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Abstract: In a one price economy, the Fundamental Theorem of Asset Pricing (FTAP) establishes that
no-arbitrage is equivalent to the existence of an equivalent martingale measure. Such an equivalent
measure can be derived as the normal unit vector of the hyperplane that separates the attainable gain
subspace and the convex cone representing arbitrage opportunities. However, in two-price financial
models (where there is a bid–ask price spread), the set of attainable gains is not a subspace anymore.
We use convex optimization, and the conic property of this region to characterize the “no-arbitrage”
principle in financial models with the bid–ask price spread present. This characterization will lead us
to the generation of a set of price factor random variables. Under such a set, we can find the lower
and upper bounds (supper-hedging and sub-hedging bounds) for the price of any future cash flow.
We will show that for any given cash flow, for which the price is outside the above range, we can
build a trading strategy that provides one with an arbitrage opportunity. We will generalize this
structure to any two-price finite-period financial model.

Keywords: conic finance; convex optimization; arbitrage pricing

1. Introduction

It has been known for a long time (Harrison and Kreps 1979; Harrison and Pliska 1981;
Delbaen and Schachermayer 1994) that no-arbitrage opportunity in a one price economy is equivalent
to the existence of an equivalent martingale measure. This result is usually referred to as the
Fundamental Theorem of Asset Pricing (FTAP). Rogers (1994) used a directional derivative argument
to provide a discrete-time proof for FTAP. The case of trading continuously, in particular, was discussed
by Harrison and Pliska (1981).

In practice, the law of one price often does not hold. Recently, the literature on transaction
costs and the study of no-arbitrage in the presence of bid–ask spreads has been expanding
(Jouini and Kallal 1995; Bion-Nadal 2009; Guasoni et al. 2011). Madan (2012) considers financial
equilibrium where there are two separate prices at which one may buy from or sell to the market
known as ask and bid prices. This is a realistic situation in financial markets. Inside an efficient market,
at a given time, a financial security trades at a unique price. The equilibrium conditions that are
needed to provide a unique price all depend on arbitrage opportunities that are quickly exploited.
A wide category of financial securities trade in vast and diverse markets and few of them meet the
equilibrium conditions we mentioned earlier. Market clearing becomes troubling, which leads to prices
that are not unique for equivalent securities in different markets. Whenever the above conditions are
not satisfied, the “law of one price“ fails to hold. On the other hand, an incomplete market can also
take place even under the assumption of “one price”. Incomplete condition explains that there exists
the presence of some residual risks that can not be eliminated regardless of the existence of the best
hedging (Eberlein et al. 2009; Jacka 1992). In addition, the markets establish a phenomenon that is not
anticipated in the one price theory called illiquidity. Illiquidity can be explained as the lack of ability of
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the market to establish a unique price, that is, to eliminate the spread between the bid and ask prices.
This happens when there is an absence of information and/or a lack of interested parties. In these
situations, the bid and ask prices are the only real market information that can be observed. Thus,
the theoretical framework that has been used to explain the one price market is not accurate enough to
deal with many situations one faces in practice.

We adopt the framework of “conic finance“ in this paper. Some earlier studies that use the
theory of conic finance include Madan (2012); Cherny and Madan (2010); Eberlein and Madan (2012);
Eberlein and Madan (2009); Eberlein et al. (2011). The direction of trade is what distinguishes the
theory of two-price economies from that of one price economy. Now there are two types of prices,
one price is used for buying from the market called the ask price, and the other price is used for selling
to the market called the bid price. In the situation of one price economy, the market plays the role
of an auctioneer, who clears the trades and decides the prices. However, in the two-price economy,
the financial market plays a role of a passive counterparty to all transactions, who buys at the ask price
and sells at the bid price. The spread that is between the bid and ask prices becomes a measure of
illiquidity. It also evaluates the principal required to support a position and the cost of unraveling
a position.

We also find it necessary to mention that the one-period case discussed in this paper was included
in the book by Carr and Zhu (2018) with reference to this paper (a working paper back then).

1.1. Bid–Ask Spreads

A collection of theoretical approaches exists that are trying to model bid–ask spreads.
Cherny and Madan (2010) offer a few of the current approaches that have been used to model bid–ask
spreads. Copeland and Galai (1983) have discussed the order processing and inventory costs of
providers of liquidity. Constantinides (1986) and Jouini and Kallal (1995) investigated the spreads
that involve transaction costs of trading in liquid markets. However, the researches mentioned above
are comparatively satisfactory to liquid markets where a transaction cost can happen at a price that
a contrary trade direction can take place with no price effect. The price-spreads that are related to
the theory of two-price economies are discussed in Carr et al. (2001) and Cherny and Madan (2010).
These are mostly related to locating actual long-term counterparties that are ready to establish a
position for an extended period of time. The spread between the bid and ask prices can be observed as
a holding of the charge-exerted while the market does not clear rapidly, as to find a counterparty is
going to require time and effort because there is no possibility of doing trades in both directions at
any transaction price being observed. Specifically, there is not any possibility of complete replication.
In addition, the spread between the bid and ask prices becomes a reflection of the cost of holding the
residual risk (Eberlein et al. 2011). Therefore, transactions happen close to or at either the ask price or
the bid price, conditional on the direction of the trade. The conic finance is trying to model the bid–ask
spread by applying the concept of acceptable cash flows to the market (Madan 2015). However, it is
assumed that the market requires a minimal level of acceptability for a position to be profitable. As a
result of the market competition, the bid-price is being raised, and the asked-price is being lowered to
establish an acceptable position. Therefore the bid–ask spread is tried to be narrowed so that the risk
of a position will be minimized. This spread can be seen as the cost of unraveling a position.

1.2. Two-Price Economy

In a two-price economy, a comparatively classical view of markets consistent with its role in the
traditional competitive breakdown, where markets play the role of counterparties to transactions,
is being assumed. The only difference from the traditional aspect is that the length of a trade depends
on the direction of the trade, while the market is buying at the bid price and selling at the ask price.
Now regard the classical market when trading is performed in either direction at the current price.
The market is always willing to sell at a higher price or similarly buy at a lower price and welcomes all
zero-cost random cash streams that have a positive expectation under the equilibrium pricing essentials.
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Notice that this creates a very large set of market risks that are accepted by the classical financial
market within a risk-neutral measure. The two-price financial market is more antagonistic as to which
trades it will accept. The collection of zero-cost risks acceptable to the financial market is much smaller
as a set. A modeling process of this set of acceptable risks can be observed at Artzner et al. (1999),
that was further expanded in Cherny and Madan (2009) and Cherny and Madan (2010). Especially,
the set of zero-cost risks that are acceptable to the financial market as a set of random variables is being
modeled as a convex cone, including all the non-negative random variables. The theoretical structure
required for supporting the two-price economy has been given a huge amount of attention in the past
few years. The theory was popularized into the field of mathematical finance by Constantinides (1986)
and was introduced as coherent risk measures by Artzner et al. (1999). The research that connects the
theory of two-price economies to concave distortions was performed by Cherny and Madan (2009)
and Cherny and Madan (2010). They are the researches that gave a perceptive of how to establish the
bid–ask prices admissible to the theory of two-prices. After that, the theory of two-prices was given
the name “conic finance”, for example Madan and Schoutens (2011) and Madan and Schoutens (2012).
In the following sections, we present the theory of two-prices in an abstract manner as it was set out in
Madan (2015).

The rest of this paper is structured as follows. In Section 2 we introduce the model, starting by
definitions of sets of zero cost and attainable cash flows. We also characterize the utility maximization
of trading cash flows. In Section 3 the Fundamental Theorem of Asset Pricing in conic finance
(two-price economy) will be stated and proved (all proofs will be in Appendix A), using the pricing
factor generated by a solution of the dual problem. In Section 4 we use take advantage of the existence
of pricing factors and define price bounds for any attainable cash flow. Additionally, in concrete
examples, we will illustrate the trading strategies in the presence of arbitrage opportunities for 1
and 2-period models, along with the super-hedging theorem for the 1-period case. In Lemma 1 a
computation complexity will be given, in presence of all possible zero cost bonds. Finally in Section 5
the multi-period case will be discussed where only the one-period bonds and assets will be considered
through an iterative process.

2. The Model (Multi-Period)

In this section, we first define the general multi-period model along with all of the necessary
components of the model. We establish the FTAP theorem for the multi-period model in conic finance
(two-price economy) by considering a utility maximization problem and its dual. We also explain the
relation between solutions to our primal and dual problems, along with the price factors derived from
the solution of the dual problem, by considering a utility maximization problem and its dual. We use
this price factor to find a super-hedging and sub-hedging for any acceptable cash flow.

2.1. The Model Definitions

We start by defining the general model and its components following Madan (2015).

Definition 1. Let F = {{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ FT = F} be an information filtration on the
probability space (Ω,F , P) , where Ω = {ω1, ω2, . . . , ωN} is a finite sample space, representing the economic
states. We consider a T-period financial model where T ≥ 1 and for any 0 ≤ t ≤ T, cash flows (in\out) are
being traded at time t.

Definition 2. Let X denote the space of all F−adapted cash flows x = (xt)T
t=0 with the inner product

< x, y >= E

[
T

∑
t=o

xtyt

]

Then X is a finite dimensional Hilbert space.
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The market consists of M risky assets Sm ∈ X , m = 1, 2, . . . , M and T risk-free zero coupon bonds
1u, u = 1, 2, . . . , T where 1u

u = 1 and 1u
t = 0 for t 6= u. At time t, there is a bid and ask price pair bi

t ≤ ai
t.

Paying ai
t, one will receive the income flow

(
Si

t
)T

s=t+1 and receiving bi
t one will get the income flow(

−Si
t
)T

s=t+1. For risk-less bonds, the bid and ask prices of 1u, paid/received at time t < u is denoted
by gu

t ≤ hu
t ≤ 1. There are two zero cost cash flows associated with each pair of bid and ask prices.

Sit
s =


0 s < t
−ai

t s = t
Si

s s > t
and S̃it

s =


0 s < t
bi

t s = t
−Si

s s > t

Similarly the bond maturing at time u, creates two zero cost cash flows as below:

1ut
s =


0 s 6= u, t
−hu

t s = t
1 s = u

and 1̃ut
s =


0 s 6= u, t
gu

t s = t
−1 s = u

2.2. Set of Zero-Cost Cash Flows

Assuming that one can trade any non-negative multiple of above zero-cost cash flows,
and suppose αi

t, α̃i
t, βu

t , β̃u
t , for i = 1, . . . , M, u = 1, . . . , T are non-negative F -adapted random variables,

then Z is defined to be the set of all zero cost cash flows of the form

z =
T

∑
t=0

[
M

∑
i=1

(
αi

tS
it + α̃i

tS̃
it
)
+

T

∑
u=1

(
βu

t 1ut
s + β̃u

t 1̃ut
s
)]

(1)

It can be seen from the definition that Z is a cone. Define C to be the set of all cash flows c ∈ X
such that there is z ∈ Z with z ≥ c. Then C is the set of adapted processes, super-replicable at zero
cost. It is clear that C a closed convex cone and Z ⊂ C.

