 0.119 1.644 4142 0.207 181.865 0.001 0.001
Min 0.010 0.116 24246 13.000 0.565 1.000 0.020 0.024
25% 0.170 0.242 25.629 24.000 0.974 21.000 0.021 0.024
50% 0.620 0.279 28.306 26.500 1.047 49.000 0.021 0.024
75% 1.660 0.332 28.932 29.000 1.153 162.000 0.023 0.025
Max 19.400 2.862 29.480 45.000 2.268 743.000 0.025 0.026
GM
Put Price Imp.Vol. Spot Strike Moneyness Maturity Div.Yield Int.Rate
Mean 1.902 0.336 3731 36.175 1.050 109.743 0.041 0.024
Median 1.080 0.319 38.050 36.500 1.024 36.000 0.040 0.024
Std Dev 2.404 0.087 1.648 4.663 0.162 177.520 0.002 0.001
Min 0.010 0.140 31.933 18.000 0.578 1.000 0.038 0.023
25% 0.400 0.287 36.378 34.000 0.968 15.000 0.039 0.024
50% 1.080 0.318 38.050 36.500 1.024 36.000 0.040 0.024
75% 2.480 0.363 38.547 39.000 1.093 105.000 0.042 0.024
Max 26.450 1.168 39.557 65.000 2.198 779.000 0.048 0.028
KO
Put Price Imp.Vol. Spot Strike Moneyness Maturity Div.Yield Int.Rate
Mean 1.364 0.196 47.016 45.827 1.034 115.196 0.034 0.024
Median 0.780 0.182 46.960 46.000 1.019 43.000 0.034 0.024
Std Dev 1.890 0.059 1.371 3.995 0.099 165.670 0.001 0.001
Min 0.010 0.030 44442 25.000 0.684 1.000 0.032 0.024
25% 0.260 0.160 46.236 44.000 0.982 17.000 0.033 0.024
50% 0.780 0.182 46.960 46.000 1.019 43.000 0.034 0.024
75% 1.750 0.213 47.852 48.000 1.067 133.000 0.035 0.025
Max 20.100 0.761 49.359 65.000 1.849 750.000 0.036 0.026
PG
Put Price Imp.Vol. Spot Strike Moneyness Maturity Div.Yield Int.Rate
Mean 2.354 0.221 92.891 90.32 1.033 77.076 0.031 0.024
Median 1.650 0.217 91.397 90.050 1.014 35.000 0.031 0.024
Std Dev 2.439 0.056 3.139 6.302 0.077 105.230 0.001 0.001
Min 0.010 0.090 89.929 60.000 0.790 1.000 0.029 0.024
25% 0.710 0.186 90.454 87.500 0.992 14.000 0.030 0.024
50% 1.650 0.217 91.397 90.500 1.014 35.000 0.031 0.024
75% 3.080 0.250 94.840 94.000 1.049 100.000 0.032 0.025
Max 25.000 0.567 99.289 120.000 1.523 744.000 0.032 0.026

Statistics on output (put price) and input variables based on 21,111 American put options, traded from December
2018 to March 2019: 5302 (25.11%) are options on Bank of America Corp (BAC), 10,609 (50.25%) on General Motors
(GM), 3154 (14.95%) on Coca-Cola Company (KO), and 2046 (9.69%) on Procter and Gamble Company (PG).
Abbreviations: Imp.Vol = implied volatility, Div.Yield = dividend yield and Int.Rate = interest rate.

Table 4. Kolmogorov-Smirnov by feature.

Put Price Imp.Vol. Spot Strike Maturity Div.Yield Int.Rate

p-value 0.191 0.828 0572 0401 0.317 0.1121 0.88576
statistic 0.02 0.01 0.01 0.02 0.02 0.02 0.01

For small Kolmogorov-Smirnov statistics (high p-value), we do not reject the null hypothesis (equal distributions
for both sets). Abbreviations: Imp.Vol = implied volatility, Div.Yield = dividend yield and Int.Rate = interest rate.

Risks 2020, 8, 73

B Train 1

0.8

0 Test

0.0 0.5 1.0

1.5 2.0
Log(Put Price)

3.0

13 of 24

e Train 1504 &% Train
I Test . Test
1.5 - 1.25
1.00
1.0
0.75
0.5 0.50
0.25 [
0.0 T 0.00
0 1 2 4 0 1 2 3 4
Log(Spot) Log(Strike)
1 1
W Train |
0 Test
0.0 0.2 0.6 0.8 10 3 4

Log(Implied Vol)

s Train
e Test

Log(Maturity)

0020 0025 0030 0035 0040 0045

4.3. LSM Specification

Log(rel_div)

1200 1225 1250 1275 1300 1325 1350

Log(int_rate)

Figure 6. Kolmogorov—-Smirnov by feature.

