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Abstract: This paper examines the impact of the parameters of the distribution of the time at which
a bank’s client defaults on their obligated payments, on the Lundberg adjustment coefficient, the
upper and lower bounds of the ruin probability. We study the corresponding ruin probability on the
assumption of (i) a phase-type distribution for the time at which default occurs and (ii) an embedding
of the stochastic cash flow or the reserves of the bank to the Sparre Andersen model. The exact
analytical expression for the ruin probability is not tractable under these assumptions, so Cramér
Lundberg bounds types are obtained for the ruin probabilities with concomitant explicit equations
for the calculation of the adjustment coefficient. To add some numerical flavour to our results, we
provide some numerical illustrations.

Keywords: stochastic cash flow; Sparre Andersen model; ruin probability; phase-type distribution;
Erlang distribution; Coxian distribution; moment generating function

1. Introduction

Credit risk affects the banking sector and may lead to global economic stagnation (Nkusu 2011).
This was demonstrated convincingly by the 2007 subprime mortgage crisis whereby mortgages to
clients who were likely to default were repackaged by lenders into mortgage-backed securities and
sold to investors in exchange for regular income payments (Longstaff 2010). When the housing bubble
burst, the inevitable default occurred and a domino effect was set in motion (see Mohan 2009). For an
empirical investigation of the strong evidence of this domino effect of the collapse of the financial
markets to the global economy see Longstaff (2010). This crisis led banks to improve their credit risk
control by moving from a rules-based systems to a principles-based system. The latter tends to provide
a better reflection of a financial institution’s true risk situation by employing various risk measures to
reduce the number of potential client defaults.

In the financial literature, there are many models and approaches that have been adopted to
measure risks. Prominent among them are ruin theory models. Originally developed for the insurance
industry, the ruin probability is used to study the stochastic processes that represent the time evolution
of the surplus and serve as the main risk measure to quantify the solvency of the company. After
the global crisis (2007–2008), European Union regulatory board established new principles called the
Basel II (respectively solvency II for insurance sector) accords to strengthen the previous solvency
system (Basel I respectively solvency I) in terms of risk management principles. Under solvency II,
insurance companies are required to fulfill certain capital adequacy rations in order for them to sell any
contracts. Maintenance of the solvency capital requirement (SCR) coverage ratio enables the financial
institution to stay above a certain threshold with a large enough probability. Although internal and
standard models exist to determine this ratio, they are complex and time consuming. An alternative
way to handle this problem is to use the ruin probability to study the capital requirement in numerous
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adverse scenarios without varying the probability of these scenarios as the ruin formula is explicitly
known under some specific assumptions. Thus the ruin probability is considered as an important
type of risk measure. Quaigrain (2013) showed that one can apply this risk measure more broadly in
finance. For example, risk measures can be used to address the adequacy of the assets, as shown in
Cody (1988) where the ruin probability has been used to analyse the cash flow scenarios of reasonable
and plausible deviations from expectation with bounding worst scenarios. Further, it can also be used
to analyze the liquidity requirement for financial futures investments. Kolb et al. (1985), showed that
the ruin probability increases with the length of the hedging horizon and varies with the maturity of
the contract being trade. Finally, by embedding the stochastic cash flow of the customer to the Sparre
Andersen model, Cramér Lundberg bounds for the ruin probability can be derived.

The mathematical fundamentals of ruin theory were originally addressed by Lundberg (1903,
1909). In his papers he established the upper bound of ruin probability through the classical compound
Poisson risk model. Later, Cramér (1926, 1930) extended Lundberg’s work when he derived the
probability of the surplus being negative.

The ruin probability of the insurance cash flow process and its related functionals has been
the subject of several studies, especially within the renewal context. The reader is referred to
Andersen (1957); Gerber (1979); Grandell (1991); Bühlmann (2007) and references therein. In particular
Andersen (1957) established renewal process by extending the compound Poisson model by allowing
the inter-arrival times to have any arbitrary distribution. Dickson (1994) extended Lundberg and
Cramér’s work and derived an upper bound for the ruin probability in the classical compound Poisson
model where the moment generating function of the claim amounts exists. Although an explicit
formula for the ruin probability is hard to obtain in many scenarios it exists under some specific
assumption such as an exponential distribution for the claim amount in the classical renewal process or
an Erlang inter-arrival with Pareto claim distribution (see Burnecki et al. 2005; Ramsay 2003; Wei and
Yang 2004). In the case where explicit formula does not exist, the ruin probability can be approximated
or bounded using Cramér Lundberg types bounds.