Figure 1 is a geometrical demonstration (in R2) of a cone Z and the convex cone C, set of all
vectors dominated by some elements of Z (z ≥ c).

Z

C

C

Figure 1. Set of zero-cost cash flows Z , and the cone C.
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2.3. The Characterization of No-Arbitrage

We now define arbitrage and will be characterizing no-arbitrage using a utility maximization problem.

Definition 3. We say that a cash flow c = (ct)T
t=0 ∈ C\{0} is an arbitrage if ct ≥ 0 for all t = 0, 1, . . . , T.

Definition 4. (Utility Function) An extended real valued function u : R → R ∪ {+∞} is called a utility
function if it satisfies the following three characteristics:

1. (Risk Aversion) u is strictly concave,
2. (Profit Seeking) u is strictly increasing and lim

t→+∞
u(t) = +∞,

3. (Bankruptcy Forbidden) for any t < 0, u(t) = −∞.

Let X+ denote the non-negative cone in X , also w0 ∈ X+ be the initial endowment and (ct)
T
t=0 =

(c0, c1, ..., cT) ∈ C be a cash flow. Consider the following optimal trading problem

p = max

{
E

[
T

∑
t=0

u(ct)

]
; c = (ct)

T
t=0 ∈ w0 + C

}

where u is a utility function. We are able to characterize the no-arbitrage principle in terms of this
utility maximization problem.

Theorem 1 (Characterization of Utility Maximization). The financial market has no-arbitrage opportunity
if and only if the optimal trading problem above has a finite value p < ∞.

Proof. In Appendix A.

3. FTAP for Multi-Period Model

In this section, we establish FTAP for conic finance model, characterizing no-arbitrage in terms of
the extension of pricing factors. A first version of this theorem was proven by Harrison and Kreps (1979).
More general versions of the theorem were proven in 1981 by Harrison and Pliska (1981) and in 1994 by
Delbaen and Schachermayer (1994).

Theorem 2 (The First Fundamental Theorem of Asset Pricing). A financial market with time horizon T and
price processes of the risky asset and risk-less bond given by S1, ..., ST and S0

1, ..., S0
T , respectively, is arbitrage-free

under the probability P if and only if there exists another probability measure Q such that
i. For any event A, P(A) = 0 if and only if Q(A) = 0 (We say in this case that P and P are equivalent

probability measures).
ii. The discounted price process, X1 := S1

S0
1
, ..., XT := ST

S0
T

is a martingale under Q. A measure Q that

satisfies (i) and (ii) is known as a risk neutral measure.

We now start by considering dual of the utility maximization problem in Section 2. First,
we rephrase the utility maximization problem in Section 2 as an abstract convex programming problem.
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For x = (xt)T
t=0 ∈ X , define g(x) = ιw0+C(x) and f (x) = E

[
T

∑
t=0

(−u)(xt)

]
. Then we can rewrite

the optimal trading problem in Equation (1) as

p = −min

{
E

[
T

∑
t=0

(−u)(ct)

]
| c = (c)T

t=0 ∈ w0 + C
}

= −min
x∈X

{
E

[
T

∑
t=0

(−u)(xt)

]
+ ιw0+C(x)

}
= −min

x∈X
{ f (x) + g(x)}

The dual representation of the problem above gives us an extension of the Fundamental Theorem
of Asset Pricing (FTAP) in conic finance. We approach FTAP via a utility optimization problem.

Definition 5 (Pricing Factor). For t < u ≤ T, we say f u
t is a pricing factor from time t to time u and

compatible with financial market, if the two following conditions are satisfied

gu
t ≤ Et

[
T

∑
s=t+1

f u
t 1ut

s

]
≤ hu

t , (2)

and also for 1 ≤ i ≤ M

bi
t ≤ Et

[
T

∑
s=t+1

f u
t Si

t

]
≤ ai

t.

Theorem 3. (FTAP in conic finance) Let u(t) be a utility function and consider a two-price financial market
consisting of price processes of the risky assets and risk-free bonds. Then the market is arbitrage-free under the
probability P if and only if there exists a pricing factor.

Proof. In Appendix A.

Remark 1. Through the proof of Theorem 3 , there are a few things we would like to point out here:

1. Pricing factor is not unique. This is clear since the existence of a pricing factor in FTAP comes from
the existence of a solution to the dual problem, and we know the dual problem does not necessary have a
unique solution.

2. The pricing factor is related to the utility function u via the duality. In fact we saw specifically that
z̄ ∈ −∂(−u)(x̄).

3. The pricing factors can be used to generate prices for cash flows c ∈ C with no-arbitrage existing. We will
explain this more in detail on the coming sub-section.

4. Price Bounds and Their Estimates

A distinct feature of conic finance is that prices of assets are not unique. In fact, we see that every
price factor will provide a non-arbitrage price. We will see that the set of price factors will provide us
price bounds, outside of which arbitrage arises.

4.1. Definition of the Bounds

Define PF to be the set of all price factors f s
t that are compatible with the financial market which is

PF =

{
f s
t | gu

t ≤ Et

[
T

∑
s=t+1

f u
t 1ut

s

]
≤ hu

t , bi
t ≤ Et

[
T

∑
s=t+1

f s
t Si

s

]
≤ ai

t

}
(3)
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Let c = (ct) ∈ C. We define

ut(c) = sup

{
Et

[
T

∑
s=t+1

f s
t cs

]
| f s

t ∈ PF
}

(4)

and

lt(c) = inf

{
Et

[
T

∑
s=t+1

f s
t cs

]
| f s

t ∈ PF
}

(5)

Remark 2. The values of ut(c) and lt(c) are the lower and upper bounds for bid and ask prices of the cash flow
c = (ct) ∈ C, equivalent to existing no-arbitrage. Equivalently, [lt(c), ut(c)] is the no-arbitrage region for the
price of a given cash flow c = (ct) ∈ C.

Remark 3. As we know, any of f u
t ∈ PF has a one to one correspondence relation to a solution of the dual

problem say z̄ ∈ Co so that z̄t = Γt Mt = Γt
Q
P

, where Q is a P-equivalent martingale measure defined as
Q = MtP. Since f u

t are in direct relation to the solution of dual problem, this leads to

Et

[
T

∑
s=t+1

z̄scs

]
= Et

[
z̄t

T

∑
s=t+1

z̄s

z̄t
cs

]
= z̄tEt

[
T

∑
s=t+1

f s
t cs

]

which is a linear combination in terms of the pricing factor we defined above, so that the corresponding
maximization and minimization above (and later in our text) becomes a linear programming problem.

A question that one can ask is, if the market (bid and ask) prices of a cash flow c = (ct) ∈ C,
are outside of the no-arbitrage region [lt(c), ut(c)], will any arbitrage opportunity become possible?
We will answer this question in the next section.

4.2. Computations in One-Period

To illustrate the general pattern, we start with a simple example.

Example 1. Consider a one-period model (T = 1) with a sample space Ω = {ω1, ω2} containing only two
elements and let M = 1 (only one risky asset, S1 = S). Additionally, consider a bond

11,0 = (−h1
0, 1) 1̃1,0 = (g1

0,−1)

where the ask and prices are h1
0 = 0.9 and g1

0 = 0.8, respectively. Assume the asset St over times t = 0, 1 has
standard initial price 1 and payoff as following

S0 = 1

S1(ω1) = 2

S1(ω2) = 0.5

Now consider the following primal maximization problem

p1 :=

u0 = max E
[

f 1
0 S1

]
g1

0 ≤ E
[

f 1
0

]
≤ h1

0

=

{
u0 = max

[
f 1
0 (ω1)P(ω1)S1(ω1) + f 1

0 (ω2)P(ω2)S1(ω2)
]

g1
0 ≤ f 1

0 (ω1)P(ω1) + f 1
0 (ω2)P(ω2) ≤ h1

0

(6)

For simplicity we let r1 := f 1
0 (ω1)P(ω1) and r2 := f 1

0 (ω2)P(ω2) so that the linear programming
problem in Equation (6) becomes
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p1 =

{
u0 = max [r1S1(ω1) + r2S1(ω2)]

g1
0 ≤ r1 + r2 ≤ h1

0

=


u0 = max [r1S1(ω1) + r2S1(ω2)]

r1 + r2 ≤ h1
0

−r1 − r2 ≤ −g1
0

(7)

A systematical way of deriving the arbitrage strategy is to use linear programming duality. By using the
linear programming duality, we can write the dual problem to Equation (7) as

d1 :=


u0 = min

(
−g1

0t1 + h1
0t2
)

t2 − t1 ≥ S1(ω1)

t2 − t1 ≥ S1(ω2)

t1, t2 ≥ 0

=


u0 = min

(
−g1

0t1 + h1
0t2
)

t2 ≥ t1 + max
ω∈Ω

S1(ω)

t1, t2 ≥ 0

(8)

If we use the constraint condition in Equation (8) and substitute in the objective function, we have

u0 = min
t1≥0

[
−g1

0t1 + h1
0

(
t1 + max

ω∈Ω
S1(ω)

)]
= min

t1≥0

[
t1

(
h1

0 − g1
0

)
+ h1

0 max
ω∈Ω

S1(ω)

]
but since h1

0 − g1
0 ≥ 0, minimum happens when t1 = 0 so that

u0 = h1
0

(
max
ω∈Ω

S1(ω)

)
= 0.9 (2) = 1.8 (9)

Therefore 1.8 is the highest ask price for S1 offered at time t = 0 under no-arbitrage condition. That means
for any offered price higher than 1.8 one should be able to build a portfolio creating an arbitrage.

In fact for a bid price b0 > 1.8, since the solution to Equation (8) is t1 = 0, t2 = 2, one can buy 2 unites of
bond 11,0 = (−0.9, 1) at time t = 0 for the price of 1.8 and receive 2 at time t = 1 so that S1 can be delivered

and still making a profit of
b0 − 1.8

0.9
> 0.

Similarly we can find a lowest bid price l0 for which one can construct a portfolio providing arbitrage if any
ask price lower than l0 is available.