As mentioned in the Methodology Section, we considered the underlying stock to follow a GBM
as in Equation (1). Although the equation variables r (interest rate), g (dividend yield), and ¢ (volatility)

Risks 2020, 8,73 14 of 24

were assumed constant, it is important to recall that, in our test set, each option had a different set
of parameters.

Besides the four different underlying stocks, we also had different trading dates ¢, with different
initial stock values, dividend yields, different option maturities T, and interest rate observations that
depended both on the trading date date t and maturity T. Finally, we also opted to use Bloomberg
implied volatilities for o, and the implied volatilities were option specific. In practical terms, this meant
that for the case of each option of our test set—4222 options—we had to simulate both the underlying
asset and to use LSM on each step of the cash-flow option matrix (as explained in Section 3.1) to obtain
the output—its put price. For each simulation, we used a total of 1000 paths and 50 time steps.

By simulating the underlyings using option specific details, we improved over the standard GBM
model, as we also took into account market data, in particular the existence and evolution of interest
rates’ term structure and volatility smiles, over the test sample period.

4.4. NN Models’ Calibration

In order to minimize the error of an NN model, we needed to calibrate it within the training
dataset. We used some beforehand-made decisions and also optimized parameters.

For both of our NN models, in order to start the learning process, we gave random weights,
from the normal distribution with mean equal to zero and standard deviation equal to 0.5, to the hidden
nodes. The starting values of the hidden nodes were a random choice and immediately changed after
the first learning cycle ended. In both cases, we also considered a learning rate « = 0.005 with decay
per epoch of 1 x 10~°. The learning rate defined the number of the corrective steps that the algorithm
took to adjust for errors obtained for each observation and led to a trade-off: a higher learning rate
reduced the training time, at the cost of lower accuracy, while a lower learning rate took longer, but was
more accurate.

For our NN Model 1, we opted to consider an NN as simple as possible with only one hidden
layer, and a minimal number of inputs. In particular, given the small changes in the dividend yield
and interest rates, we did not even consider them as inputs.

In our NN Model 2, we considered an increased number of inputs, adding to all the regular option
inputs, also dummy variables per company and the average (training set) put price per company. The
dummy variable takes only zero or one as values.The introduction of such variables is an alternative
to training a different NN, for each company. The average put price per company works as an anchor,
making the learning process faster.In terms of hidden layers, we compared NNs with 2, 3, and 4 layers
and opted for 3 layers as the best performing model.

All other parameters were optimized, i.e. the alternatives were compared through a
cross-validation test, where we looked at the training dataset MSE as the comparison metric:

n
MSE = % Zeiz, for e =Yi—Vy, (11)
i=1

where ¢; is the error of each prediction, with y; representing the prediction of the model and y; the
true value of the option.

In NN Model 1 and for the number of nodes for our one hidden layer, we tested for three to 10
nodes. When comparing the values (see Figure 7), we noted that 7, 8, and 9 nodes were the ones with
the lowest variance in MSE and also the lowest mean values. Therefore, for NN Model 1, we, thus,
opted for nine hidden nodes in our one hidden layer. Likewise, for NN Model 2, we also optimized the
number of nodes for the chosen three layers, considering for each layer between three and 20 nodes.
The optimization was performed simultaneously over the three layers. Considering all combinations,
the best performing solution was 16 nodes for Layer 1, 8 for Layer 2, and 4 for Layer 3.

Risks 2020, 8,73

0.008

0.006

0004

0.002

0.000

0.008

0.006

0.004

0.002

0.000

MSE using 3 Neurons (cross-validation)

MSE using 4 Neurons (cross-validation)

MSE using 5 Neurons (cross-validation)

15 of 24

MSE using 6 Neurons (cross-validation)

=== mean value

0.008

0.006

0.004

0.002

0.000

=== mean value

0.008

0.006

0004

0002

0.000

=== mean value

0.008

0.006

0004

0002

0.000

=== mean value

MSE using 7 Neurons (cross-validation)

MSE using 8 Neurons (cross-validation)

MSE using 9 Neurons {cross-validation)

MSE using 10 Neurons (cross-validation)

=== mean value

0.008

0.006

0.004

0.002

0.000

=== mean value

0008

0.006

0.004

0.002

0.000

=== mean value

0008

0.006

0.004

0.002

0.000

=== mean value

Figure 7. NN Model 1: number of nodes (one hidden layer).

After testing the three activation functions previously mentioned—sigmoid, ReLU, and leaky
ReLU—a leaky ReLU with & = 0.1 performed better in both models. Recall Figure 2.

An epoch is defined as the complete dataset training cycle. In terms of the updating sample size,
commonly referred to as batch size, we assumed a batch size equal to 64. For our NN Model 1, we
used 400 epochs, while for NN Model 2, we used 3000.
Finally, while in NN Model 1, we scaled both the input and output variables, in NN Model 2, we
did not normalize the output variable. For this reason, the MSE values in Figure 8 have different ranges.

