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Appendix: Variables’ definition
This appendix is devoted to the explanation of all the variables used in the
work. All these variables are setted in the training and validation samples
considering the information set up to the end of each match (see Def. (1)).
All the variables employed in the testing sample instead use the information
set up to the begin of each match (see Def. (2)). More details on this aspect
are available upon request. The variables refer to the favourite (labelled as
usual as f ) and the underdog, (labelled as u), according to Def. (4). As
described in the text, different models may consider different favourite’s
identification. For instance, the variables included in the ANN model spec-
ify as favourite the player with the shortest odd. The appendix will describe
how each variable is configured and, more importantly, how each variable
feeds the input nodes in the ANN. The variables used in the competing
models are setted according to the original configuration (that is, according
to the work of Lisi and Zanella (2017) for the LZR, the work of Klaassen
and Magnus (2003) for the KMR, and so forth).

Winning frequency on the first serve (X1)

Let T 1SPin,i, j be the “total first service points in” by player i in match j.
Moreover, let T 1SPwin,i, j be the number of won points on first serve by
player i on match j. Hence, the winning percentage on the first serve for
player i, on the match j, is obtained as:

X1,i, j =
T 1SPwin,i, j

T 1SPin,i, j
. (A.1)

The variable included in the ANN is given by the following difference:

X1, j = X1, f , j−X1,u, j. (A.2)

Winning frequency on the second serve (X2)

Let T 2SPin,i, j be the “total second service points in” by player i in match j.
Moreover, let T 2SPwin,i, j be the number of won points on second serve by
player i on match j. Hence, the winning percentage on the second serve for
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player i, on the match j, is obtained as:

X2,i, j =
T 2SPwin,i, j

T 2SPin,i, j
. (A.3)

Therefore, the variable included in the ANN is given by:

X2, j = X2, f , j−X2,u, j. (A.4)

Won point return frequency (X3)

Let T SPi, j be the total service points played by player i, on match j. The
won point return percentage for the favourite player on the match j, is ob-
tained as:

X3, f , j =
T SPu, j−T 1SPwin,u, j−T 2SPwin,u, j

T SPu, j
. (A.5)

The won point return frequency for the underdog player on the match j
is instead obtained as:

X3,u, j =
T SPf , j−T 1SPwin, f , j−T 2SPwin, f , j

T SPf , j
. (A.6)

The won point return frequency for the underdog player on the match
j, is instead obtained as:

X3,u, j =
T SPf , j−T 1SPwin, f , j−T 2SPwin, f , j

T SPf , j
. (A.7)

Hence, the variable included in the ANN is given by the following dif-
ference:

X3, j = X3, f , j−X3,u, j. (A.8)

Service points won frequency (X4)

The service points won frequency for player i on the match j is obtained
as:

X4,i, j =
T 1SPwin,i, j +T 2SPwin,i, j

T SPi, j
. (A.9)
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The variable included in the ANN is given by the following difference:

X4, j = X4, f , j−X4,u, j. (A.10)

Winning frequency on break point (X5)

Let BPf aced,i, j and BPsaved,i, j be the number of break points faced and saved,
respectively, by player i in the match j. Therefore, the winning percentage
on break point for the favourite player on the match j is obtained as:

X5, f , j =
BPf aced,u, j−BPsaved,u, j

BPf aced,u, j
. (A.11)

Instead, the winning frequency on break point for the underdog player
on the match j is obtained as:

X5,u, j =
BPf aced, f , j−BPsaved, f , j

BPf aced, f , j
. (A.12)

If BPf aced,i, j = 0 or BPf aced,i, j = BPsaved,i, j, X5,i, j = 0. Finally, the vari-
able included in the ANN is:

X5, j = X5, f , j−X5,u, j. (A.13)

First serve success frequency (X6)

The first serve success frequency for player i on the match j is obtained as:

X6,i, j =
T 1SPin,i, j

T SPi, j
. (A.14)

As usual, the variable included in the ANN is given by:

X6, j = X6, f , j−X6,u, j. (A.15)

Completeness (X7)

The completeness is a proxy of the total strength of player i, in terms of
service and return won points. More in detail, the service strength is given
by the service points won frequency (X4) and the return strength is given by
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the won point return percentage (X3). Hence, the completeness for player i
in match j is:

X7,i, j = X4,i, j ·X3,i, j. (A.16)

Thus, the variable included in the ANN is:

X7, j = X7, f , j−X7,u, j. (A.17)

Advantage on serving (X8)

The advantage on serving is a variable expressing the strength of the player
on serve (again, X4) with respect to the strength of player on return (X3).
Thus, for the favourite and the match j, the advantage on serving is given
by:

X8, f , j = X4, f , j−X3,u, j, (A.18)

while for the underdog, the variable is obtained as:

X8,u, j = X4,u, j−X3, f , j. (A.19)

The variable included in the ANN is:

X8, j = X8, f , j−X8,u, j. (A.20)

Average number of aces per game (X9)

Let ACEi, j and T NGi, j be the total number of aces and games won by player
i in match j, respectively. The average number of aces per game is:

X9,i, j =
ACEi, j

T NGi, j
. (A.21)

The variable included in the ANN is:

X9, j = X9, f , j−X9,u, j. (A.22)

Minute-based fatigue (X10)

The Minute-based fatigue is a variable expressing how much a player is
tired after long matches. It is highly plausible then the performance of
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today’s match depends on yesterday’s match, mainly if this match lasted a
lot of time. According to Sipko and Knottenbelt (2015), we consider only
the last 3 matches played in consecutive days. This means that we take into
account the minutes of match j− 2 and j− 1 and, naturally, the minutes
of the current match j. As in Sipko and Knottenbelt (2015), we consider a
discounting factor δ lag, with δ < 1, in order to weigh less the minutes of the
match played two days ago (such that lag = 2) with respect to the weight
of yesterday’s match (if present), for which lag = 1. Hence, let T Mi, j be
the total minutes played in match j. The previous match, namely the match
j− 1, can be played the day before or also many days before. Suppose
that the match j−1 is the last match of the season (that is, in November).
Thus, the following match j is played after months, and not after days.
Therefore, let D(a,b) be the function returning the days between the date a
and b. Finally, the minute-based fatigue is modelled as follows:

X10,i, j = T Mi, j

+

{
T Mi, j−1 ·δ if D( j, j−1) = 1
0 otherwise . (A.23)

+

{
T Mi, j−2 ·δ 2 if D( j, j−2) = 2
0 otherwise

Finally, the variable included in the ANN is:

X10, j = X10, f , j−X10,u, j. (A.24)

Games-based fatigue (X11)

The Games-based fatigue is another variable expressing how much a player
is tired after very struggling matches. Contrary to X10, this variable relies
on the fatigue depending on the games played. Even if a match has a short
duration, in terms of minutes played, it can be very stressful from a mental
point of view, in the case of many games disputed. An example could be
matches whose sets are always terminated with tie-breaks. Let T NG j be
the total number of games played in the match j in which player i was
a competitor. Hence, in order to take into account the potential fatigue
arising from matches with many games, we set up the Games-based fatigue
variable, which also considers a discounted factor δ lag and the maximum
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lag allowed is 2. This means that only the last two consecutive matches
plus the today’s match are used to define the variable:

X11,i, j = T NG j

+

{
T NG j−1 ·δ if D( j, j−1) = 1
0 otherwise . (A.25)

+

{
T NG j−2 ·δ 2 if D( j, j−2) = 2
0 otherwise

Therefore, the variable included in the ANN is:

X11, j = X11, f , j−X11,u, j. (A.26)

Head-to-head of the favourite over the underdog (X12)

The head-to-head of the favourite over the underdog expresses the number
of times (if any) that the favourite of the match j has defeated the underdog.
Let T NMPf j,u j,1: j be the Total Number of Matches Played from the begin-
ning of the dataset until the match j between the favourite of this match
( f j) and the relative underdog (u j). Moreover, let T NMWFf j,u j,1: j be the
Total Number of Matches Won by the Favourite of match j against the un-
derdog of the same match. Thus, the head-to-head of the favourite over the
underdog is simply calculated as:

X12, j =
T NMWFf j,u j,1: j

T NMPf j,u j,1: j
. (A.27)

Given that T NMPf j,u j,1: j includes the today’s match, it results that
T NMPf j,u j,1: j ≥ 1, ∀ j.