The approach illustrated above can also be used in financial market that involves both bonds and
stocks. A general result is summarized in the following theorem. We will use the set of all possible
pricing factors corresponding to all solutions of the dual problem to provide a no-arbitrage region for a
given cash flow. We state the result for super-hedging, i.e., upper bound for no-arbitrage. Sub-hedging
can be discussed similarly.

Theorem 4 (Super-Hedging). Suppose that (c0, c1) ∈ C is an acceptable cash flow, then

u0 = sup
f 1
0∈PF

{
E
[

f 1
0 c1

]}

= min
(Λ,γ)0∈R

2M+2
+

{
−p0((Λ, γ)0) + sup

ω∈Ω

[
g1

0 (c1(ω)− p1((Λ, γ)0)(ω))
]}
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is a super-hedging bound, where{
p0((Λ, γ)0) = −γ1

0h1
0 + γ̃1

0g1
0 + ∑M

i=1
[
−λi

0ai
0 + λ̃i

0bi
0
]

p1((Λ, γ)0) = γ1
0 − γ̃1

0 + ∑M
i=1
[
λi

0 − λ̃i
0
]

Si
1

If b0 is a bid price that exceeds a super-hedging bound u0, then the solution to the minimization
problem (dual) is a trading strategy (Λ̄, γ̄)0 ∈ R2M+2

+ for which if we acquire the zero cost cash flows
(p0 ((Λ̄, γ̄)0) , p1 ((Λ̄, γ̄)0)), then our portfolio has an arbitrage opportunity.

Proof. In Appendix A.

We can see that a super-hedging bound u0 can be represented as the value of a pair of dual linear
programming problems. The primal provides an easy way of evaluating u0 with the help of price
factor in set P . The dual solution, provides us a super-hedging portfolio which guarantees an arbitrage
in case of existence of a favorable price for the cash flow c ∈ C

4.3. Two-Period Examples

Before we start setting up the problem for a two-period model, first we aim to explain a simple
example for a two-period case. We will discuss and illustrate this two-period model with only one
risky asset.

4.3.1. Involving Only 1-Period Bonds

Example 2. Let Ω = {ω1, ω2, ω3, ω4} and consider a two-period model with T = 2 and t = 0 and the
information structure F0 ⊂ F1 ⊂ F2 where for k = 0, 1, 2, the σ-algebra Fk is generated by the set Pk which
are defined as P0 = {B0,1},P1 = {B1,1, B1,2},P2 = {B2,1, B2,2, B2,3, B2,4}. The sets Bi,j are all subsets of Ω
and they are defined as in the following diagram

B0,1 = Ω

B1,2 = {ω3, ω4}

B1,1 = {ω1, ω2}

B2,4 = {ω4}

B2,2 = {ω2}

B2,3 = {ω3}

B2,1 = {ω1}
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S(B0,1) = 1

S(B1,2) = 0.5

S(B1,1) = 2

S(B2,4) = 0.25

S(B2,2) = 1

S(B2,3) = 1

S(B2,1) = 4

Additionally, consider the bonds

11,0 = (−h1
0, 1, 0) 1̃1,0 = (g1

0,−1, 0)

12,0 = (−h2
0, 0, 1) 1̃2,0 = (g2

0, 0,−1)

12,1 = (0,−h2
1, 1) 1̃2,1 = (0, g2

1,−1)

where h1
0 = 0.95 , g1

0 = 0.9 , h2
0 = 0.9 , g2

0 = 0.8 and also h2
1(B1,1) = 0.9 , h2

1(B1,2) = 0.95 , g2
1(B1,1) = 0.85 ,

g2
1(B1,2) = 0.9.

Let S1 = S be our only risky asset with the above price diagram corresponding to zero-cost cash flows

Si0 = (−a2
0, S1, S2) S̃i0 = (b2

0,−S1,−S2)

Si1 = (0,−a2
1, S2) S̃i1 = (0, b2

1,−S2)

We aim to find the highest ask price while no-arbitrage exists. We need to mention here that we are assuming
there is no 2-period bond (−h2

0, 0, 1) is available. We are going to treat the problem as two consecutive 1-period
problems. For this reason, first we try to find the best ask price u2

1 (a F1-measurable random variable) of having
S2 being paid at time t = 1. Therefore for i = 1, 2 we construct the following maximization problem

p :

u2
1(B1,i) = max E1

[
f 2
1 S2

]
(B1,i)

g2
1(B1,i) ≤ E1

[
f 2
1

]
≤ h2

1(B1,i)
(10)

and by definition 2.2 we have

p :

{
u2

1 = max < f 2
1 , S2 >

g2
1 ≤ E1

[
f 2
1

]
≤ h2

1
(11)

for which the Lagrangian becomes

L( f 2
1 , t) =< f 2

1 , S2 > +t1

(
h2

1− < f 2
1 , S2 >

)
+ t2

(
< f 2

1 , S2 > −g2
1

)
(12)
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=< f 2
1 , S2 − t1 + t2 > +t1h2

1 − t2g2
1

so that we have
u2

1 = sup
f 2
2≥0

inf
t≥0
L( f 2

1 , t) (13)

or

p :

 u2
1 = inf t1h2

1 − t2g2
1

t1 − t2 ≥ sup
ω∈Ω

S2(ω) (14)

Solving the latter linear programing we will have:

u2
1(B1,i) = h2

1(B1,i)max
B1,i

S2 (B1,i|S1(B1,i)) =

{
0.9(4) = 3.6 if i = 1,

0.95(1) = 0.95 if i = 2.
(15)

Now consider the following diagram and maximization problem

S0 = 1

S1(B1,1) + u2
1(B1,1) = 5.6

S1(B1,2) + u2
1(B1,2) = 1.45

u2
0 = max E0

[
f 2
1

(
S1 + u2

1

)]
g1

0 ≤ E0

[
f 2
1

]
≤ h1

0.
(16)

Similar to example (1), this problem has the solution

u2
0 = h1

0

[
max
ω∈Ω

(S1(ω) + u2
1(ω))

]
= (0.95)(5.6) = 3.42 (17)

Therefore 3.42 is the highest ask price for ( . , S1, S2) offered at time t = 0 to have the no-arbitrage condition
satisfied. That means for any offered price bigger than 3.42 one should be able to build a portfolio creating
an arbitrage.

In fact for an offered bid price of b2
0 > 3.42, since the dual problem solutions are

t1 = 0, t2 = 5.6, t1(B1,1) = 0, t2(B1,1) = 4, t1(B1,2) = 0, t2(B1,2) = 1, one can buy 5.6 unites
of bond 11,0 = (−0.95, 1, 0) at time t = 0 for the price of 3.42 and receive 5.6 at time t = 1 so that S1 can be
delivered and left with at least 3.6 = max(u2

1)(ω) so that one is able to deliver S2 at time t = 2 and still making

a profit of at least
b2

0 − 3.42
(0.95)(h2

1)
> 0.

Similarly we can find a lowest bid price l2
0 for which one can construct a portfolio providing an arbitrage if

any ask price smaller than l2
0 is available, where analogous steps to example (1) leads to

l2
0 = g1

0

[
min
ω∈Ω

(S1(ω) + l2
1(ω))

]
= (0.9)(0.725) = 0.6525 (18)

Therefore 0.6525 is the lowest bid price (sub-hedging bound) for ( . , S1, S2) offered at time t = 0 to have
the no-arbitrage condition satisfied. That means for any offered ask smaller than 0.6525 one should be able to
build a portfolio creating an arbitrage.

Next, we consider a problem involving options using a similar approach.
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Example 3. Let Ω = {ω1, ω2, ω3, ω4} and consider a two-period model with the information structure
F0 ⊂ F1 ⊂ F2 where for k = 0, 1, 2, the σ-algebra Fk is generated by the set Pk which are defined as
P0 = {B0,1},P1 = {B1,1, B1,2},P2 = {B2,1, B2,2, B2,3, B2,4}. The sets Bi,j are all subsets of Ω and they are
defined as in the following diagram

B0,1 = Ω

B1,2 = {ω3, ω4}

B1,1 = {ω1, ω2}

B2,4 = {ω4}

B2,2 = {ω2}

B2,3 = {ω3}

B2,1 = {ω1}

S(B0,1) = 1

S(B1,2) = 0.5

S(B1,1) = 2

S(B2,4) = 0.25

S(B2,2) = 1

S(B2,3) = 1

S(B2,1) = 4
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We define the risk-free bonds as

11,0 = (−h1
0, 1, 0) 1̃1,0 = (g1

0,−1, 0)

12,0 = (−h2
0, 0, 1) 1̃2,0 = (g2

0, 0,−1)

12,1 = (0,−h2
1, 1) 1̃2,1 = (0, g2

1,−1)

where h1
0 = 0.95, g1

0 = 0.9, h2
0 = 0.9, g2

0 = 0.8 and also h2
1(B1,1) = 0.9, h2

1(B1,2) = 0.95, g2
1(B1,1) =

0.85, g2
1(B1,2) = 0.9. Let S1 = S be our only risky asset with the above price diagram with zero-cost cash flows

Si0 = (−a2
0, S1, S2) S̃i0 = (b2

0,−S1,−S2)

Si1 = (0,−a2
1, S2) S̃i1 = (0, b2

1,−S2)

and also according to our calculations in the previous example

0.6525 = l2
0 ≤ b2

0 ≤ a2
0 ≤ u2

0 = 3.42,

0.85 = l2
1(B1,1) ≤ b2

1(B1,1) ≤ a2
1(B1,1) ≤ u2

1(B1,1) = 3.6,

0.225 = l2
1(B1,2) ≤ b2

1(B1,2) ≤ a2
1(B1,2) ≤ u2

1(B1,2) = 0.95.

Now consider an option with the payoff of ct at times t = 1, 2 and S1 as the underlying asset. Additionally,
assume the strike price of K = 1 at time t = 2. Then the payoffs are c2(B2,1) = 3, c2(B2,2) = c2(B2,3) =

c2(B2,4) = 0.
Consider the cash flow (., 0, c2). We would like to find the highest ask-price at time t = 0 for this cash flow.

Therefore we consider the following maximization problem

u2
0 = max E0

[
f 1
0 c1 + f 2

0 c2

]
= max E0

[
f 1
0

(
c1 + E1

[
f 2
1 c2

])]
g1

0 ≤ E0

[
f 1
0

]
≤ h1

0,

g2
0 ≤ E0

[
f 2
0

]
≤ h2

0,

b2
0 ≤ E0

[
f 1
0 S1 + f 2

0 S2

]
≤ a2

0.

(19)

On the other hand, we know that 
u2

1 = max E1

[
f 2
1 c2

]
g2

1 ≤ E1

[
f 2
1

]
≤ h2

1,

b2
1 ≤ E1

[
f 2
1 S2

]
≤ a2

1.