Training History

= val_loss

0.010 train_loss
0.008
w 0.006
w1
=

|

II
0.004 |

|

\

II
0.002 L

0 s 100 150 00 250 N0 BO 40

Epochs

35

30

25

20

MSE

15

10

05

0.0

Training history

— al_loss
train_loss

400

Epochs

600 800 1000

Figure 8. Learning curves of NN models. NN Model 1 (on the left) and NN Model 2 (on the right).
As in NN Model 1, the output is scaled put prices and in NN Model 2 unscaled put prices; the MSE
values are not comparable.

Once we decided the NN models” architecture and optimized its parameters—in Table 5—the
final step was the weight learning process (as described in Section 3.2), also known as network fitting.
In terms of learning curves for our NN models, in Figure 8, we can see the MSE curve from NN
Model 1 going very fast to 0.001. NN Model 2 also seemed to decrease very fast, but if we take a better
look at Figure 9, we see that there was still space for improvement. Notable also is the high variance
when converging to the local optimum.

Risks 2020, 8,73 16 of 24

Table 5. NN models.

NN Model 1 NN Model 2
Output variable Put price (scaled) Put price (unscaled)
Input variables Stock price Stock price
(all scaled) Strike price Strike price
Implied volatility Implied volatility
Maturity Maturity
Dividend yield

Interest rate
Dummy per company
Average (train set) put value
per company

Weights Random: N(0, 0.5) Random: N(0, 0.5)

Learning rate a = 0.005 a = 0.005
w/decay per epoch of 1 x 107 w/decay per epoch of 1 x 10°
Hidden layers 1 3
Hidden nodes 9 16,8, and 4
Activation function a=0.1 a=0.1
Epochs 400 3000
Batch 64 64

Training History Training History

0.00040
— \alidation 0044 — \al_loss
frain frain_loss
0.00035 0042
0.040
0.00030
M 0.038
w i
g 0.00025 2 036
0.00020 0034 I
0.032 \
0.00015
0.030
0.00010 T T T T T T . ; ; ; ; ;
300 310 320 330 340 350 900 920 940 960 980 1000
Epochs Epochs

Figure 9. NN models’ learning curves.

We can also observe that for NN Model 1, the learning curve for the validation set is below the
learning curve for the training set, which can indicate that Model 1 is too simple to reproduce the
pricing dynamics, as it presents signs of an under-fitted model. On the contrary, we observe a different
behavior for NN Model 2 as we included more layers and variables to reflect the non-linearity and
complexity of the relationships between input and output variables.

5. Results

In this section, we compare our NN models’ results with those of the LSM method, using the
RMSE as the comparison measure for error, as well as the execution time for the comparison of the
time spent by each method to price the options.

The methods were applied using the programming language Python Version 3.7.3 and run on a
Macbook Pro 14.1 (MacOS Version 10.14.6) with an Intel Core i5 2.3 GHz processor with a memory of
2133 MHz and 8 GB of RAM.

Risks 2020, 8,73 17 of 24

The fitting of our NN models to the training set took about 2 and 5 min, for NN Model 1 and NN
Model 2, respectively, due to the usage of TensorFlow and Keras® Python modules, which substantially
decreased the fitting time. NN Model 1 was faster than NN Model 2, because of its simpler architecture
and fewer number of input variables.

LSM took about 0.38 s to price one option alone. Once fitted, the NN models’ pricing of an option
was immediate. Even if we took the total fitting time into account, dividing it by the number of options
in the test set, we got 0.07 s per option for NN Model 2, less than 20% of the time when compared to
LSM, and 0.03 s for NN Model 1.

To compare the model results, we used RMSE, given by RMSE = MSEYS with the MSE as
previously defined in Equation (11), but now considered only over the test dataset.

Table 6 presents the RSME results. The RSME can be interpreted as the average USD ($) deviation
from the true option value. Overall NN Model 2 was the best performing model, presenting total
average deviations of $0.16 per option, while for NN Model 1, the average deviation was $0.22, and for
LSM, it was $0.26. This meant that overall, for our randomly selected test dataset, on average, NN
models outperformed LSM, considered in the literature as one of the most accurate methods to price
American options.

Table 6. RMSE per model.

NN Model1 NN Model2 LSM

BAC 0.166 0.099 0.112
GM 0.215 0.163 0.268
KO 0.198 0.139 0.302
PG 0.457 0.273 0.400
Total 0.223 0.161 0.259

Procter & Gamble was the company with the highest deviations, no matter the model. This is
probably due to the fact that its underlying was the one with the highest spot values (recall Table 3).
Comparing across models, NN Model 2 was the one where this effect was less obvious.

These were, of course, just general results. Below, we analyze the performance of each
model—both in absolute and relative RMSE terms—per moneyness and maturity classes.