Since the exact claim distribution is crucial for the accuracy of the model while using ruin
probability as risk measure, it must be chosen with care so that it can fit the real data. In the literature
many distributions are suggested to model the claim distribution. Examples are exponential, gamma,
Erlang, Weibull, Pareto , to name a few. It is well known that any positive distribution can be
approximated by a phase-type distribution. This type of distribution can be used to model the claim
amount. An introduction to this type of distribution can be found in Buchholz et al. (2014) and
references therein. The originator of the phase-type distribution in stochastic modelling is Neut who
introduced this concept in queue modelling (Neuts 1981). Further to that, Bladt (2005) introduced
phase-type distribution in risk theory and derived some quantities such as the ruin probability where
the claim amount was assumed to follow a phase-type distribution. Asmussen and Rolski (1992)
assumes a phase-type distribution for the claim amount and studied the ruin probability via numerical
computation. Under phase-type claim distribution and Poisson inter-arrival process assumptions,
Asmussen and Bladt (1996) showed that the ruin probability can be seen as the solution of a finite
set of differential equations. Asmussen et al. (2004) considered the problem of finding American put
and Russian option price with the stock price modeled as an exponential Lévy process. They showed
in their paper that explicit expression for the price exists in the dense class of Lévy processes with
phase-type jumps. Moreover, they derived an explicit solution of the price in the phase-type case
via martingale stopping and Wiener–Hopf factorization. Egami and Yamazaki (2014) studied the
scale function of the spectrally negative phase-type Lévy process. Motivated by the fact that the class
of phase-type distributions is dense in the class of all positive-valued distributions, they proposed
phase-type (PH)-fitting approach by using the scale function for the class of spectrally negative Lévy
process. Recently, Yamazaki (2017) showed that one can approximate Gerber–Shiu function in a closed
form by fitting the underlying process by phase-type Lévy processes.
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This paper is built on the work of Quaigrain (2013) to derive a Cramér Lundberg types bounds for
the ruin probability. Its key assumption is that the default loans arrival process follows a phase-type
distribution. This is motivated by the fact that at any time the applicant liquidity status can be
represented by a Markov chain process consisting of a set of states (more liquidity, medium, poor,
etc. . . ). Each state is assumed to have communication and transient properties except for the default
state. The default state is therefore considered as the absorbing state hence modeled via a phase-type
distribution, as we are only interested in the default deals state.

The paper is structured as follows. In Section 2, we discuss some proprieties of the phase-type
distribution. This is followed by Section 3 which outlines the model and its assumptions. The main
results of the paper are found in Section 4. Numerical illustrations are provided regarding the Cramér
Lundberg type bounds for the ruin probability in Section 5. Sections 6 and 7 rounds off the paper with
some discussions and concludes.

2. Preliminaries

A phase-type (PH) distribution is define as the distribution of a hitting time in a finite-state,
time-homogeneous Markov chain. It was introduced by Neuts (1975) as a powerful tools for modeling
and understanding complex problems in stochastic modeling. The parametrization of a phase-type
distribution is set as follows: Let

(
Yt
)

t≥0 be a continuous-time, time-homogeneous Markov chain on
the state space {1, 2, · · · , n, n + 1} for which the set of states {1, 2, · · · , n} is transient and the state
n + 1 is an absorbing state. The initial distribution of

(
Yt
)

t≥0 is given by π = (π1 · · ·πn)T where
πi = P[Y0 = i] for i = 1, · · · , n. The intensity matrix of

(
Yt
)

t≥0 is

Q =

(
Λ q
0 0

)
,

where Λ is an n× n non-singular matrix which satisfies together with q the following equation

Λ1 + q = 0, with 1 = (1 1 · · · 1)T , (1)

and the transition probability matrix is given by

P(t) = exp(Λt), where exp(Λt) =
∞

∑
m=0

(Λt)m

m!
.

The following gives some characteristics and proprieties of a phase-type distribution.

Definition 1. From Bladt (2005), the time until absorption

χ = {t ≥ 0 | Yt = n + 1}

is said to have a phase-type distribution (χ ∼ PH(π, Λ)).

Lemma 1. The cumulative distribution function and the density of χ are given by:

Fχ(t) = 1− πT exp(Λt)1,

fχ(t) = πT exp(Λt)q.
(2)

Proof. See Bladt (2005)
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Using integration and derivation rules, we can compute the moment generating function of a
phase-type distribution. The rules are expressed as follows:∫

exp(Λs)ds = Λ−1 exp(Λs) = exp(Λs)Λ−1,

d
ds

exp(Λs) = Λ exp(Λs) = exp(Λs)Λ.
(3)

Lemma 2. Under the assumption of Definition 1, the moment generating function of χ is given by:

Mχ(s) = πT (−sI −Λ)T q, (4)

where I is the identity matrix.

Proof. The result follows from Equation (3).

3. Model Setting and Assumptions

Our model generalizes the work of Quaigrain (2013) as it presents a general case where the default
loans arrival process follows a phase-type distribution, on the knowledge that any positive distribution
can be approximated by a phase-type distribution.
The bank’s balance process, U(t) generated by all deals that have arrived between 0 and t is given by:

U(t) = u +
Nt

∑
k=1

{(
Lk
Tk

+ Lk × r
)

T
′
k − Lk

}
t ≥ 0, (5)

where

• u is the initial reserve or capital.
•

{
Nt
}

t≥0 is a counting process on [0, + ∞): Nt is the number of deals which occurred by time t.

• Lk represents the size of the loan deal k.
• Dk represents the time at which default deal k happens and Tk is the time to maturity.

• T
′
k = min(Dk, Tk) is the effective time that the client k remains in the system.

• The client amortizes at
Lk
Tk

and pays a risk premium Lk × r per time unit.

The model is linked to Sparre Anderson model in the sense that the inter-arrival times of deals
are assumed to have any arbitrary positive distribution.