(20)

Therefore, similar to our previous example, first we find a super-hedging bound for c2 (the random variable
u2

1), at time t = 1. Since u2
1 is a random variable taking value on B1,1 and B1,2, for k = 1, 2 which corresponds

to the two sub-branches of the diagram at time t = 1, we set up a linear programming maximization as

pk :=


u2

1(B1,k) = max
B2,j⊂B1,k

[
cT

2 f 2
1

]
(B1,k)

g2
1(B1,k) ≤ ( f 2

1 )
T

[
1
1

]
≤ h2

1(B1,k),

b2
1(B1,k) ≤ ST

2 f 2
1 ≤ a2

1(B1,k),

(21)

which has the values of u2
1(B1,1) = 2.7 and u2

1(B1,2) = 0.
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Now that we have u2
1 values determined and since c1 = 0, we use the following problem to calculate u2

0u2
0 = max E0

[
f 1
0

(
c1 + u2

1

)]
= max E0

[
f 1
0

(
u2

1

)]
g1

0 ≤ E0

[
f 1
0

]
≤ h1

0,
(22)

which has the maximum value of u2
0(c2) = u2

1(B1,1)h1
0 = 2.7(0.95) = 2.565.

Now if at time t = 0 there is an available cash flow (b0, 0,−c2) with b0 > 2.565 = u2
0(c2), then one can

use the following zero-cost trading strategy to create an arbitrage. In fact the arbitrage strategy is to invest
all of b0 amount into 110 = (−h1

0, 1, 0) at time t = 0 and then invest the revenue received at time t = 1 into
Si1 = (0,−a2

1, S2), therefore at time t = 2 one will have

b0

h1
0

S2

a2
1
>

2.565
0.95

S2

a2
1
= 2.7

(
S2

a2
1

)
=



2.7

(
S2(B2,1)

a2
1(B1,1)

)
= 3

2.7

(
S2(B2,2)

a2
1(B1,1)

)
> 0

2.7

(
S2(B2,3)

a2
1(B1,2)

)
> 0

2.7

(
S2(B2,4)

a2
1(B1,2)

)
> 0

so that an arbitrage is available.
Again, we can find the lowest bid-price l2

0 at time t = 0 for the cash flow (., 0, c2) as

l2
0 = (g1

0)(l
2
1(B1,1)) = (0.9)(0.6375) = 0.57375

and this is the lowest bid price possible under no-arbitrage condition. Now, if at time t = 0 there is a cash flow
(−a0, 0, c2) available where a0 < 0.57375, then one should be able to have an arbitrage. In fact, by constructing
the following zero-cost trading strategy, that is shorting a0 units of 1̃10 at time t = 0 and then shorting

a0

g1
0

units

of S̃i1 = (0, b2
1,−S2) at time t = 1 one would have a negative balance of

a0

g1
0

S2

b2
1
< c2

smaller than c2, thus an arbitrage.

4.3.2. Involving 2-Period Bond

As we noticed above, the arbitrage trading strategy was involved with a bond on the first period
and risky asset on second period. This was not coincidental since the cash flow c2 was a very simplified
case, also derived from the risky asset which itself was priced by the risk-free bond. In fact we had
no need nor had to solve the dual problem. However. in a more general case we need to write the
dual problem and solve it to find the solution and optimal value. Thus, let us consider the following
maximization problem for the following diagram
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S(B1,1)

S(B2,2)

S(B2,1)

that is

p1 :=


u2

1(B1,1) = max [r1(B1,1)c2(B2,1) + r2(B1,1)c2(B2,2)] (B1,1)

g2
1(B1,1) ≤ r1(B1,1) + r2(B1,1) ≤ h2

1(B1,1),
b2

1(B1,1) ≤ r1(B1,1)S2(B2,1) + r2(B1,1)S2(B2,2) ≤ a2
1(B1,1).

(23)

for which the constrains in all one-sided inequalities can be written as

p1 :=



u2
1(B1,1) = max [r1(B1,1)c2(B2,1) + r2(B1,1)c2(B2,2)] (B1,1)

r1(B1,1) + r2(B1,1) ≤ h2
1(B1,1),

−r1(B1,1)− r2(B1,1) ≤ −g2
1(B1,1),

r1(B1,1)S2(B2,1) + r2(B1,1)S2(B2,2) ≤ a2
1(B1,1),

−r1(B1,1)S2(B2,1)− r2(B1,1)S2(B2,2) ≤ −b2
1(B1,1),

r1, r2 ≥ 0.

(24)

and having the objective function and constrains in matrix form we have

p1 :=



u2
1(B1,1) = max

([
c2(B2,1) c2(B2,2)

] [r1(B1,1)

r2(B1,1)

])


1 1
−1 −1

S2(B2,1) S2(B2,2)

−S2(B2,1) −S2(B2,2)


[

r1(B1,1)

r2(B1,1)

]
≤


h2

1(B1,1)

−g2
1(B1,1)

a2
1(B1,1)

−b2
1(B1,1)

 ,

r1, r2 ≥ 0.

(25)

Now we write the dual to this linear programming problem which is

d1 :=



u2
1(B1,1) = min

[h2
1(B1,1) −g2

1(B1,1) a2
1(B1,1) −b2

1(B1,1)
] 

t1

t2

t3

t4




[
1 −1 S2(B2,1) −S2(B2,1)

1 −1 S2(B2,2) −S2(B2,2)

] 
t1

t2

t3

t4

 ≥
[

c2(B2,1)

c2(B2,2)

]
,

t1, t2, t3, t4 ≥ 0.

(26)
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or equivalently

d1 :=



u2
1(B1,1) = min

[h2
1(B1,1) −g2

1(B1,1) a2
1(B1,1) −b2

1(B1,1)
] 

t1

t2

t3

t4




[
−1 1 −S2(B2,1) S2(B2,1)

−1 1 −S2(B2,2) S2(B2,2)

] 
t1

t2

t3

t4

 ≤
[
−c2(B2,1)

−c2(B2,2)

]
,

t1, t2, t3, t4 ≥ 0.

(27)

If we let, as an example, a2
1(B1,1) = 3, b2

1(B1,1) = 2, c2(B2,1) = 3 and c2(B2,2) = 2, then by solving
Equation (27) using linear programming with complementary slackness conditions (we used MATLAB

for our purpose) we have t1 =
5
3

, t3 =
1
3

, t2 = t4 = 0 (which is the solution to the dual problem
d1 and indicates the portfolio strategy one needs to choose in the case of existence of any arbitrage
opportunity) and u2

1(B1,1) = 2.5.
Similarly by solving the dual problem for the other part of the diagram

S(B1,2)

S(B2,4)

S(B2,3)

that is

d1 :=



u2
1(B1,2) = min

[h2
1(B1,2) −g2

1(B1,2) a2
1(B1,2) −b2

1(B1,2)
] 

t1

t2

t3

t4




[
−1 1 −S2(B2,3) S2(B2,3)

−1 1 −S2(B2,4) S2(B2,4)

] 
t1

t2

t3

t4

 ≤
[
−c2(B2,3)

−c2(B2,4)

]
.

t1, t2, t3, t4 ≥ 0.

(28)

and if we let a2
1(B1,2) = 0.7 and b2

1(B1,2) = 0.4 also let c2(B2,3) = 1 and c2(B2,2) = 0.5, then the solution

is t1 =
1
3

, t2 = t4 = 0, t3 =
2
3

and u2
1(B1,2) = 0.7833.

Now for the last part consider the following picture and its corresponding linear programming in
dual form
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S(B0,1)

S(B1,2)

S(B1,1)

with

d1 :=



u2
0(B0,1) = min

[h1
0(B0,1) −g1

0(B0,1) a1
0(B0,1) −b1

0(B0,1)
] 

t1

t2

t3

t4




[
−1 1 −S1(B1,1) S1(B1,1)

−1 1 −S1(B1,2) S1(B1,2)

] 
t1

t2

t3

t4

 ≤
[
−u2

1(B1,1)

−u2
1(B1,2)

]
,

t1, t2, t3, t4 ≥ 0.

(29)

for which when a1
0(B0,1) = 1.6, b1

0(B0,1) = 1.5 (here we simply assumed that c1 = 0), the corresponding

solution becomes t1 =
19
90

, t3 =
103
90

, t2 = t4 = 0 and u2
0(B0,1) = 2.0317. For any bid price offered at

time t = 0 larger than 2.0317, there is an arbitrage and the trading strategy is as following:

19
90

110 +
103
90

S01

1
3

121 +
2
3

S12

5
3

121 +
1
3

S12

buy
19
90

units of 110 and
103
90

units of S01 and at time t = 1 in either case we are able cover the asked

price of c2 at time t = 2. In fact in the case of B1,1 possibility, we buy
5
3

units of 121 and
1
3

units of S12,

and in the case of B1,2 possibility, we buy
1
3

units of 121 and
2
3

units of S12, and in either case c2 will be
covered to deliver and the difference will be an arbitrage.

As we noted in the last diagram, at least
1
3

of the risk-free bond 121 is needed to be bought at time

t = 1. Now we consider a trading strategy which purchases 1
3 of the bond 120 bought at time t = 0.

Therefore the trading strategy can be replaced by
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1
3

120 + t1110 + t21̃10 + t3S01 + t4S̃01

2
3

S12

4
3

121 +
1
3

S12

where t1, t2, t3, t4 are the solutions to the new linear programming problem below

min

[h1
0(B0,1) −g1

0(B0,1) a1
0(B0,1) −b1

0(B0,1)
] 

t1

t2

t3

t4




[
−1 1 −S1(B1,1) S1(B1,1)

−1 1 −S1(B1,2) S1(B1,2)

] 
t1

t2

t3

t4

 ≤
[
−ũ2

1(B1,1)

−ũ2
1(B1,2)

]
,

t1, t2, t3, t4 ≥ 0.