Table 7 presents results per company and for different moneyness and maturity. Figure 10
illustrates the same results. Since these were absolute results, i.e., values in USD ($), naturally, the
most expensive ITM options tended to present higher deviations than ATM or OTM options. See
Figure 10a. This bias—or “smirk”—is present on the graphs of the four companies. More importantly,
at all instances, our NN Model 2 (orange line) had the lowest errors. When comparing our naive NN
Model 1 (blue line) and LSM (grey line), the evidence was mixed. For the underlyings GM and KO, our
NN Model did better than LSM, no matter the moneyness class. When BAC stock was the underlying,
LSM showed less errors than NN Model 1, with error levels above, but close to NN Model 2. Finally,
for the PG stock, LSM and NN Model 1 showed very close results to one another, with NN Model 1
performing slightly better for ITM options and LSM slightly better for ATM and OTM options.

In terms of maturities, the longer the maturity, the more expensive is the option. This expected
bias in model performance was evident for NN Model 1 and LSM, but interestingly enough not for
NN Model 2, which tended to present a quasi-flat absolute error term structure. See Figure 10b. As
before, our NN Model 2 performed better than the other two models for all maturities and companies,
performing fantastically well in the case of options with maturities larger than six months.

3 TensorFlow is an open-source library used in machine learning models; for further details, see Abadi et al. (2016). Keras is

an NN library that is capable of running on top of TensorFlow and other libraries. It provides an API for building deep
learning models quickly and efficiently.

Risks 2020, 8,73 18 of 24

(a) Moneyness

BAC GM
03 0,5
0,4

0,2
03
0,2
01
0,1
0 0
™ ATM o™ ™ ATM o™

KO PG
0,6 1
0,9
0,5 08
0,4 0,7
0,6
03 05
0,4
0,2 03
0,1 0,2
0,1
0 0

™ ATM o™ ™ ATM oT™
(b) Maturity

BAC GM

03 0,5

04

0,2
0,3

02

\

|
\

0,1

01

< 1month 1-6 months > 6months < 1 month 1-6 months > 6 months

KO PG

0,6 1
0,9
08
0,7
0,6
03 05
0,4
03

0,5

0,4

0,2

h

0,1 0,2
0,1

< 1month 16 months > 6months < 1month 16 months > 6months

=—NN model1 =—=NN model2 =—LSM

Figure 10. RMSE per company: moneyness and maturity.

When dealing with a variety of options with various prices, relative RMSE gave us the average
error in percentage of option prices. Figure 11 and Table 8 present the relative results, presenting
RMSE as the percentage of put prices.

The overall message was the same as with the absolute results: NN Model 2 was the best model,
and our naive NN Model 1 performed close to LSM, beating it in some instances.

Risks 2020, 8, 73
Table 7. RMSE per company: moneyness and maturity.
IT™ <1 Month
NN Model1 NN Model2 LSM NN Model1 NN Model2 LSM
BAC 0.257 0.200 0.196 BAC 0.131 0.089 0.098
GM 0.339 0.300 0424 GM 0.162 0.155 0.195
KO 0.458 0.254 0487 KO 0.160 0.134 0.244
PG 0.613 0.622 0.671 PG 0.238 0.248 0.253
ATM 1-6 Months
NN Model1l NN Model2 LSM NN Model1l NN Model2 LSM
BAC 0.147 0.079 0.096 BAC 0.106 0.097 0.087
GM 0.199 0.149 0.228 GM 0.185 0.174 0.197
KO 0.157 0.130 0.283 KO 0.154 0.118 0.167
PG 0.430 0.272 0.385 PG 0.380 0.304 0.338
O™ >6 Months
NN Model1l NN Model2 LSM NN Model1l NN Model2 LSM
BAC 0.148 0.046 0.077 BAC 0.308 0.116 0.166
GM 0.181 0.074 0224 GM 0.338 0.163 0.469
KO 0.175 0.086 0.238 KO 0.561 0.182 0.543
PG 0.519 0.144 0.392 PG 0.426 0.250 0.904
(a) Moneyness (b) Maturity

19 of 24

The ranges of relative errors of NN Model 2 were the smallest in all categories of moneyness and
maturity. OTM had the highest percentual errors for all models. We must, however, remember these
are relatively inexpensive options. Still, for the underlyings under consideration, NN Model 2 errors
for OTM ranged from 9.53% to 15.95%, while for NN Model 1, they ranged from 23.32% to 38.60%
and for LSM from 19.66% to 44.14%. to be relatively inexpensive options. Still, for the underlyings
under consideration, NN Model 2 errors for OTM ranged from 9.53% to 15.95%, while for NN Model
1, they ranged from 23.32% to 38.60% and for LSM from 19.66% to 44.14%. ITM options were the ones
presenting smaller ranges of relative errors, in between 4.93% and 9.45%, depending on the model

and/or company under analysis.