Assumption 1. Hereafter we assume the following:

1. There is no collateral on the loan taken by the bank, which means in case of default all future cash flows
between the client and the bank are removed.

2. The time at which default deal happens (Dk)k>0 are independent and identically distributed.

3. Dk follows a phase-type distribution
(

Dk
d≡ D ∼ PH(π, Λ)

)
.

4. Lk and Tk are constant and identical for all clients (Lk ≡ L, and Tk ≡ T).
5. The counting process Nt and the defaults arrival process Dk are independent.

Remark 1. Assumption 1 is made for mathematical manageability as banks may have collateral on the loan or
the loan size may not be the same for all clients. Therefore, some of these assumptions may be violated in the real
world scenario.
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Under Assumption 1, the Equation (5) can be scaled and rewritten as follows:

U(t) = u +
Nt

∑
k=1

(
min(M, D

′
k)− L

)
= u +

Nt

∑
k=1

(
T̃k − L

)
, (6)

where M =

(
L
T
+ L× r

)
× T , D

′
k =

(
L
T
+ L× r

)
× Dk and T̃k = min(M, D

′
k).

Remark 2. Under Assumption 1 and after scaling the balance process we have:

• The total amount received by bank is greater than the loan size
((

L
T
+ L× r

)
× T = L + L× T × r > L

)
.

•
(

D
′

k

)
k>0

are independent and identically distributed and follow a phase-type distribution.

Assumption 2. To avoid the occurrence of ruin with probability 1, we assume that E[T̃] > L.

Lemma 3. Under the scaling assumption, D
′
k

d≡ D
′ ∼ PH(π, Λ̃), where Λ̃ =

(
L
T
+ L× r

)−1

×Λ.

Proof.

Pr(D
′
> x) = Pr

((
L
T
+ L× r

)
× D > x

)
= Pr

[
D >

(
L
T
+ L× r

)−1

× x
]

.

From Lemma 1, we have:
Pr(D

′
> x) = πT exp(Λ̃× x)1, (7)

where Λ̃ =

(
L
T
+ L× r

)−1

×Λ.

Moreover,

f
′
D(x) = −πT d

dx

(
exp(Λ̃x)

)
1

= πT exp(Λ̃x)q̃,
(8)

where Λ̃1 + q̃ = 0.

4. General Results

We investigate in this section the ruin probability of each client since knowing this expression
could help risk manager while analyzing credit application. We first analyze the trivial scenario.
(To avoid the case ruin occurs with probability 1, the expectation of the effective time of the client
being in the system must be finite).

In the following proposition, we derive the expectation of the effective time of the client being in
the system.

Proposition 1. Consider the model given by Equation (6). Assume that D follows a phase type distribution

(D ∼ PH(π, Λ)), then the expectation of T̃k
d≡ T̃ is given by:

E(T̃) = πT
(

exp(Λ̃M)− I
)

Λ̃−11, (9)
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where I is the identity matrix of order n.

Proof. From the expression of T̃, we have

E(T̃) = E[min(M, D
′
)]

= E
[

D
′
1{D′<M}

]
+E

[
M | D

′
> M

]
× Pr(D

′
> M)

=
d
ds

Mcond(s)
∣∣∣∣
s=0

+E
[
M | D

′
> M

]
× Pr(D

′
> M),

where

Mcond(s) = E
[

esD
′
1{D′<M}

]
=

∫ M

0
esxdFD′ (s)

=
∫ M

0
πTesx exp(Λ̃x)q̃dx

= πT
( ∫ M

0
exp

(
(Λ̃ + sI)x

))
q̃dx

= πT
[(

sI + Λ̃
)−1 exp

(
(Λ̃ + sI)x

)
q
]M

0

= πT
[(

sI + Λ̃
)−1
(

exp
(
(Λ̃ + sI)M

)
− I
)]

q̃.

Moreover,

d
ds

Mcond(s) = πT d
ds

{[(
sI + Λ̃

)−1
(

exp
[
(Λ̃ + sI)M

]
− I
)]}

q̃

= πT
{
−
(
sI + Λ̃

)−2
[

exp
[
(Λ̃ + sI)M

]
− I
]
+ M exp

[
(Λ̃ + sI)M

](
sI + Λ̃

)−1
}

q̃,

hence,

E
[

D
′
1{D′<M}

]
= πT

{
− Λ̃−2

[
exp

(
Λ̃M

)
− I
]
+ M

(
exp

(
Λ̃M

))
Λ̃−1

}
q̃

= πT
[(

Λ̃−1 −MI
)

exp
(
Λ̃M

)
− Λ̃−1

]
1.

The result follows since, from Equation (7), we have:

Pr(D
′
> M) = πT exp(Λ̃M)1 and

E
[
M | D

′
> M

]
= M.

As the goal of this study is to derive the applicant’s ruin probability, in the following we give the
equation for the adjustment Lundberg coefficient.
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4.1. Lundberg Adjustment Coefficient

The adjustment coefficient is the number γ appearing in the famous Lundberg upper bound, this
coefficient is defined as the smallest strictly positive solution (if it exists) of the equation

E
[

e−s(Tk−Xk)

]
= 1,

where Tk is the claim inter-occurrence time and Xk represents the claim size : in a compound Poisson

risk process with initial capital u ≥ 0, and surplus process given by U(t) = u +
N(t)

∑
k=1

(
Tk − Xk

)
,

the ruin probability, ψ(u), is bounded by e−γu , when the explicit expression of the ruin probability is
difficult to obtain. By changing the safety loading or the distribution of the individual claims that are
involved in its definition, the value of γ and with it the ruin probability can be adjusted.