(30)

and 
ũ2

1(B1,1) =
4
3

h2
1(B1,1) +

1
3

a2
1(B1,1) =

11
5

ũ2
1(B1,2) =

2
3

a2
1(B1,2) =

7
15

(31)

Solution to the linear programming above is t2 = t4 = 0, t1 =
1
9

, t3 =
73
72

so that the largest ask
price for c2 in this case becomes

1
3

h2
0 +

1
9

(
h1

0

)
+

73
72

a1
0 = 2.02778

and as we see, this upper bound is smaller and much more accurate than the upper bound u2
0 = 2.0317

which we found above without using the 120 bond.
Now consider the cash flow (., c1, c2) and let α to be the portion of 120 = (−h2

0, 0, 1) that we carry
in the trading strategy at time t = 0. We would like to find the highest ask-price at time t = 0 for this
cash flow. Therefore we consider the following maximization problem and unlike the example above,
we try to solve this problem in one step

u2
0 = max E0

[
f 1
0 c1 + f 2

0 c2

]
= max E0

[
f 2
0 α + f 1

0

(
c1 + E1

[
f 2
0 (c2 − α)

])]
g1

0 ≤ E0

[
f 1
0

]
≤ h1

0,

g2
0 ≤ E0

[
f 2
0

]
≤ h2

0,

b2
0 ≤ E0

[
f 1
0 S1 + f 2

0 S2

]
≤ a2

0,

(32)

and by the definition of expectation and letting rij = f i
0(Bi,j)Q(Bi,j) we have

u2
0(α) = max{α [s21 + s22 + s23 + s24] + r11 [c1(B11) + r21c2(B21) + r22c2(B22)]

+r12 [c1(B12) + r23c2(B23) + r24c2(B24)]− α [r11(r21 + r22) + r12(r23 + r24)]}
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where

r11 + r12 ≤ h1
0,

−r11 − r12 ≤ −g1
0,

s21 + s22 + s23 + s24 ≤ h2
0,

−s21 − s22 − s23 − s24 ≤ −g2
0,

r11 [S1(B11) + r21S2(B21) + r22S2(B22)] + r12 [S1(B12) + r23S2(B23) + r24S2(B24)] ≤ a2
0,

−r11 [S1(B11) + r21S2(B21) + r22S2(B22)]− r12 [S1(B12) + r23S2(B23) + r24S2(B24)] ≤ b2
0.

(33)

As we can see, the above linear programming is a ten variable linear programming with one parameter
α and this is only for a binary priced market where at each time there are only two possibilities for the
stock and cash flow price. We are only considering one risky asset.

4.4. Complexity of Multi-Period Model

Consider a 2-period model and let v2 be the number of variables in the linear programming
associated with this model and p2 be the number of parameters associated with 2-period bonds in this
model. We already know that v1 = 2 and p1 = 0. We can see that adding a single 1-period bond into
the model, adds 2 variables and one parameter to the linear programming problem.

On the other hand a 2-period model is equivalent to a composition of a 1-period model followed
by two 1-period models as illustrated in following diagram

1-period

1-period

1-period

Since a 2-period model is the composition of a 1-period followed by two 1-period models,

then

(
v2

p2

)
=

(
v1

p1

)
+ 2

(
v1

p1

)
+ 2-period bond =

(
2
0

)
+2

(
2
0

)
+

(
4
1

)
=

(
10
1

)
which coincides with what

we found before. This is the case for a over simplified case, binary model with a two states at each time.
Now consider a T-period model and let vT be the number of variables in the linear programming

associated with this model and pT be the number of parameters associated with multi-period bonds in
this model. A T-period model is equivalent to a composition of a 1-period model followed by two
(T − 1)-period models as illustrated in following diagram

1-period

(T − 1)-period

(T − 1)-period

For example, a 3-period model is the composition of a 1-period followed by two 2-period models,
so that
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(
v3

p3

)
=

(
v1

p1

)
+ 2

(
v2

p2

)
+ 2-period bond + 3-period bond

=

(
2
0

)
+2

(
10
1

)
+

(
4
1

)
+

(
8
1

)
=

(
34
4

)
Now for a T-period model we have(

vT
pT

)
=

(
v1

p1

)
+ 2

(
vT−1

pT−1

)
+ 2-period bond + 3-period bond +. . . + T-period bond =

(
2
0

)
+2(

vT−1

pT−1

)
+

(
4
1

)
+

(
8
1

)
+ . . . +

(
2T

1

)
=

(
2vT−1 + 2 + 4 + 8 + · · ·+ 2T

2pT−1 + T − 1

)

or(
vT
pT

)
=

(
2vT−1 + 2T+1 − 2

2pT−1 + T − 1

)

As it can be seen, when the periods of the model increases, the number of variables and parameters
increase at an exponential rate. Considering the fact that this calculation was only done for the simplest
case of a model (binary prices and one risky asset) we notice that for a T-period model, the parametrized
linear programming with pT parameters and vT variables make the problem very complicated to solve.

Lemma 1. For a T-period model with vT as the number of variables in the linear programming associated with
the model and pT as the number of parameters associated with multi-period bonds, we have(

v2

p2

)
=

(
2
0

)
and

(
vT
pT

)
=

(
2vT−1 + 2T+1 − 2

2pT−1 + T − 1

)
(34)

As a result of the reason explained above, we suggest solving the problem one step at a time,
which means (similar to the 2-period linear programming problem that we solved) starting form the
end and solving multiple 1-period problems on each step and continuing this process backward until
we reach the initial time on the problem.

4.5. Estimate of Multi-Period Bounds (Breaking into One Periods)

Consider the following portfolio of zero-cost cash flows

(p0, p1, p2) = t1110 + t2120 + t3S10 + t4S20 + t5S21 + t6121

= t1

(
−h1

0, 1, 0
)
+ t2

(
−h2

0, 0, 1
)
+ t3

(
−a1

0, S1, 0
)
+ t4(−a2

0, 0, S2)

+ t5

(
0,−a2

1, 1
)
+ t6

(
0,−h2

1, 1
)

(35)

where
p0 = −t1h1

0 − t2h2
0 − t3a1

0 − t4a2
0

p1 = t1 + t3S1 − t5a2
1 − t6h2

1

p2 = t2 + t4S2 + t5S2 + t6 (36)

also t1, t2, t3, t4 ∈ F0 and t5, t6 ∈ F1. In fact we have the following trading diagram corresponding to
the above portfolio at time t = 0 and t = 1
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t1110 + t2120 + t3S10 + t4S20

t5(B12)S21(B12) + t6(B12)121(B12)

t5(B11)S21(B11) + t6(B11)121(B11)

Since we are assuming to deliver c2 ∈ F2 at t = 2, indeed we have to solve the linear
programing problem 

min(−p0)

such that;
p1 ≥ 0

p2 − c2 ≥ 0
t1, . . . , t6 ≥ 0

(37)

We can define the corresponding Lagrangian as

L(t1, . . . , t6, λ1, λ2) = (−p0)− λ1 p1 − λ2(p2 − c2) (38)

where λ1 ∈ F1 and λ2 ∈ F2 are the random variable Lagrange multipliers. Therefore our minimization
problem can be stated as

inf
t≥0

sup
λ≥0
L(t1, . . . , t6, λ1, λ2) (39)

where
L(t1, . . . , t6, λ1(B11), λ1(B12), λ2(B21), λ2(B22), λ2(B24), λ2(B24)) =

t1h1
0 + t2h2

0 + t3a1
0 + t4a2

0

− λ1(B11)
[
t1 + t3S1(B11)− t5(B11)a2

1(B11)− t6(B11)h2
1(B11)

]
− λ1(B12)

[
t1 + t3S1(B12)− t5(B12)a2

1(B12)− t6(B12)h2
1(B12)

]
− λ2(B21) [t2 + t4S2(B21) + t5(B11)S2(B21) + t6(B11)− c2(B21)]

− λ2(B22) [t2 + t4S2(B22) + t5(B11)S2(B22) + t6(B11)− c2(B22)]

− λ2(B23) [t2 + t4S2(B23) + t5(B12)S2(B23) + t6(B12)− c2(B23)]

− λ2(B24) [t2 + t4S2(B24) + t5(B12)S2(B24) + t6(B12)− c2(B24)]

(40)

Now by Linearity Constraint Qualification the problem is feasible so that by Lagrangian strong
duality we have

inf
t≥0

sup
λ≥0
L(t1, . . . , t6, λ1, λ2) = sup

λ≥0
inf
t≥0
L(t1, . . . , t6, λ1, λ2) (41)
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hence L(t1, . . . , t6, λ1, λ2) can be written as

L(t1, . . . , t6, λ1(B11), λ1(B12), λ2(B21), λ2(B22), λ2(B24), λ2(B24))

= t1

[
h1

0 −
2

∑
j=1

λ1(B1j)

]
+ t2

[
h2

0 −
4

∑
k=1

λ2(B2k)

]

+ t3

[
a1

0 −
2

∑
j=1

λ1(B1j)S1(B1j)

]
+ t4

[
a2

0 −
4

∑
k=1

λ2(B2k)S2(B2k)

]
+ t5(B11)

[
λ1(B11)a2

1(B11)− λ2(B21)S2(B21)− λ2(B22)S2(B22)
]

+ t5(B12)
[
λ1(B12)a2

1(B12)− λ2(B23)S2(B23)− λ2(B24)S2(B24)
]

+ t6(B11)
[
λ1(B11)h2

1(B11)− λ2(B21)− λ2(B22)
]

+ t6(B12)
[
λ1(B12)h2

1(B12)− λ2(B23)− λ2(B24)
]

+
4

∑
k=1

λ2(B2k)c2(B2k)

(42)

We can see that the corresponding maximization problem to the Lagrangian above is

max

(
4

∑
k=1

λ2(B2k)c2(B2k)

)
such that;

λ1(B11) + λ1(B12) ≤ h1
0

λ2(B21) + λ2(B22) + λ2(B23) + λ2(B24) ≤ h2
0

λ1(B11)S1(B11) + λ1(B12)S1(B12) ≤ a1
0

λ2(B21)S2(B21) + λ2(B22)S2(B22) + λ2(B23)S2(B23) + λ2(B24)S2(B24) ≤ a2
0

λ2(B21)

λ1(B11)
S2(B21) +

λ2(B22)

λ1(B11)
S2(B22) ≤ a2

1(B11)

λ2(B23)

λ1(B12)
S2(B23) +

λ2(B24)

λ1(B12)
S2(B24) ≤ a2

1(B12)

λ2(B21)

λ1(B11)
+

λ2(B22)

λ1(B11)
≤ h2

1(B11)

λ2(B23)

λ1(B12)
+

λ2(B24)

λ1(B12)
≤ h2

1(B12)

λ1, λ2 ≥ 0

(43)

Unsurprisingly, we observe that λ1, λ2 are the pricing factors in the expectation form. In fact, as
we defined before, if we let