NN model 1

=]
2
[a}

2]
4

=
o

©
[}

NN model 2

=]
b=
o

=
o

°
[}

LsM

=]
b=
o

o]
=<

=
o

©
[}

o
®
=
E

20%

g

HITM EATM mOTM

i

§

NN model 1

©
P
)

o
=

=
o

-
o

NN model 2

©
P
)

=
o

-
@

LsM

y

o
®

10% 20% 30%

H< 1lmonth M1-6months M>6months

Figure 11. Relative RMSE per company: moneyness and maturity.

a0%

Risks 2020, 8,73 20 of 24

Table 8. Relative RMSE per company: moneyness and maturity.

IT™™ <1 Month
NN Model1 NN Model 2 LSM NN Model1l NN Model 2 LSM
BAC 6.56% 5.10% 5.00% BAC 21.00% 14.27% 15.71%
GM 6.25% 5.53% 7.82% GM 25.97% 24.85% 31.26%
KO 8.89% 4.93% 945% KO 24.14% 13.40% 24.40%
PG 6.58% 6.68% 720% PG 18.23% 19.00% 19.38%
ATM 1-6 Months
NN Model1 NN Model 2 LSM NN Model1 NN Model 2 LSM
BAC 13.87% 7.45% 9.05% BAC 8.96% 8.20% 7.35%
GM 13.60% 10.18% 15.58% GM 15.64% 14.71% 16.65%
KO 14.01% 11.60% 25.25% KO 11.99% 9.19% 13.01%
PG 19.36% 12.25% 17.33% PG 12.69% 10.16% 11.29%
OT™M >6 Months
NN Model1 NN Model 2 LSM NN Model1l NN Model 2 LSM
BAC 37.78% 11.74% 19.66% BAC 12.44% 4.69% 6.71%
GM 23.32% 9.53% 28.86% GM 13.66% 6.59% 18.59%
KO 32.46% 15.95% 44.14% KO 18.59% 6.03% 17.99%
PG 38.60% 10.71% 29.16% PG 9.08% 5.33% 19.27%
(a) Moneyness (b) Maturity

The “winning” model—NN Model 2—presented errors as a percentage of options prices
considerably lower than the alternative models, around: 5% for ITM, 10% for ATM, 12% for OTM, 20%
for less than on month, 12% for between 1 month and 6 months, and 6% higher than 6 month maturity.

To conclude the analysis of our NN models and get a better feeling on the relative importance of
each input, we used a permutation method. For each variable, we sorted the column of the variable
randomly, ceteris paribus, and re-ran the new predictions on both NN models, comparing the new
RMSE with the original RMSE from the correct, in terms of percentual deviation.

Figure 12 shows the ordered feature importance. For instance, when in NN Model 2, we
randomized interest rate values, the total RMSE increased by 27%, which was not as substantial
as the absence of a correct strike price, which increased the RMSE by approximately 6000%. It is not
surprising that getting as input the correct spot and/or strike prices was key in obtaining the correct
option prices.

Feature Importance by Permutation Methods Feature Importance by Permutation Methods

Strike
Spot
Company_KO

Strike

Company GM
Company_BA
Maturity

Maturity Mean_Pp

‘Company PG
rel_div

IV Bloomberg IV Blaomberg

int_rate

o [10 1 2 = Y 0 10 2 »)) &
Figure 12. Inputs’ permutation results. NN Model 1 (on the left) and NN Model 2 (on the right).

The x-axis shows the increase, in percentage, of RMSE that results from considering one of the inputs
randomized instead of the calibrated values.

The graphs are more interesting when read in comparative terms. For instance, it is clear that for
NN Model 2, the dummy variables were important, with relevance similar to the option maturity and
more relevant than implied volatility.

Risks 2020, 8,73 21 of 24

Table 9 shows a measure of the relative importance of each input for both NN models. This
relative importance was computed using the permutation technique results, dividing each input RMSE
percent increase by the sum of all inputs” RMSE percent increase, for each model.

Table 9. Inputs’ relative importance.

Input Variables NN Model1 NN Model 2
Stock price 45.92% 29.66%
Strike price 48.31% 32.75%

Implied volatility 0.64% 1.51%
Maturity 5.14% 5.72%
Dividend yield 1.73%
Interest Rate 0.15%
Company_BAC 5.79%
Company_GM 6.03%
Company_KO 7.65%
Company_PG 4.16%
Average (train set) put value 4.84%

6. Conclusions

Neural Networks (NNs) had many advantages when it comes to option pricing as explored
throughout this work. Still, some disadvantages could be encountered, as the necessity to have a
complete and large dataset to train the modeling structure. This implies, for instance, that more
exotic options and, in particular, over-the-counter options cannot be priced as fairly by the NN when
compared with other derivatives more readily available in the markets and with a higher trading
volume. Therefore, a note of advice is that, when using NN, the model is calibrated to past data, which
means that any changes to the future composure of financial markets, for example, a big financial
crisis, might modify the values of worldwide options, leading to miscalculations in prices and the
need to retrain models.