Theorem 1. Under the assumption of a phase-type distribution for the time to default, the adjustment coefficient
γ if it exists, for the ruin probability of the model defined in Section 3, is the unique positive root of the equation
given below

πT
{[

(Λ̃− sI)−1
(

I − exp
(
(Λ̃− sI)M

))
Λ̃
]
+ exp

[
(Λ̃− sI)M

]}
1× esL = 1. (10)

Remark 3. γ = 0 is a trivial solution of Equation (10).

Proof. Let Y = L − T̃, then the adjustment coefficient γ is the unique positive solution of of the
equation MY(s) = 1.

MY(s) = ML(s)× L̂T̃(s)

= E
[

e−sT̃
]
×E

[
esL
]

= E
[
E
(

e−s min(D
′
,M)
∣∣D′)]× esL,

since L is constant.
Using integration rules, (Equation (3)), we have

E
[

e−sT̃
]

= E
[
E
(

e−s min(D
′
,M)
∣∣D′)]

= πT
( ∫ M

0
exp

[
(Λ̃− sI)x

]
dx
)

q̃ + πT exp
[
(Λ̃− sI)M

]
1

= πT
[
(Λ̃− sI)−1 exp

(
(Λ̃− sI)x

)]M

0
q̃ + πT exp

[
(Λ̃− sI)M

]
1

= πT
[
(Λ̃− sI)−1

(
exp

(
(Λ̃− sI)M

)
− I
)]

q̃ + πT exp
[
(Λ̃− sI)M

]
1

= πT
[
(Λ̃− sI)−1

(
I − exp

(
(Λ̃− sI)M

))
Λ̃
]

1 + πT exp
[
(Λ̃− sI)M

]
1

= πT
{[

(Λ̃− sI)−1
(

I − exp
(
(Λ̃− sI)M

))
Λ̃
]
+ exp

[
(Λ̃− sI)M

]}
1,

which proves the statement.
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In the following, Erlang distribution is considered as a special case.
Erlang distribution can be seen as a special phase-type distribution where

Λ =



−λ λ 0 . . . . . . 0

0 −λ λ . . .
. . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . λ

0 · · · · · · · · · · · · −λ


, q =



0
...
...
...
0
λ


and π =



1
0
...
...
...
0


. (11)

From Equation (7), if D follows a phase-type distribution with parameters given by Equation (11), then
D
′

also follows a phase-type distribution with parameters given below

Λ̃ =



−λ̃ λ̃ 0 . . . . . . 0

0 −λ̃ λ̃
. . . . . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . λ

0 · · · · · · · · · · · · −λ̃


, q̃ =



0
...
...
...
0
λ̃


and π =



1
0
...
...
...
0


, (12)

where λ̃ = λ

(
L
T
+ L× r

)−1

.

Corollary 1. Assume that D follows Erlang(n) distribution with parameter λ , then the adjustment coefficient
is the unique positive root of the equation given below

{(
λ̃

λ̃ + s

)n

− e−(λ̃+s)M
n

∑
k=1

[(
λ̃

λ̃ + s

)k
(λ̃M)n−k

(n− k)!

]
+ e−(λ̃+s)M

n−1

∑
k=0

[(
λ̃M

)k

k!

]}
esL = 1 (13)

Proof. Before we give the proof, preliminary result in matrix decomposition is needed.

Lemma 4. (Dunford decomposition theorem)
All matrix A ∈ Mn(K) with split characteristic polynomial can be written in the form

A = D + N, (14)

whereMn(K) is the set of square matrices of order n (K = R or C), D is diagonalizable and N is nilpotent.

Proof of the corollary.
Using the proof of Theorem 1, the adjustment coefficient γ is the solution of{

πT
[
(Λ̃− sI)−1

(
exp

(
(Λ̃− sI)M

)
− I
)]

q̃ + πT exp
[
(Λ̃− sI)M

]
1
}

esL = 1.

The matrix
(
Λ̃− sI

)
M is triangular then has a split characteristic polynomials. By Lemma 4 we have(

Λ̃− sI
)

M = D + N,
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where

D =



−(λ̃ + s)M 0 · · · · · · · · · 0

0 −(λ̃ + s)M
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · · · · −(λ̃ + s)M


and N =



0 λ̃M 0 . . . . . . 0
...

. . . λ̃M
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . . . .
. . . λ̃M

0 · · · · · · · · · · · · 0


.

Moreover,

Nk =



0 · · · · · · (λ̃M)k−1 · · · 0

0 · · · · · · . . .
. . .

...
...

. . . . . .
. . . (λ̃M)k−1

... · · · . . . . . . . . .
...

0 · · · . . . . . . . . . 0
0 · · · · · · · · · · · · 0


and Nn =



0 · · · 0 0 · · · 0

0 0 0 . . .
. . .

...
...

. . . . . . . . . 0
...

. . . · · · · · · . . .
...