λ1(B1j) = f 1
0 (B1j) = r1j j = 1, 2

λ2(B1k) = f 2
0 (B1k) = uk k = 1, 2, 3, 4

λ2(B1k) = f 2
1 (B2k) = r2k k = 1, 2, 3, 4

(44)
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then the linear programming in Equation (43) becomes

max (u1c2(B21) + u2c2(B22) + u3c2(B23) + u4c2(B24))

such that;

r11 + r12 ≤ h1
0

u1 + u2 + u3 + u4 ≤ h2
0

r11S1(B11) + r12S1(B12) ≤ a1
0

u1S2(B21) + u2S2(B22) + u3S2(B23) + u4S2(B24) ≤ a2
0

r21S2(B21) + r22S2(B22) ≤ a2
1(B11)

r23S2(B23) + r24S2(B24) ≤ a2
1(B12)

r21 + r22 ≤ h2
1(B11)

r23 + r24 ≤ h2
1(B12)

r11, r12, r21, r22, r23, r24, u1, u2, u3, u4 ≥ 0

(45)

which, as we can see, is the primal maximization problem (the dual of the dual in this case)
corresponding to our initial portfolio. We can also observe that the problem in Equation (45) is
indeed the expectation form of a super-hedging problem as

max E0

[
f 2
0 c2

]
such that;

E0

[
f 1
0

]
≤ h1

0

E0

[
f 2
0

]
≤ h2

0

E0

[
f 1
0 S1

]
≤ a1

0

E0

[
f 2
0 S2

]
≤ a2

0

E1

[
f 2
1 S2

]
≤ a2

1

E1

[
f 2
1

]
≤ h2

1

(46)

Solving the linear programming problem in Equation (45) we have the following solutions

t1 1.3327 t5(B11) 0.1371
t2 0.5256 t5(B12) 0.4847
t3 0.2725 t6(B11) 1.5377
t4 0.0969 t6(B12) 0.6964

with a super-hedging value of
u2

0 = 2.5649

As we notice, there is slightly small decrease on the value of upper bound for the asked price
comparing with the case where we calculated this upper bound one step at a time. This is completely
justified because the minimization above has more constraints since we are using the two-period bond
and asset to formulate our problem. As we stated before, for multi-period cases (that requires us to
solve linear models with multiple variables and parameters with a very small adjustments) we will
find the upper-bound and lower-bound by solving linear programming problems one at a time.
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4.6. The General 2-Period Model

In this section we use the results from the examples in this section to summarize the two different
cases on a 2-period model. First case is when one can use all possibilities of bonds and assets (both
1-period and 2-periods).

Theorem 5. Let T = 2, t = 0, 1, c = (c1, c2) ∈ C an acceptable cash flow and consider the following linear
programing problem 

u2
0(I I) = sup E0

[
f 1
0 c1 + f 2

0 c2

]
subject to

E0

[
f 1
0

]
≤ h1

0, E0

[
f 1
0 (−1)

]
≤ −g1

0,

E0

[
f 2
0

]
≤ h2

0, E0

[
f 2
0 (−1)

]
≤ −g2

0,

E1

[
f 2
1

]
≤ h2

1, E1

[
f 2
1 (−1)

]
≤ −g2

1,

E1

[
f 2
1 Si

2

]
≤ ai

1 , E1

[
f 2
1

(
−Si

2

)]
≤ −bi

1,

E0

[
f 1
0 Si

1 + f 2
0 Si

2

]
≤ ai

0,

E0

[
f 1
0

(
−Si

1

)
+ f 2

0

(
−Si

2

)]
≤ −bi

0.

(47)

Then u2
0(I I) is a super-hedging bound and the solution to dual problem is a portfolio by which one is able

to construct an arbitrage opportunity if the market bid price of c exceeds u2
0(I I).

Proof. In Appendix A.

In this version of the problem one is able to take advantage of the both 2-period bond and
assets, however as we saw before there is some complexity in solving and finding the right strategy
to construct the portfolio, where as the number of assets and their price possibilities increase, the
complexity of finding the right portfolio strategy increases exponentially.

On the other hand, we can find a super-hedge value for a 2-period linear programming problem
by solving two 1-period problems successively, in which case we have the following theorem.

Theorem 6. Let c = (c1, c2) ∈ C be an acceptable cash flow and suppose
u2

1 = sup E1

[
f 2
1 c2

]
subject to

E1

[
f 2
1

]
≤ h2

1, E1

[
f 2
1 (−1)

]
≤ −g2

1,

E1

[
f 2
1 Si

2

]
≤ ai

1, E1

[
f 2
1

(
−Si

2

)]
≤ −bi

1.

(48)

is a super-hedging bound for c2 paid at time t = 1 (the largest ask price for c2 under no-arbitrage assumption).
Now consider the following linear programming problem

u2
0(I) = sup E0

[
f 1
0

(
c1 + u2

1

)]
subject to

E0

[
f 1
0

]
≤ h1

0, E0

[
f 1
0 (−1)

]
≤ −g1

0,

E0

[
f 1
0 Si

1

]
≤ ai

0,

E0

[
f 1
0

(
−Si

1

)]
≤ −bi

0.

(49)

then the solution to linear programming problems in Equations (48) and (49) and their duals gives us a trading
strategy by which we can take advantage if any arbitrage opportunity is available.

Proof. In Appendix A.
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As we saw above, we can find a super-hedging bound by two different approaches and because of
that there is a slight difference in the values of u2

0(I) on these two approaches. The following theorem
summarizes our above discussion on an upper bound for the difference between two values.

Theorem 7. Let u2
0(I I) and u2

0(I) be the two super-hedging values found in Theorem (5) and Theorem (6)
respectively. Then

1. u2
0(I I) ≤ u2

0(I)

2. u2
0(I)− u2

0(I I) ≤
[(

h1
0 max

ω∈Ω
h2

1(ω)− h2
0

)
+

M

∑
i=1

(
ai1

0 maxω∈Ω ai2
1 (ω)− ai2

0

minω∈Ω Si
2(ω)

)]
max
ω∈Ω

c2(ω)

Proof. In Appendix A.

Remark 4. The upper bound we found above, is an over estimate, but it is small relative to the portfolio price.

5. Multi-Period Case Theorem

The discussion in Section 4 showed that deriving the most accurate super- and sub-hedging
bounds is too complex to be practical. An iterative process dealing with one period (bonds and assets)
at a time provides a good compromise between accuracy and tractability.

Theorem 8. Let 0 ≤ t ≤ T − 1 and consider the following linear programming problem

uT
t = sup Et

[
f t+1
t

(
ct+1 + Et+1

[
f t+2
t+1

(
ct+2 + · · ·+ ET−1

[
f T
T−1cT

])])]
subject to

Es

[
f s+1
s

]
≤ hs+1

s , Es

[
f s+1
s (−1)

]
≤ −gs+1

s , s = t, . . . , T − 1

Es

[
f s+1
s Si

s+1

]
≤ ai

s , Es

[
f s+1
s

(
−Si

s+1

)]
≤ −bi

s , i = 1, . . . , M

(50)

Then uT
t is a super-hedging bound and the solution to dual problem is a trading strategy by which one is able to

construct an arbitrage opportunity if the market bid price of c exceeds uT
t .

Proof. In Appendix A.

Remark 5. Even though the value of uT
t we find in the Theorem above may not be the lowest super-hedging

value for the ask price of the cash flow c, it is still a close estimate, as we discussed in Theorem 7 and an upper
bound for the exact super-hedging value ut(c).

6. Conclusions

We used convex duality in a multi-period conic finance (two-price economy) to extend the refined
version of FTAP. This helped us to provide a framework to drive non-arbitrage lower and upper price
bounds and corresponding trading strategies which one can take advantage of when a preferable bid
(ask) price exists. We also analyzed the computation complexity of implementation in two settings:

(a) using only one-period bonds,
(b) involving all available bonds.

and we showed that involving all available bonds makes the problem unrealistically complex.
We provided estimates on the error between the prices for one period and all bonds, which we
saw that it is small. Therefore we recommended method dealing only with one-period bonds in
practice, where the problems becomes pricing one period at a time. Finding a better approximation for
the price bounds and shrinking the non-arbitrage region and lowering the computation complexity
are two problems that one could consider for further exploration.



Risks 2020, 8, 66 26 of 34

Author Contributions: M.V. and Q.J.Z. contributed equally to this research. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proofs

Proof of Theorem 1. (⇒) If there is some arbitrage w0 + (ct)T
t=0 ∈ w0 + C, then, for any r > 0, since C

is a convex cone, w0 + (rct)T
t=0 ∈ w0 + C. When r → +∞, we know that

lim
r→+∞

u(w0 + rct) = +∞

therefore p = +∞.
(⇐) If p = +∞, there exists a sequence cn = (cn

t )
T
t=0 ∈ C for which

lim
n→∞

E

[
T

∑
t=0

u(cn
t + w0)

]
→ +∞

Since u is continuous and increasing, we have ||cn|| → ∞. For 0 ≤ t ≤ T, let bn
t =

cn
t

||cn|| and suppose

bn = (bn
t )

T
t=0 → b = (bt)

T
t=0 ∈ C\{0}, since 1 = ||bn|| → ||b||

then b = (bt)T
t=0 6= 0. By the condition on the domain of utility function u(cn

t + w0), we need to have
cn

t + w0 > 0 or cn
t > −w0. Dividing both sides by ||cn|| we have

bn
t =

cn
t

||cn|| > −
w0

||cn|| → 0

so that bt ≥ 0 for 0 ≤ t ≤ T. This means that b = (bt)T
t=0 is an arbitrage.

Proof of Theorem 3. The sufficient condition of the theorem is clear. For the necessary part, consider
the primal problem above. We know that the initial endowment w̄ ≥ 0, also dom(g) = w̄ + C and
dom( f ) = R2

+ so that w̄ ∈ dom(g) ∩ cont( f ) 6= ∅ and the Constraint Qualification is satisfied, where
cont( f ) is the support of f on which f is continuous. Since Constraint Qualification holds, by applying
the Strong Duality for the primal p and dual problem

d = −max
x∈X ∗

{− f ∗(−x∗)− g∗(x∗)}

we have p = d < ∞. Therefore,

p = −max
z∈X ∗

{− f ∗(−z)− g∗(z)}

= min
z∈X ∗

{ f ∗(−z) + g∗(z)}

= min
z∈X ∗

{
E

[
T

∑
t=0

(−u)∗(−zt)

]
+ 〈z, w0〉+ σC(z)

}

If x̄, z̄ are the solutions to the primal and dual problems, then 0 < z̄ ∈ −∂(−u)(x̄). We need to have
z̄ ∈ Co = {z|〈z, c〉 ≤ 0 for all c ∈ C}. Let Et be the conditional expectation with respect to Ft. Since for
any set O ∈ Ft, χO1ut, χO1̃ut ∈ Z ⊂ C, we have

〈z̄, χO1ut〉 ≤ 0 and 〈z̄, χO1̃ut〉 ≤ 0
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which implies gu
t z̄t ≤ Et [z̄u] ≤ hu

t z̄t or

gu
t ≤ Et

[
T

∑
s=t+1

z̄u

z̄t
1ut

s

]
≤ hu

t (A1)

Using the definition above and by letting f u
t =

z̄u

z̄t
as the pricing factor, Equation (A1) can be

written as

gu
t ≤ Et

[
T

∑
s=t+1

f u
t 1ut

s

]
≤ hu

t (A2)

For any O ∈ Ft, χOSit, χOS̃ut ∈ Z ⊂ C (here χO is the characteristic function on set O), so that

bi
t z̄t ≤ Et

[
T

∑
s=t+1

z̄sSi
s

]
≤ ai

t z̄t, wihch implies

bi
t ≤ Et

[
T

∑
s=t+1

f u
t Si

t

]
≤ ai

t.