In terms of the limitations of the analysis presented in this study, we note that although the
number of options used here was larger than in most studies in the literature, it was still scarce,
especially when compared to the datasets used to calibrate NN models in other fields. That is the case,
for instance, in image recognition where NNs are the main methodology applied.

Regarding execution time, while LSM produced results in a reasonable amount of time to price a
single option, if a more complicated underlying process, for example a jump process with stochastic
volatility, were added into the LSM, the execution time might be compromised. On the contrary, once
calibrated, the NN had an immediate execution time and could beat traditional methods also in terms
of error performance. This study compared the classical LSM with two proposed NN models, i.e., our
aim was to compare a pure simulation method to pure NN alternatives. Thus, we did not consider
“mixed models” where NN are used within the LSM approach to estimate continuation values (as in
Kohler et al. (2010)).

This study focused on training two NN models to a dataset from American put options with four
companies’ stocks as the underlyings; each of the stocks from a different sector of activity. Despite
using all traded options on those underlyings, we considered a relatively small time frame: from
December 2018 until March 2019. It could be meaningful to analyze if an NN trained for a specific
sector would yield better results, and if an NN trained on a complete year would alter the outcome of
the results.

Nonetheless, the results of this study were extremely promising, in terms of NN applicability.
Our simplest (naive) model, NN Model 1, performed at a level similar to or better than LSM, which is
considered a reference in the empirical literature. As for the proposed NN Model 2, it outperformed
by far both LSM and NN Model 1. The results were robust across underlyings, maturities, and levels
of moneyness.

Risks 2020, 8,73 22 of 24

Should NN continue to gather good results, investment companies could start using them, to price
an option and complete a trade instantaneously.

Author Contributions: Conceptualization, RM.G., S.D.L. and B.S.; methodology, S.D.L. and B.S.; software, B.S.;
validation, B.S.; formal analysis, RM.G., S.D.L. and B.S.; investigation, RM.G., S.D.L. and B.S.; resources, S.D.L.
and B.S.; data curation, B.S.; writing —original draft preparation, RM.G., S.D.L. and B.S.; writing review and
editing, RM.G. and S.D.L.; visualization, RM.G. and S.D.L.; supervision, R M.G. and S.D.L.; project administration,
R.M.G.; funding acquisition, RM.G. and S.D.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was partially supported by Project CEMAPRE/REM—UIDB/05069/2020 financed by
FCT/MCTES (Portuguese Science Foundation), through national funds.

Acknowledgments: We are most grateful to Manuel L. Esquivel and Kevin Fernandes for fruitful discussions,
giving us both the academia and industry perspectives on this matter. We are also most grateful to the anonymous
reviewers whose comments and suggestions helped improve and clarify this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

Abadi, Martin, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, and et al. 2016. Tensorflow: A system for large-scale machine
learning. Paper presented at 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), Savannah, GA, USA, November 2—4, pp. 265-83.

Allegretto, Walter, Yanping Lin, and Hongtao Yang. 2001. A fast and highly accurate numerical method for the
evaluation of american options. Dynamics of Continuous Discrete and Impulsive Systems Series B 8: 127-38.

Barron, Andrew R. 1993. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information theory 39: 930—45. [CrossRef]

Barty, Kengy, Pierre Girardeau, Cyrille Strugarek, and Jean-Sébastien Roy. 2008. Application of kernel-based
stochastic gradient algorithms to option pricing. Monte Carlo Methods and Applications 14: 99-127. [CrossRef]

Becker, Sebastian, Patrick Cheridito, and Arnulf Jentzen. 2019. Deep optimal stopping. Journal of Machine Learning
Research 20: 1-25.

Becker, Sebastian, Patrick Cheridito, Arnulf Jentzen, and Timo Welti. 2019. Solving high-dimensional optimal
stopping problems using deep learning. arXiv. arXiv:1908.01602.

Bennell, Julia, and Charles Sutcliffe. 2004. Black-scholes versus artificial neural networks in pricing ftse 100
options. Intelligent Systems in Accounting, Finance & Management: International Journal 12: 243-60.

Bottou, Léon. 2010. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010. Heidelberg: Springer, pp. 177-86.

Brennan, Michael J., and Eduardo S. Schwartz. 1977. The valuation of american put options. The Journal of Finance
32: 449-62. [CrossRef]

Broadie, Mark, Paul Glasserman, and Gautam Jain. 1997. Enhanced monte carlo estimates for american option
prices. Journal of Derivatives 5: 25-44. [CrossRef]

Bunch, David S., and Herb Johnson. 2000. The american put option and its critical stock price. The Journal of
Finance 55: 2333-56. [CrossRef]

Carr, Peter, Robert Jarrow, and Ravi Myneni. 1992. Alternative characterizations of american put options.
Mathematical Finance 2: 87-106. [CrossRef]

Chen, Xinfu, John Chadam, Lishang Jiang, and Weian Zheng. 2008. Convexity of the exercise boundary of the
american put option on a zero dividend asset. Mathematical Finance: An International Journal of Mathematics,
Statistics and Financial Economics 18: 185-97. [CrossRef]

Choromanska, Anna, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. 2015. The loss
surfaces of multilayer networks. Paper presented at 18th International Conference on Artificial Intelligence
and Statistics, San Diego, CA, USA, May 9-12, pp. 192-204.