0
. . . . . . . . . . . .

...
0 · · · · · · · · · · · · 0


,

where at the i-th row for i = 1, · · · , n− 1 only the (k + i)-th (with k + i ≤ n ) column is not null for the
matrix Nk.

Therefore the exponential of
(
Λ̃− sI

)
M is given by

e(Λ̃−sI)M = e−(λ̃+s)M
n−1

∑
k=0

Nk

k!
= e−(λ̃+s)M



1
(

λ̃M
)1

1! . . . . . . · · ·
(

λ̃M
)n−1

(n−1)!

0 1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . (λ̃M)1

1!
0 · · · · · · · · · · · · 1


,

hence

πT exp
[
(Λ̃− sI)M

]
1 = exp

[
− (λ̃ + s)M

] n−1

∑
k=0

(
λ̃M

)k

k!
. (15)

Moreover

(
Λ̃− sI

)−1
=
(
− λ̃− s

)−n



(
− λ̃− s

)n−1
(−λ̃)

(
− λ̃− s

)n−2 . . . . . . · · ·
(
− λ̃

)n−1

0
(
− λ̃− s

)n−1 . . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . (−λ̃)
(
− λ̃− s

)n−2

0 · · · · · · · · · · · ·
(
− λ̃− s

)n−1


,
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therefore

πT(Λ̃− sI
)−1

= −


(
λ̃ + s

)−1

λ̃
(
λ̃ + s

)−2

...
λ̃n−1(λ̃ + s

)−n


T

and

(
e(Λ̃−sI)M − I

)
q̃ =



λ̃ exp
[
− (λ̃ + s)M

] (λ̃M
)n−1

(n− 1)!
...

λ̃ exp
[
− (λ̃ + s)M

] (λ̃M
)1

1!
λ̃

(
exp

[
− (λ̃ + s)M

]
− 1
)


,

furthermore, we have

πT(Λ̃− sI
)−1 ×

(
exp

[
(Λ̃− sI)M

]
− I
)

q̃ =

(
λ̃

λ̃ + s

)n

− e−(λ̃+s)M
n

∑
k=1

[(
λ̃

λ̃ + s

)k
(λ̃M)n−k

(n− k)!

]
. (16)

The result follows by combining (15) & (16).

Corollary 2. If D follows a Coxian distribution, then the adjustment coefficient γ is the unique positive solution
of the equation

{ n

∑
k=1

k

∏
j=1

λ̃j−1

λ̃j + µ̃j + s

[
µ̃k − e−(λ̃k+µ̃k+s)M

(
µ̃k +

n−1

∑
l=k

µ̃l+1 Ml−k+1

(l − k + 1)!

l

∏
j=k

λ̃j

)]
+ e−(λ̃1+µ̃1+s)M

n−1

∑
k=1

Mk

k!

k

∏
l=1

λ̃l

}
esL = 1, (17)

where, λ̃n = 0, λ̃0 = 1, ∑
j
k=i = 0 if i > j and ∏k

l = 1 if l > k.

Proof. From Theorem 1, the adjustment coefficient γ is the solution of{
πT
[
(Λ̃− sI)−1

(
exp

(
(Λ̃− sI)M

)
− I
)]

q̃ + πT exp
[
(Λ̃− sI)M

]
1
}

esL = 1.

The matrix Λ̃ and the initial probability π for a Coxian distribution are given by

Λ̃ =



−(λ̃1 + µ̃1) λ̃1 · · · · · · · · · 0

0 −(λ̃2 + µ̃2) λ̃2 0
. . . 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . λ̃n−1
0 · · · · · · · · · · · · −(λ̃n + µ̃n)


, π =



1
0
...
...
...
0


and q̃ =



µ̃1
µ̃2
...
...
...

µ̃n


, (18)

where λ̃n = 0.
Moreover,

(Λ̃− sI)−1 = (−1)n
n

∏
k=1

(
λ̃k + µ̃k + s

)−1 A,

where,

A =



0 i f i > j

(−1)n−1 ∏
k 6=i

(λ̃k + µ̃k + s) i f i = j

(−1)n−1
j−1

∏
k=i

λ̃k ∏
k/∈[i,j]

(λ̃k + µ̃k + s) i f i < j

.
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As (Λ̃− sI)M can be split into a diagonal and a nilpotent matrices, the exponential of (Λ̃− sI)M is
given by



e−(λ̃1+µ̃1+s)M 0 · · · · · · · · · 0

0 e−(λ̃2+µ̃2+s)M 0 0
. . . 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · · · · e−λ̃n+µ̃n+s)M


×



1 λ̃1 M λ̃1λ̃2 M
2! · · · · · · ∏n−1

k=1 λ̃k M
(n−1)!

0 1 λ̃2 M
. . .

. . . ∏n−1
k=2 λ̃k M
(n−2)!