Proof of Theorem 4. Let c = (c0, c1) ∈ C and

u0 = sup
f 1
0∈P

{
E
[

f 1
0 c1

]}
= p

subject to
g1

0 ≤ E
[

f 1
0

]
≤ h1

0 and

b1
0 ≤ E

[
f 1
0 Si

1

]
≤ a1

0 , 1 ≤ i ≤ M

Here we will be formulating the dual problem. To that purpose define the Lagrangian as

L( f 1
0 , (Λ, γ)0) =

E
[

f 1
0 c1

]
+

{
M

∑
i=1

λi
0

(
ai

0 − E
[

f 1
0 Si

1

])}

+

{
M

∑
i=1

λ̃i
0

(
E
[

f 1
0 Si

1

]
− bi

0

)}
+
{

γ1
0

(
h1

0 − E
[

f 1
0

])}
+
{

γ̃1
0

(
E
[

f 1
0

]
− g1

0

)}
where

(Λ, γ)0 = (λ1
0, . . . , λM

0 , λ̃1
0, . . . , λ̃M

0 , γ1
0, γ̃1

0) ∈ R2M+2
+ (A3)

and all λi
0, λ̃i

0, γ1
0, γ̃1

0 for i = 1, . . . , M are non-negative constants.
First, it can be seen that

inf
(Λ,γ)0∈R2M

+

L( f 1
0 , (Λ, γ)0) =

{
E
[

f 1
0 c1

]
f 1
0 ∈ P

−∞ otherwise



Risks 2020, 8, 66 28 of 34

Therefore, we can write

sup
f 1
0∈P

{
E
[

f 1
0 c1

]}
= sup

f 1
0∈P

inf
(Λ,γ)0∈R

2M+2
+

L( f 1
0 , (Λ, γ)0)

On the other hand, for non-negative constants

(Λ, γ)0 = (λ1
0, . . . , λM

0 , λ̃1
0, . . . , λ̃M

0 , γ1
0, γ̃1

0) ∈ R2M+2
+

we can recognize

γ1
0110 + γ̃1

0110 +
M

∑
i=1

(
λi

0Si0 + λ̃i
0Si0

)

=
(
−γ1

0h1
0, γ1

0

)
+
(

γ̃1
0g1

0,−γ̃1
0

)
+

M

∑
i=1

[(
−λi

0ai
0, λi

0Si
1

)
+
(

λ̃i
0bi

0,−λ̃i
0Si

1

)]

=

(
−γ1

0h1
0 + γ̃1

0g1
0 +

M

∑
i=1

[
−λi

0ai
0 + λ̃i

0bi
0

]
, γ1

0 − γ̃1
0 +

M

∑
i=1

[
λi

0 − λ̃i
0

]
Si

1

)
(A4)

= (p0((Λ, γ)0), p1((Λ, γ)0))

Now, under no-arbitrage assumption, the primal linear programming problem has a finite value,
hence the Constraint Qualification is satisfied (under no-arbitrage assumption the primal problem has
a finite value, therefore feasible) so that both primal and dual problems has solutions, therefore by
strong duality we have

sup
f 1
0≥0

inf
(Λ,γ)0∈R

2M+2
+

L( f 1
0 , (Λ, γ)0)

= inf
(Λ,γ)0∈R

2M+2
+

sup
f 1
0≥0

L( f 1
0 , (Λ, γ)0)

= inf
(Λ,γ)0∈R

2M+2
+

sup
f 1
0≥0

E
[

f 1
0 c1

]
+

{
M

∑
i=1

λi
0

(
ai

0 − E
[

f 1
0 Si

1

])}

+

{
M

∑
i=1

λ̃i
0

(
E
[

f 1
0 Si

1

]
− bi

0

)}
+
{

γ1
0

(
h1

0 − E
[

f 1
0

])}
+
{

γ̃1
0

(
E
[

f 1
0

]
− g1

0

)}

= inf
(Λ,γ)0∈R

2M+2
+

sup
f 1
0≥0

{
E

[
f 1
0

(
c1 −

[
γ1

0 − γ̃1
0 +

M

∑
i=1

[
λi

0 − λ̃i
0

]
Si

1

])]}

−
(

γ1
0h1

0 − γ̃1
0g1

0 +
M

∑
i=1

[
−λi

0ai
0 + λ̃i

0bi
0

])

= inf
(Λ,γ)0∈R

2M+2
+

sup
f 1
0≥0

{
E
[

f 1
0 (c1 − p1((Λ, γ)0))

]
− p0((Λ, γ)0)

}
If we consider b0 to be the premium (received at time t = 0) for delivering −c1 at time t = 1,

then simply the problem becomes to build a zero cost portfolio (p0, p1) so that the overall transaction,
(b0 + p0, p1 − c1) is an arbitrage. Thus, one should have,

b0 + p0 > 0 and p1(ω)− c1(ω) ≥ 0 for all ω ∈ Ω
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The last equation then, in terms of the dual linear programming problem can be written as

d =


min(−p0((Λ, γ)0)) (Λ, γ)0 ∈ R2M+2

+

s.t.
p1((Λ, γ)0)(ω) ≥ c1(ω) ∀ω ∈ Ω

Under no-arbitrage assumption we know this linear programming problem has a finite value
and a solution exists. Let (Λ̄, γ̄)0 ∈ R2M+2

+ be the solution of this dual problem. Since the feasibility
condition is satisfied, there exists f̄ 1

0 ∈ P (solution to the primal problem) such that

p = L( f̄ 1
0 , (Λ̄, γ̄)0) = d.

Now suppose,

b0 > inf
(Λ,γ)0∈R

2M+2
+

sup
f 1
0≥0

{
E
[

f 1
0 (c1 − p1((Λ, γ)0))

]
− p0((Λ, γ)0)

}

then there are non-negative constants (Λ̄, γ̄)0 ∈ R2M+2
+ and f̄ 1

0 ∈ P by which we can construct a zero
cost trading strategy such that(

b0 + p0((Λ̄, γ̄)0)

f̄ 1
0

)
+ p1((Λ̄, γ̄)0)(ω) > c1(ω) for all ω ∈ Ω.

Proof of Theorem 5. As we saw in Section 4.5 the dual problem to linear programming in Equation (47) is
u2

0(I I) = min(−p0)

p1 − c1 ≥ 0,
p2 − c2 ≥ 0.

(A5)

where

(p0, p1, p2) =
1

∑
t=0

[
M

∑
i=1

(
αi

tS
it + α̃i

tS̃
it
)
+

2

∑
u=t+1

(
βu

t 1ut
s + β̃u

t 1̃ut
s
)]

(A6)

is the zero-cost cash flow (portfolio) as our trading strategy and to be more precise

p0 =
M

∑
i=1

(
−αi

0ai
0 + α̃i

0bi
0

)
+

2

∑
u=1

(
−βu

0hu
0 + β̃u

0 gu
0
)

(A7)

is the cost of building such portfolio to be paid at time t = 0. In addition,

p1 =
M

∑
i=1

(
αi

0 − α̃i
0

)
Si

1 +
(

β1
0 − β̃1

0

)
︸ ︷︷ ︸

the pay-off coming from t=0

+
M

∑
i=1

(
−αi

1ai
1 + α̃i

1bi
1

)
+
(
−β2

1h2
1 + β̃2

1g2
1

)
︸ ︷︷ ︸

adjustment at t=1

(A8)

where as indicated, p1 has two parts, one is the pay-off and the other is the adjustment at time t = 1.
p2 is entirely the pay-off where

p2 =
M

∑
i=1

(
αi

0 − α̃i
0

)
Si

2 +
(

β2
0 − β̃2

0

)
︸ ︷︷ ︸

the pay-off from t=0

+
M

∑
i=1

(
αi

1 − α̃i
1

)
Si

2 +
(

β2
1 − β̃2

1

)
︸ ︷︷ ︸

the pay-off from t=1

(A9)
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A solution to linear programming problem (A5) is a set of non-negative coefficients αi
t, α̃i

t, βu
t , β̃u

t that
determine the trading strategy to super-hedge. Specifically β2

0, β̃2
0 tell us about the number of shares of

2-period bonds 120 and 1̃20 traded at t = 0.

Proof of Theorem 6. The dual problem of Equation (48) is given by{
u2

1 = min(−p1)

p2 − c2 ≥ 0.
(A10)

where

(p1, p2) =
M

∑
i=1

(
αi

1Si1 + α̃i
1S̃i1

)
+
(

β2
1121

1 + β̃2
11̃21

1

)
=

(
M

∑
i=1

(
−αi

1ai
1 + α̃i

1bi
1

)
+
(
−β2

1h2
1 + β̃2

1g2
1

)
,

M

∑
i=1

(
αi

1 − α̃i
1

)
Si

2 +
(

β2
1 − β̃2

1

)) (A11)

and the non-negative F1-measurable random variables αi
1, α̃i

1, β2
1, β̃2

1 determine the trading strategy
form t = 1 to t = 2.

Similarly the dual problem of Equation (49) is{
u2

0(I) = min(−q0)

q1 −
(
c1 + u2

1
)
≥ 0.

(A12)

where

(q0, q1) =
M

∑
i=1

(
αi

0Si0 + α̃i
0S̃i0

)
+
(

β1
0110

0 + β̃1
01̃10

0

)
=

(
M

∑
i=1

(
−αi

0ai
0 + α̃i

0bi
0

)
+
(
−β1

0h1
0 + β̃1

0g1
0

)
,

M

∑
i=1

(
αi

0 − α̃i
0

)
Si

1 +
(

β1
0 − β̃1

0

)) (A13)

is a zero-cost cash flow and the non-negative F0-measurable random variables αi
0, α̃i

0, β1
0, β̃1

0 determine
the trading strategy form t = 0 to t = 1. We notice that

q0 =
M

∑
i=1

(
−αi

0ai
0 + α̃i

0bi
0

)
+
(
−β1

0h1
0 + β̃1

0g1
0

)
(A14)

is the cost of this portfolio paid at t = 0.