Choudhary, M. Ali, and Adnan Haider. 2012. Neural network models for inflation forecasting: An appraisal.
Applied Economics 44: 2631-35. [CrossRef]

Clément, Emmanuelle, Damien Lamberton, and Philip Protter. 2002. An analysis of a least squares regression
method for american option pricing. Finance and Stochastics 6: 449-71. [CrossRef]

http://dx.doi.org/10.1109/18.256500
http://dx.doi.org/10.1515/MCMA.2008.006
http://dx.doi.org/10.2307/2326779
http://dx.doi.org/10.3905/jod.1997.407983
http://dx.doi.org/10.1111/0022-1082.00289
http://dx.doi.org/10.1111/j.1467-9965.1992.tb00040.x
http://dx.doi.org/10.1111/j.1467-9965.2007.00328.x
http://dx.doi.org/10.1080/00036846.2011.566190
http://dx.doi.org/10.1007/s007800200071

Risks 2020, 8,73 23 of 24

Cremers, Martijn, and David Weinbaum. 2010. Deviations from put-call parity and stock return predictability.
Journal of Financial and Quantitative Analysis 45: 335-67. [CrossRef]

Cybenko, George. 1989. Approximations by superpositions of a sigmoidal function. Mathematics of Control, Signals
and Systems 2: 183-92. [CrossRef]

Egloff, Daniel. 2005. Monte carlo algorithms for optimal stopping and statistical learning. The Annals of Applied
Probability 15: 1396-432. [CrossRef]

Egloff, Daniel, Michael Kohler, and Nebojsa Todorovic. 2007. A dynamic look-ahead monte carlo algorithm for
pricing bermudan options. The Annals of Applied Probability 17: 1138-71. [CrossRef]

Garcia, René, and Ramazan Gengay. 2000. Pricing and hedging derivative securities with neural networks and a
homogeneity hint. Journal of Econometrics 94: 93-115.

Geske, Robert, and Herb E. Johnson. 1984. The american put option valued analytically. The Journal of Finance 39:
1511-24. [CrossRef]

Gradojevic, Nikola, Ramazan Gengay, and Dragan Kukolj. 2009. Option pricing with modular neural networks.
IEEE Transactions on Neural Networks 20: 626-37. [CrossRef]

Hanin, Boris, and Mark Sellke. 2017. Approximating continuous functions by relu nets of minimal width. arXiv.
arXiv:1710.11278.

Haykin, Simon. 1994. Neural Networks. New York: Prentice Hallk, vol. 2.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward networks are universal
approximators. Neural Networks 2: 359-66. [CrossRef]

Hutchinson, James M., Andrew W. Lo, and Tomaso Poggio. 1994. A nonparametric approach to pricing and
hedging derivative securities via learning networks. The Journal of Finance 49: 851-89. [CrossRef]

Jang, Huisu, and Jaewook Lee. 2019. Generative bayesian neural network model for risk-neutral pricing of
american index options. Quantitative Finance 19: 587-603. [CrossRef]

Kelly, David L., and Jamsheed Shorish. 1994. Valuing and Hedging American Put Options Using Neural Networks.
Pittsburgh: Carnegie Mellon University.

Kim, In Joon. 1990. The analytic valuation of american options. The Review of Financial Studies 3: 547-72. [CrossRef]

Kohler, Michael. 2008. A regression-based smoothing spline monte carlo algorithm for pricing american options
in discrete time. AStA Advances in Statistical Analysis 92: 153-78. [CrossRef]

Kohler, Michael, Adam Krzyzak, and Nebojsa Todorovic. 2010. Pricing of high-dimensional american options
by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial
Economics 20: 383-410. [CrossRef]

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional
neural networks. Paper presented at Advances in Neural Information Processing Systems, Lake Tahoe, NV,
USA, December 3-6, pp. 1097-105.

Kuske, Rachel A., and Joseph B. Keller. 1998. Optimal exercise boundary for an american put option. Applied
Mathematical Finance 5: 107-16. [CrossRef]

LeCun, Yann A., Léon Bottou, Genevieve B. Orr, and Klaus-Robert Miiller. 2012. Efficient backprop. In Neural
Networks: Tricks of the Trade. Berlin/Heidelberg: Springer, pp. 9-48.