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . λ̃n−1 M
0 · · · · · · · · · 0 1


,

therefore,

πT exp
[
(Λ̃− sI)M

]
1 = e−(λ̃1+µ̃1+s)M

n−1

∑
k=0

1
k!

k

∏
l=1

λ̃k M. (19)

Moreover, the calculation of B = πT ×
(
λ̃− sI

)−1
(

exp
[
(λ̃− sI)M

]
− I
)
× q̃ gives

B =
n

∑
k=1

µ̃k

k

∏
j=1

λ̃j−1

λ̃j + µ̃j + s
−

n

∑
k=1

e−(λ̃k+µ̃k+s)M
(

µ̃k +
n−1

∑
l=k

µ̃l+1Ml−k+1

(l − k + 1)!

l

∏
j=k

λ̃j

) k

∏
j=1

λ̃j−1

λ̃j + µ̃j + s
, (20)

combining (19) with (20) yields the result.

Remark 4. 1. For hyper-exponential or mixed exponential distribution Λ, q and π are given by

Λ =



−λ 0 . . . . . . . . . 0

0 −λ 0 . . .
. . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 · · · · · · · · · 0 −λ


, q =



λ
...
...
...
...
λ


and π =



α1
...
...
...
...

αn


, (21)

where ∑n
i=1 αi = 1.

2. For hyper-exponential distribution of D, the adjustment coefficient γ is the unique positive solution of the
equation { n

∑
k=1

αk

[
λ̃k

λ̃k

(
1− exp

[
− (λ̃k + s)M

])
+ exp

[
− (λ̃k + s)M

]]}
esL = 1. (22)

Corollary 3. Under our assumption, the adjustment coefficient exists.

Proof. The proof comes from the following Lemma in the book of Rolski et al. (1998).

Lemma 5. Consider Y = L− T̃. The adjustment coefficient γ exists if one can find s∞ ∈ R∪ {∞} such that
ML(s) < ∞ for s < s∞ and lims↑s∞ ML(s) = ∞.

The result of Corollary 3 follows from Lemma 5 as L is constant.
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4.2. Cramér Lundberg Types Bounds for the Ruin Probability

It is generally difficult to determine the exact expression of the ruin formula, therefore, a lower
and upper bounds of the ruin probability are requested. In this subsection, Cramér Lundberg type
bounds for the ruin probability are derived. The bounds understudy are the one given by Rolski et al.
(1998, Theorem 6.5.4, Chapter 6; pages 255–56).

Theorem 2. Consider the model given by Equation (5). Assume further that Assumption 2 holds, then the ruin
probability is bounded as follows:

b−e−γu ≤ ψ(u) ≤ b+e−γu, (23)

where γ is the adjustment coefficient, u is the initial capital and

b− = inf
x∈[0, L)

eγx(1− πT exp
[
Λ̃(L− x)

]
1
)

πT
{(

γI − Λ̃
)−1
[

exp(Lγ)I − exp(γx) exp
[
Λ̃(L− x)

]]}
q̃

,

b+ = sup
x∈[0, L)

eγx(1− πT exp
[
Λ̃(L− x)

]
1
)

πT
{(

γI − Λ̃
)−1
[

exp(Lγ)I − exp(γx) exp
[
Λ̃(L− x)

]]}
q̃

.

(24)

Proof. From Theorem 6.5.4 (of Rolski et al. 1998), the lower and upper bounds of the ruin probability
are given by

b− = inf
x∈[0, x′ )

eγxFY(x)∫ +∞
x eγydFY(y)

,

b+ = sup
x∈[0, x′ )

eγxFY(x)∫ +∞
x eγydFY(y)

,

where x
′
= sup

y

{
FY(y) < 1

}
.

Distribution of Y

Pr[Y < y] = Pr[L−min(D
′
, M) < y]

= Pr[min(D
′
, M) > L− y]

=


1 i f L− y < 0

Pr[D
′
> L− y] i f L− y < M

0 i f L− y > M

=


1 i f L− y < 0

πT exp
[
Λ̃(L− y)

]
1 i f L− y < M

0 i f L− y > M

,

hence,

FY(y) =


1 i f L− y < 0

πT exp
[
Λ̃(L− y)

]
1 i f L− y < M

0 i f L− y > M

,

FY(y) =


0 i f L− y < 0

1− πT exp
[
Λ̃(L− y)

]
1 i f L− y < M

1 i f L− y > M

.
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Moreover, dFY(y) = πT exp
[
Λ̃(L− y)

]
q̃ provide that L− y < M.

Furthermore,∫ +∞

x
eγydFY(y) =

∫ L

x
πT exp(γy) exp

[
Λ̃(L− y)

]
q̃dy

= πT exp
(
Λ̃L
){ ∫ L

x
exp

[
y(γI − Λ̃)

]
dy
}

q̃

= πT exp
(
Λ̃L
)[(

γI − Λ̃
)−1 exp

[
y(γI − Λ̃)

]]L

x
q̃

= πT exp
(
Λ̃L
)[(

γI − Λ̃
)−1
(

exp
[
L(γI − Λ̃)

]
− exp

[
x(γI − Λ̃)

])]
q̃

= πT
[(

γI − Λ̃
)−1
(

exp(Lγ)I − exp(γx) exp
[
Λ̃(L− x)

])]
q̃. (25)

Moreover

eγxFY(x) = eγx
(

1− πT exp
[
Λ̃(L− x)

]
1
)

. (26)

The result follows by combining (25) and (26).

Corollary 4. Consider the model defined in Equation (5) and assume that Assumption 2 holds then, b− and b+
exist.