Proof of Theorem 7.

1. Let PF (I I) be the set of all constrains for linear programming problem in Equation (5) and
similarly let PF (I) be the set of all constrains for linear programming problem in Equation (6).
We notice that PF (I) ⊂ PF (I I) so that

u2
0(I I) = sup

f u
t ∈PF (I I)

E0

[
f 1
0 c1 + f 2

0 c2

]
≤ sup

f u
t ∈PF (I)

E0

[
f 1
0 c1 + f 2

0 c2

]
= u2

0(I) (A15)

2. We start the argument by looking in a few easier and more concrete cases.

(a) Consider the case where a super-hedging bound of c2 is found by only zero-coupon bonds
(a 2-period bond h2

0 or two 1-period bonds h1
0, h2

1). Then the price difference would be

h1
0 max

ω∈Ω
h2

1(ω)max
ω∈Ω

c2(ω)− h2
0 max

ω∈Ω
c2(ω) =

(
h1

0 max
ω∈Ω

h2
1(ω)− h2

0

)
max
ω∈Ω

c2(ω) (A16)
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(b) If we assume that there is only one asset with two options (a 2-period S2
0 6= 0 or two

1-period S1
0andS2

1) then the difference in the hedging-price values is(
a1

0 max
ω∈Ω

a2
1(ω)− a2

0

)
max
ω∈Ω

(
c2

S2
(ω)

)
≤
(

a1
0 max

ω∈Ω
a2

1(ω)− a2
0

)(
maxω∈Ω c2(ω)

minω∈Ω S2(ω)

)
(A17)

(c) Now if we use both bond and asset then we have an upper bound for the difference as[(
h1

0 max
ω∈Ω

h2
1(ω)− h2

0

)
+

(
a1

0 maxω∈Ω a2
1(ω)− a2

0
minω∈Ω S2(ω)

)]
max
ω∈Ω

c2(ω) (A18)

(d) Therefore for a super-hedging with both bonds and finite number (M) of assets we have

u2
0(I)− u2

0(I I) ≤
[(

h1
0 max

ω∈Ω
h2

1(ω)− h2
0

)
+

M

∑
i=1

(
ai1

0 maxω∈Ω ai2
1 (ω)− ai2

0

minω∈Ω Si
2(ω)

)]
max
ω∈Ω

c2(ω) (A19)

Proof of Theorem 8. As a result of what was discussed in Lemma 1 (the complexity in solving the
dual linear programming problem) we solve and find the trading strategy starting at T − 1 going
backward and one step at a time. So first let



uT
T−1 = sup ET−1

[
f T
T−1cT

]
subject to

ET−1

[
f T
T−1

]
≤ hT

T−1 , ET−1

[
f T
T−1 (−1)

]
≤ −gT

T−1

ET−1

[
f T
T−1Si

T−1

]
≤ ai

T−1 , ET−1

[
f T
T−1

(
−Si

T−1

)]
≤ −bi

T−1 , i = 1, . . . , M

(A20)

We formulate the dual problem by using the Lagrangian. First let

(Λ, γ)T−1 = (λ1
T−1, . . . , λM

T−1, λ̃1
T−1, . . . , λ̃M

T−1, γT
T−1, γ̃T

T−1) ∈ RV
(
R2M+2
+ ,FT−1

)
(A21)

be the Lagrange multiplier of our linear programing problem. So we can write the Lagrangian as

L( f , (Λ, γ)T−1) = ET−1
[

f T
T−1cT

]
+ ∑M

i=1 λi
T−1

(
ai

T−1 − ET−1
[

f T
T−1Si

T−1
])

+

∑M
i=1 λ̃i

T−1
(
ET−1

[
f T
T−1Si

T−1
]
− bi

T−1
)
+ γT

T−1
(
hT

T−1 − ET−1
[

f T
T−1
])

+

γ̃T
T−1

(
ET−1

[
f T
T−1
]
− gT

T−1
) (A22)

Now we can observe that

inf
(Λ,γ)T−1∈RV(R2M+2

+ ,FT−1)
L( f , (Λ, γ)T−1) =

{
ET−1

[
f T
T−1cT

]
f ∈ PD

−∞ otherwise
(A23)

So that, by strong linear programming duality we have

uT−1 = sup f∈PD inf(Λ,γ)T−1∈RV(R2M+2
+ ,FT−1)

L( f , (Λ, γ)T−1)

= inf(Λ,γ)T−1∈RV(R2M+2
+ ,FT−1)

sup f∈PD L( f , (Λ, γ)T−1)
(A24)

On the other hand, the Lagrangian can be rewritten as

L( f , (Λ, γ)T−1) = ET−1

{
f T
T−1

(
cT −

[
∑M

i=1
(
λT

T−1 − λ̃i
T−1
)

Si
T +

(
γT

T−1 − γ̃T
T−1
)])}

−
(

∑M
i=1
(
−λi

T−1ai
T−1 + λ̃i

T−1bi
T−1
)
+
(
−γT

T−1hT
T−1 + γ̃T

T−1gT
T−1
)) (A25)
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Now for (Λ, γ)T−1 ∈ RV
(
R2M+2
+ ,FT−1

)
consider the zero-cost portfolio of cash flow

(
pT−1

(
(Λ, γ)T−1

)
, pT

(
(Λ, γ)T−1

))
(A26)

= γT
T−11T,T−1 + γ̃T

T−11̃T,T−1 +
M

∑
i=1

(
λT

T−1Si,T−1 + λ̃i
T−1S̃i,T−1

)
(A27)

so that

pT−1
(
(Λ, γ)T−1

)
=

M

∑
i=1

(
−λi

T−1ai
T−1 + λ̃i

T−1bi
T−1

)
+
(
−γT

T−1hT
T−1 + γ̃T

T−1gT
T−1

)
(A28)

and

pT
(
(Λ, γ)T−1

)
=

M

∑
i=1

(
λT

T−1 − λ̃i
T−1

)
Si

T +
(

γT
T−1 − γ̃T

T−1

)
(A29)

Since the term pT−1
(
(Λ, γ)T−1

)
is anF measurable random variable and independent of f ∈ PD,

then we see that Equation (A25) can be written as

L( f , (Λ, γ)T−1) = ET−1

{
f T
T−1

(
cT − pT

(
(Λ, γ)T−1

))}
− pT−1

(
(Λ, γ)T−1

)
(A30)

Now let
ω̄ ∈ arg max

{
cT − pT

(
(Λ, γ)T−1

)}
(A31)

Let f T
T−1 := gT

T−1 for all ω ∈ Ω. Then Equation (A24) becomes

uT
T−1 = inf(Λ,γ)T−1∈RV(R2M+2

+ ,FT−1)
{

gT
T−1 supω∈Ω

[
cT(ω)− pT

(
(Λ, γ)T−1

)
(ω)

]
− pT−1

(
(Λ, γ)T−1

)}
(A32)

If (Λ̄, γ̄)T−1 is a solution to the minimization problem in Equation (A32), then it determines the
trading strategy from time T − 1 to time T while uT

T−1 is the highest price for cT (with no-arbitrage)
paid at time T− 1. Therefore we set up a linear programming problem that determines a super-hedging
value of both uT

T−1 and cT−1 paid at time T − 2, as following

uT−1
T−2 = sup ET−2

[
f T
T−1

(
cT−1 + uT

T−1

)]
subject to

ET−2

[
f T−1
T−2

]
≤ hT−1

T−2 , ET−2

[
f T−1
T−2 (−1)

]
≤ −gT−1

T−2

ET−2

[
f T−1
T−2 Si

T−2

]
≤ ai

T−2 , ET−2

[
f T−1
T−2

(
−Si

T−2

)]
≤ −bi

T−2 , i = 1, . . . , M

(A33)

Similar to what we did above on establishing and solving the dual problem, suppose (Λ̄, γ̄)T−2 is
the solution to dual linear programming problem of Equation (A33), then it determines the trading
strategy form time T − 2 to T − 1. Continuing this backward process and one step at a time, we will
have a sequence of pairs, super-hedges and non-negative random variable coefficients(

ut+2
t+1, (Λ̄, γ̄)t+1

)
, · · · ,

(
uT−2

T−3, (Λ̄, γ̄)T−3

)
,
(

uT−1
T−2, (Λ̄, γ̄)T−2

)
,
(

uT
T−1, (Λ̄, γ̄)T−1

)
(A34)

where
ur

r−1 = sup
f∈PD

Er−1

[
f r
r−1

(
cr + ur+1

r

)]
(A35)
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and the first term in Equation (A34) is the super-hedging value and the corresponding trading strategy
coefficients determined at time t + 1. Now we set-up our last linear programming problem where we
find the super-hedging bound for c = (0, · · · , 0, ct+1, ct+2, · · · , cT). Let

uT
t = sup Et

[
f t+1
t

(
ct+1 + ut+2

t+1

)]
subject to

Et

[
f t+1
t

]
≤ ht+1

t , Et

[
f t+1
t (−1)

]
≤ −gt+1

t

Et

[
f t+1
t Si

t

]
≤ ai

t , Et

[
f t+1
t

(
−Si

t

)]
≤ −bi

t , i = 1, . . . , M

(A36)

with the corresponding Lagrangian

L( f , (Λ, γ)t) = Et

{
f t+1
t

(
ct + ut+2

t+1 − pt+1 ((Λ, γ)t)
)}
− pt ((Λ, γ)t) (A37)

so that
uT

t = inf
(Λ,γ)t∈RV(R2M+2

+ ,FT−1)
sup

f∈PD
L( f , (Λ, γ)t) (A38)

= inf
(Λ,γ)t∈RV(R2M+2

+ ,FT−1)

{
gt+1

t sup
ω∈Ω

[
ct+1(ω) + ut+2

t+1(ω)− pt+1 ((Λ, γ)t) (ω)
]
− pt ((Λ, γ)t)

}
(A39)

If (Λ̄, γ̄)t is a solution to the minimization problem in Equation (A39) then, in fact, it determines the
trading strategy from time t to time t + 1 and along with the other non-negative random variable
coefficients (Λ̄, γ̄)r , r = t + 1, · · · , T − 1 we have created a trading strategy corresponding to

(Λ̄, γ̄)t , (Λ̄, γ̄)t+1 , · · · , (Λ̄, γ̄)T−1 (A40)

with the super-hedging bound uT
t by which one can create an arbitrage opportunity if any higher price

in the market is available.
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