Leshno, Moshe, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. 1993. Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural Networks 6: 861-67.
[CrossRef]

Liu, Shuaigiang, Cornelis Oosterlee, and Sander Bohte. 2019. Pricing options and computing implied volatilities
using neural networks. Risks 7: 16. [CrossRef]

Longstaff, Francis A., and Eduardo S. Schwartz. 2001. Valuing american options by simulation: A simple
least-squares approach. The Review of Financial Studies 14: 113-47. [CrossRef]

Lu, Zhou, Hongming Pu, Feicheng Wang, Zhigiang Hu, and Liwei Wang. 2017. The expressive power of neural
networks: A view from the width. Paper presented at Advances in Neural Information Processing Systems,
Long Beach, CA, USA, December 4-9, pp. 6231-39.

McCulloch, Warren S., and Walter Pitts. 1943. A logical calculus of the ideas immanent in nervous activity.
The Bulletin of Mathematical Biophysics 5: 115-33. [CrossRef]

Moshiri, Saeed, and Laura Brown. 2004. Unemployment variation over the business cycles: A comparison of
forecasting models. Journal of Forecasting 23: 497-511. [CrossRef]

http://dx.doi.org/10.1017/S002210901000013X
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1214/105051605000000043
http://dx.doi.org/10.1214/105051607000000249
http://dx.doi.org/10.1111/j.1540-6261.1984.tb04921.x
http://dx.doi.org/10.1109/TNN.2008.2011130
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1111/j.1540-6261.1994.tb00081.x
http://dx.doi.org/10.1080/14697688.2018.1490807
http://dx.doi.org/10.1093/rfs/3.4.547
http://dx.doi.org/10.1007/s10182-008-0067-0
http://dx.doi.org/10.1111/j.1467-9965.2010.00404.x
http://dx.doi.org/10.1080/135048698334673
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.3390/risks7010016
http://dx.doi.org/10.1093/rfs/14.1.113
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1002/for.929

Risks 2020, 8,73 24 of 24

Pacelli, Vincenzo, Vitoantonio Bevilacqua, and Michele Azzollini. 2011. An artificial neural network model to
forecast exchange rates. Journal of Intelligent Learning Systems and Applications 3: 57. [CrossRef]

Parkinson, Michael. 1977. Option pricing: The american put. The Journal of Business 50: 21-36. [CrossRef]

Rogers, Leonard C. G. 2002. Monte carlo valuation of american options. Mathematical Finance 12: 271-86.
[CrossRef]

Rotundo, Giulia. 2004. Neural networks for large financial crashes forecast. Physica A: Statistical Mechanics and Its
Applications 344: 77-80. [CrossRef]

Rumelhart, David E., Geoffrey E. Hinton, and Ronald]. Williams. 1985. Learning Internal Representations by Error
Propagation. Technical Report. San Diego: California Univ San Diego La Jolla Inst for Cognitive Science.

Sullivan, Michael A. 2000. Valuing american put options using gaussian quadrature. The Review of Financial
Studies 13: 75-94. [CrossRef]

Tang, Zaiyong, and Paul A. Fishwick. 1993. Feedforward neural nets as models for time series forecasting. ORSA
Journal on Computing 5: 374-85. [CrossRef]

Tilley, James A. 1993. Valuing american options in a path simulation model. In Transactions of the Society of
Actuaries. Citeseer.

Tkacz, Greg. 2001. Neural network forecasting of canadian gdp growth. International Journal of Forecasting 17:
57-69. [CrossRef]

Xu, Bing, Naiyan Wang, Tiangi Chen, and Mu Li. 2015. Empirical evaluation of rectified activations in
convolutional network. arXiv. arXiv:1505.00853.

Yao, Jingtao, Yili Li, and Chew Lim Tan. 2000. Option price forecasting using neural networks. Omega 28: 455-66.
[CrossRef]

Zhao, Jinsha. 2018. American option valuation methods. International Journal of Economics and Finance 10: 1-13.
[CrossRef]

Zhu, Song-Ping. 2006. An exact and explicit solution for the valuation of american put options. Quantitative
Finance 6: 229-42. [CrossRef]

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4236/jilsa.2011.32008
http://dx.doi.org/10.1086/295902
http://dx.doi.org/10.1111/1467-9965.02010
http://dx.doi.org/10.1016/j.physa.2004.06.091
http://dx.doi.org/10.1093/rfs/13.1.75
http://dx.doi.org/10.1287/ijoc.5.4.374
http://dx.doi.org/10.1016/S0169-2070(00)00063-7
http://dx.doi.org/10.1016/S0305-0483(99)00066-3
http://dx.doi.org/10.5539/ijef.v10n5p1
http://dx.doi.org/10.1080/14697680600699811
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Overview
	Methodology
	Least-Squares Monte Carlo Method
	Neural Networks

	Data
	Description, Treatment, and Statistics
	Training and Test Datasets
	LSM Specification
	NN Models' Calibration

	Results
	Conclusions
	References