Proof. The proof is straightforward, as the inf and sup of a continuous function in a bounded interval
exist.

Corollary 5. Consider the model defined in Equation (5) with Erlang (n) distribution of parameter λ for the
time to default D. Assume that Assumption 2 holds then, b− and b+ can be expressed as follows

b− = inf
x∈[0, L)

exp(γx)
(

1− exp
(
− λ̃(L− x)

) n−1

∑
k=1

(
λ̃(L− x)

)k

k!

)
(

λ̃

λ̃ + γ

)n

exp(Lγ)− exp
[
− λ̃L + (λ̃ + γ)x

] n

∑
k=1

(
λ̃

λ̃ + γ

)k (λ̃(L− x)
)n−k

(n− k)!

,

b+ = sup
x∈[0, L)

exp(γx)
(

1− exp
(
− λ̃(L− x)

) n−1

∑
k=1

(
λ̃(L− x)

)k

k!

)
(

λ̃

λ̃ + γ

)n

exp(Lγ)− exp
[
− λ̃L + (λ̃ + γ)x

] n

∑
k=1

(
λ̃

λ̃ + γ

)k (λ̃(L− x)
)n−k

(n− k)!

.

(27)

Proof. For Erlang(n) distribution, Λ̃(L− x) is given by

Λ̃(L− x) =



−λ̃(L− x) λ̃(L− x) 0 0 . . . 0
0 −λ̃(L− x) λ̃(L− x) 0 · · · 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . λ̃(L− x)
0 · · · · · · · · · · · · λ̃(L− x)


.
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By Lemma 4, Λ̃(L− x) can be decomposed as follows

Λ̃(L− x) = D + N,

where

D =



−λ̃(L− x) 0 0 0 . . . 0
0 −λ̃(L− x) 0 0 · · · 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · · · · · · · · · · λ̃(L− x)


and

N =



0 λ̃(L− x) 0 0 . . . 0
0 0 λ̃(L− x) 0 · · · 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . λ̃(L− x)
0 · · · · · · · · · · · · 0


.

Furthermore, N is nilpotent with order n and Nk is given by

Nk =



0 · · ·
(
λ̃(L− x)

)k 0 . . . 0

0
. . . . . .

(
λ̃(L− x)

)k . . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . . . .

(
λ̃(L− x)

)k

...
. . . . . . . . . . . . 0

0 · · · · · · · · · · · · 0


,

where at the i-th row for i = 1, · · · , n− 1 only the (k + i)-th (with k + i ≤ n ) column is not null for the
matrix Nk.
Hence, the exponential of Λ̃(L− x) is given by

exp[Λ̃(L− x)] = exp[λ̃(L− x)]



1
(

λ̃(L−x)
)1

1! · · · · · · . . .
(

λ̃(L−x)
)n−1

(n−1)!

0 1
(

λ̃(L−x)
)1

1!
. . . . . .

(
λ̃(L−x)

)n−2

(n−2)!
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
(

λ̃(L−x)
)1

1!
0 · · · · · · · · · · · · 1


,

therefore,

1− πT exp
[
Λ̃(L− x)

]
1 = 1− exp

[
λ̃(L− x)

] n−1

∑
k=0

(
λ̃(L− x)

)k

k!
. (28)
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Moreover,

(
γI − Λ̃

)−1
=

(
γ + λ̃

)−n



(
γ + λ̃

)n−1
λ̃
(
γ + λ̃

)n−2 . . . . . . · · · λ̃n−1

0
(
γ + λ̃

)n−1 . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . . . . . λ̃

(
γ + λ̃

)n−2

0 · · · · · · · · · 0
(
γ + λ̃

)n−1


,

hence,

πT(γI − Λ̃
)−1

=



(
γ + λ̃

)−1

λ̃
(
γ + λ̃

)−2

...

...
λ̃n−1(γ + λ̃

)−n



T

, (29)

and,

(
eLγ I − eγx exp[Λ̃(L− x)]

)
q̃ =



−λ̃

(
λ̃(L−x)

)n−1

(n−1)! exp
[
− λ̃L + (γ + λ̃)x

]
−λ̃

(
λ̃(L−x)

)n−2

(n−2)! exp
[
− λ̃L + (γ + λ̃)x

]
...
...

λ̃

(
exp(Lγ)− exp

[
− λ̃L + (γ + λ̃)x

])


, (30)

hence multiplying Equation (29) by (30) gives

(
λ̃

λ̃ + γ

)n

exp(Lγ)− exp
[
− λ̃L + (λ̃ + γ)x

] n

∑
k=1

(
λ̃

λ̃ + γ

)k (λ̃(L− x)
)n−k

(n− k)!
. (31)

The result follows by combining (28) with (31).