Variable describing the ATP Rank (X13)

This variable denotes the ranks of both the player at the time of the match j,
considering the tranformation suggested by Klaassen and Magnus (2003):

X13, j = log2(Ranku, j)− log2(Rank f , j), (A.28)

where Ranki, j represents the ATP rank of player i in the match j.
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Variable describing the ATP Points (X14)

This variable denotes the points of both the player at the time of the match
j. Higher ATP points mean that the players are better positioned in rank-
ing. Let Pointsi, j be the ATP points of player i in the match j. Hence, the
variable included in the ANN model is:

X14, j = Points f , j−Pointsu, j. (A.29)

Age (X15 and X15sq)

In tennis, the age of the player is a proxy of the experience. This does not
mean that an older player has more chances to win against a younger player,
but there is not a monotonic relationship such that the chances clearly de-
crease if the age increases. The variable Age included in the ANN model
is nothing else that the difference of ages of the players at the time of the
match j:

X15, j = Age f , j−Ageu, j. (A.30)

In addition to the previous variable, we also include the squared version
of X15, j, labelled as X15sq, j and obtained as:

X15sq, j = X2
15, j. (A.31)

Height (X16 and X16sq)

The height in tennis also is an important variable. Taller player have advan-
tages on serve but are slower in the movements. Let Heighti, j be the height
of player i in match j, so that the variable included in the ANN model is:

X16, j = Height f , j−Heightu, j. (A.32)

As for X15, j, we also include the squared version of X16, j, labelled as
X16sq, j and obtained as:

X16sq, j = X2
16, j. (A.33)
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Surface winning frequency (X17)

In tennis the performances of player also depend on the surface of the
match. Some players have more attitude on some surfaces, some others
on other surfaces. The most prominent example is Rafael Nadal, which
has, overall, a winning percentage on clay of 91.7%, at the time of this
writing. In order to take into account the (updating) winning percentages
on the surface of the match j, let T NMPi,s,1: j and T NMWi,s,1: j be the To-
tal Number of Matches Played and the Total Number of Matches Won by
player i on the surface s, with s = {Clay,Grass,Hard}, for the beginning
of the dataset until match j. Hence, the surface winning frequency is:

X17,i, j =
T NMWi,s,1: j

T NMPi,s,1: j
. (A.34)

Therefore, the variable included in the ANN model is:

X17, j = X17, f , j−X17,u, j. (A.35)

Overall winning frequency (X18)

The previous variable X17 can be generalized without considering the sur-
face. Hence, let T NMPi,1: j and T NMWi,1: j be simply the Total Number of
Matches Played and the Total Number of Matches Won by player i, irre-
spective of the surface. The winning frequency of player i up to match j
is:

X18,i, j =
T NMWi,1: j

T NMPi,1: j
. (A.36)

Hence, the variable included in the ANN is:

X18, j = X18, f , j−X18,u, j. (A.37)

Shin Implied Probabilities (X19)

The information offered by the bookmaker are the most accurate source of
probability in sport forecasting. However, the published odds are only a
proxy of the probability of winning. In order to derive the implied proba-
bility of winning, we consider the Shin normalization procedure. Formally,
let πi, j be the probability odds for the player i in the match j, obtained
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from the reciprocal of the published bookmaker odds oi, j. Moreover, let
Π j = π f , j + πu, j be the so-called booksum. Given that Π j > 1, ∀ j, let
m j = Π j− 1 be defined as the margin. Finally, let d j = π f , j−πu, j be the
distance between the probability odds of the favourite and underdog play-
ers, respectively. The implied probability according to the Shin method for
the match j is labelled as X19, j and is calculated as:

X19, j =

√
z2

j +4(1− z j)
π2

f , j
Π j
− z j

2(1− z j)
, (A.38)

z j is assumed to be the proportion of bettors defined as insider traders.
Jullien and Salanie (1994) and Cain et al. (2001) demonstrate that in sports
with only two outcomes, z j depends on the margin and the distance between
the probability odds:

z j =
m j(d2

j −Π j)

Π j(d2
j −1)

. (A.39)

Current form of the players (X20)

Let Ranki,( j−6m):( j) be the average rank of the last six months for player
i. A player that is in a good form will have a higher current ranking with
respect to the past average rank. Thus, the current form of the player i is
defined as:

X20,i, j =
(
Ranki,( j−6m):( j)−Ranki, j

)
. (A.40)

Finally, the variable included in the ANN is:

X20, j = X20, f , j−X20,u, j. (A.41)

Bradley-Terry probability (X21)

McHale and Morton (2011) proposed to model the probability of winning
of player i over the competitor as a function of (past) ability to win a game.
Therefore, let αi, j be the ability of player i to win a game in the match j.
The probability to win a game for the favourite player over the underdog in
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the match j is denoted as PWG f , j and is formally derived as:

PWG f , j =
α f , j

α f , j +αu, j
. (A.42)

Similarly, the probability that the underdog wins the game over the
favourite is:

PWGu, j =
αu, j

α f , j +αu, j
. (A.43)

The abilities αi, j for all the players are obtained by maximizing the like-
lihood provided in McHale and Morton (2011). Assuming independence
among games, it is possible to calculate the probabilities of all the combi-
nations of games letting the favourite to win the set. Let Bin(T G,G f ) be
the binomial formula indicating the probability that favourite wins G f over
T G games. Note that for simplicity we have omitted the suffix j indicating
the match. Possible outcomes of a set won by the favourite are: (6,0), (6,1),
(6,2), (6,3), (6,4), (7,5), (7,6). For instance, the expression (6,0) means
that the favourite player wins six games over six, while the underdog wins
zero games. Each possible outcome has a precise probability, depending on
PWG f , j and PWGu, j:

Pr(6,0) =Bin(6,6) = PWG6
f

Pr(6,1) =Bin(6,5)PWG f = 6PWG6
f ·PWGu

Pr(6,2) =Bin(6,5)PWG f PWGu +Bin(6,4) ·PWG2
f = 21PWG6

f PWG2
u

Pr(6,3) = · · ·= 56PWG6
f PWG3

u

Pr(6,4) = · · ·= 126PWG6
f PWG4

u

Pr(7,5) = · · ·= 252PWG7
f PWG5

u

Pr(7,6) = · · ·= 504PWG7
f PWG6

u

Finally, the probability of winning a set for the favourite player PWS f
is:

PWS f =Pr(6,0)+Pr(6,1)+Pr(6,2)+Pr(6,3)+Pr(6,4)+Pr(7,5)+Pr(7,6).
(A.44)
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Tennis matches conclude when a player wins 2 sets over 3 or 3 over 5
sets. The former are called best-of-three matches, the latter best-of-five.

The variable included in the ANN is the probability that the favourite
wins the match, given PWS f , that is:

X21, j =


PWS2

f , j +2 ·PWS2
f , j · (1−PWS f , j) if j is a best-of-three match

PWS3
f , j +3 ·PWS3

f , j · (1−PWS f , j)+ if j is a best-of-five match
6 ·PWS3

f , j · (1−PWS f , j)
2

.

(A.45)

ATP ranking intervals (X22)

In setting their logit model, Lisi and Zanella (2017) suggest to consider
as regressor the ATP rankings expressed in intervals. Therefore, we use
the their same estimated intervals as resulting by the hierarchical cluster
analysis. These intervals are reported in Table A.1 (second row), while
in the third row the values assumed by the variable X22,i, j are reported.
Therefore, the variable included in the ANN is given by:

X22, j = X22, f , j−X22,u, j. (A.46)

Table A.1: Ranking classification

I Interval II Interval III Interval IV Interval V Interval

0-560pt 561-920pt 921-1460pt 1461-2000pt >2000pt
X22,i, j 0 1 2 3 4

Notes: The table reports the values of the variable X22,i, j for each player i of the match
j, according to the intervals of ATP points suggested by Lisi and Zanella (2017).

Home factor (X23)

According to Dixon and Coles (1997), home advantage is an important
effect in sports that should be taken into account. Practically speaking,
the home advantage for a player/team consists of a performance above the
usual level when that player/team competes in matches played in his/their
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own country. In tennis, Koning (2011) claims that the home advantage
exists but only in male tennis. As done by Lisi and Zanella (2017), we
model the home advantage as a dummy variable:

X23,i, j =

{
1 if player i competes the match j in his country
0 otherwise .

(A.47)
Hence, the variable included in the ANN is:

X23, j = X23, f , j−X23,u, j. (A.48)

BCA winning probability (X24)

According to Barnett and Clarke (2005), it is possible to derive the winning
probability of the whole match starting from the service points won (given
by X4). Formally, let pi synthetically denote the relative frequency of ser-
vice points won by player i for a match j. Therefore, the probabilities of all
the possible situations within a game are:

Pr(40,0) =p4
i ;

Pr(40,15) =4p4
i (1− pi);

Pr(40,30) =10p4
i (1− pi)

2;

Pr(Adv,40) =20p5
i (1− pi)

3/(1−2pi(1− pi)),

where Pr(Adv,40) is the probability of winning a game when the score is
tied at 40-40. Hence, the probability that a player on serve wins the game,
denoted as PWGSi, is:

PWGSi = Pr(40,0)+Pr(40,15)+Pr(40,30)+Pr(Adv,40). (A.49)

Similarly to what done for the variable X21, the probability of winning
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a set for the player i is:

Pr(6,0) =PWGS6
i

Pr(6,1) =PWGS6
i (1−PWGSi)

Pr(6,2) =21PWGS6
i (1−PWGSi)

2

Pr(6,3) =56PWGS6
i (1−PWGSi)

3

Pr(6,4) =126PWGS6
i (1−PWGSi)

4

Pr(7,5) =252PWGS7
i (1−PWGSi)

5

Pr(7,6) =504PWGS7
i (1−PWGSi)

6

The remaining probabilities are calculated as to Eqs. (A.44) and (A.45).
Finally, once got the probability of winning a match according to the BC
model, denoted as X24,i, j, the variable included in the model is:

X24, j = X24, f , j/X24,u, j. (A.50)

Top-10 former presence (X25)

According to Del Corral and Prieto-Rodrı́guez (2010), the former presence
as a top-10 player is a relevant variable that may concur to estimate the
probability of winning. Therefore, let X25,i, j be the variable equalling one
if in the last five years (preceding match j) player i is or has been a top-10
player. The variable included in the ANN model is:

X25, j = X25, f , j−X25,u, j. (A.51)

Handedness (X26, X27, X28 and X29)

In defining the variables of their probit model, Del Corral and Prieto-Rodrı́guez
(2010) suggest to control also for the right- and left- handedness of the play-
ers through four different dummies, described in Table A.2.
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Table A.2: Handedness

Right-handed Left-handed

Favourite Underdog Favourite Underdog
X26

√ √

X27
√ √

X28
√ √

X29
√ √

Notes: The table reports the configuration of the dummy
variables according to four possibilities. For simplicity, the
variables do not have the match label j.

Grand-slam matches (X30)

Even though Del Corral and Prieto-Rodrı́guez (2010) employ a dataset con-
sisting of only Grand Slam matches, they include a dummy variable for
each tournament. Given that our dataset considers also matches played at a
Master level, we simply set up a dummy variable, X30, j, which equals one
if the match j is played in a Grand Slam and zero otherwise.

Bookmaker info (X31)

Lisi and Zanella (2017) take advantage of the bookmaker odds only when
their favourite player (the one with the highest ranking) has an odds greater
than two. In this case, X31 equals to the value of the bookmaker odds. Oth-
erwise, X31 equals zero. Because in the ANN model the information pro-
vided by the bookmaker are already included in the model through the vari-
able X19, X31 has been used only in the model of Lisi and Zanella (2017).

15



References

Barnett, T. and S. R. Clarke (2005). Combining player statistics to predict outcomes of
tennis matches. IMA Journal of Management Mathematics 16(2), 113–120.

Cain, M., D. Law, and D. A. Peel (2001). The incidence of insider trading in betting
markets and the Gabriel and Marsden anomaly. The Manchester School 69(2), 197–
207.

Del Corral, J. and J. Prieto-Rodrı́guez (2010). Are differences in ranks good predictors for
Grand Slam tennis matches? International Journal of Forecasting 26(3), 551–563.

Dixon, M. J. and S. G. Coles (1997). Modelling association football scores and inefficien-
cies in the football betting market. Journal of the Royal Statistical Society: Series C
(Applied Statistics) 46(2), 265–280.

Jullien, B. and B. Salanie (1994). Measuring the Incidence of Insider Trading: A Comment
on Shin. The Economic Journal 104(427), 1418–1419.

Klaassen, F. J. and J. R. Magnus (2003). Forecasting the winner of a tennis match. Euro-
pean Journal of Operational Research 148(2), 257–267.

Koning, R. H. (2011). Home advantage in professional tennis. Journal of Sports Sci-
ences 29(1), 19–27.

Lisi, F. and G. Zanella (2017). Tennis betting: Can statistics beat bookmakers? Electronic
Journal of Applied Statistical Analysis 10(3), 790–808.

McHale, I. and A. Morton (2011). A Bradley–Terry type model for forecasting tennis
match results. International Journal of Forecasting 27(2), 619–630.

Sipko, M. and W. Knottenbelt (2015). Machine learning for the prediction of professional
tennis matches. MEng computing-final year project, Imperial College London.

16