Corollary 6. Consider the model defined in Equation (5) with a Coxian distribution defined by (17) for the time
to default D. Assume that Assumption 2 holds then, b− and b+ can be expressed as follows

b− = inf
x∈[0, L)

eγx
(

1− exp
[
− (λ̃1 + µ̃1)(L− x)

] n−1

∑
k=0

(
L− x

)k

k!

k

∏
l=1

λ̃k

)
n

∑
k=1

k

∏
l=1

λ̃l−1

γ + λ̃l + µ̃l

{
µ̃keγL − eγx−(λ̃k+µ̃k)(L−x)

(
µ̃k +

n−1

∑
l=k

µ̃l+1
(

L− x
)l−k+1

(l − k + 1)

l

∏
j=k

λ̃j

)} ,

b+ = sup
x∈[0, L)

eγx
(

1− exp
[
− (λ̃1 + µ̃1)(L− x)

] n−1

∑
k=0

(
L− x

)k

k!

k

∏
l=1

λ̃k

)
n

∑
k=1

k

∏
l=1

λ̃l−1

γ + λ̃l + µ̃l

{
µ̃keγL − eγx−(λ̃k+µ̃k)(L−x)

(
µ̃k +

n−1

∑
l=k

µ̃l+1
(

L− x
)l−k+1

(l − k + 1)

l

∏
j=k

λ̃j

)} .

(32)
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Proof. Using the same technique as in Corollary 2, we have

(γI − Λ̃)−1 =
n

∏
k=1

(
λ̃k + µ̃k + s

)−1 A,

where,

A =



0 i f i > j

∏
k 6=i

(γ + λ̃k + µ̃k) i f i = j

j−1

∏
k=i

λ̃k ∏
k/∈[i,j]

(γ + λ̃k + µ̃k) i f i < j

.

As Λ̃(L− x) can be split into a diagonal (D) and a nilpotent (N) matrices, the exponential of Λ̃(L− x)
is given by the product of exp(D) and exp(N) where

exp(D) =



e−(λ̃1+µ̃1)(L−x) 0 · · · · · · · · · 0

0 e−(λ̃2+µ̃2)(L−x) 0 0
. . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 · · · · · · · · · 0 e−(λ̃n+µ̃n)(L−x)


and,

exp(N) =



1 λ̃1(L− x) λ̃1λ̃2(L−x)
2! · · · · · · ∏n−1

k=1 λ̃k(L−x)
(n−1)!

0 1 λ̃2(L− x)
. . . . . . ∏n−1

k=2 λ̃k(L−x)
(n−2)!

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . λ̃n−1(L− x)

0 · · · · · · · · · 0 1


,

therefore,

πTeΛ̃(L−x)1 = e−(λ̃1+µ̃1)(L−x)
n−1

∑
k=0

(
L− x

)k

k!

k

∏
l=1

λ̃k. (33)

Moreover, computing B =

(
eLγ I − eγx exp[Λ̃(L− x)]

)
q̃ yields,

B = eγL
n

∑
k=1

µ̃k

k

∏
l=1

λ̃l−1

γ + λ̃l + µ̃l
−

n

∑
k=1

eγx−(λ̃k+µ̃k)(L−x)
(

µ̃k +
n−1

∑
l=k

µ̃l+1
(

L− x
)l−k+1

(l − k + 1)

l

∏
j=k

λ̃j

) k

∏
l=1

λ̃l−1

γ + λ̃l + µ̃l
. (34)

The result follows by combining (33) and (34).
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Remark 5. Consider the model defined in Equation (5) with hyper-exponential distribution for the time to
default D. Assume that Assumption 2 holds then, b− and b+ are given by

b− = inf
x∈[0, L)

eγx
(

1−
n

∑
k=1

αk exp
[
− λ̃k(L− x)

])
n

∑
k=1

λ̃kαk

γ + λ̃k

[
exp

(
γL)− exp(γx− λ̃k(L− x)

)] ,

b+ = sup
x∈[0, L)

eγx
(

1−
n

∑
k=1

αk exp
[
− λ̃k(L− x)

])
n

∑
k=1

λ̃kαk

γ + λ̃k

[
exp(γL)− exp

(
γx− λ̃k(L− x)

)] .

(35)

5. Numerical Illustrations

The exponential distribution is used in finance to model the probability of the next default for a
portfolio of financial assets. Its memoryless property permits explicit solution of conditional probability
and tractable results. Phase-type distribution extends these frameworks, leading to a very flexible class
of distributions that can describe more complex models in stochastic modeling. It is computationally
tractable due to the underlying Markov structure which simplifies the analysis and allows for a
probabilistic interpretation. Phase-type distributions in continuous times are dense in the class of all
positive-valued distribution, which means that they can be approximated by any positive distribution,
making them extremely useful as real-word modeling tools.

In this section, numerical illustrations (simulations) are provided to support the adjustment
coefficient, the lower and upper bounds of the ruin probability formulas under specific phase-type
distributions for the default arrival process. Matlab software is used and graphical solution as well as
explicit values (Tables 1–4) are provided.

Figure 1 and Table 1 show the values of the adjustment coefficient for Coxian and hyper-exponential
distributions where T = 1.2, L = 1600, r = 0.01 and n = 8, λ for hyper-exponential (respectively Coxian),
the second parameter µ for Coxian distribution and the initial distribution of hyper-exponential are:

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8


=



0.00000002
0.000000022
0.000000015
0.00000003

0.000005
0.0000008
0.00000065
0.00000045


,



λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8


=



0.000002
0.0000022
0.0000015
0.000003
0.0005

0.00008
0.000065
0.000045


,



µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8


=



0.02
0.022
0.015
0.03
0.05
0.012
0.025
0.075


, π =



0.02
0.03
0.25
0.2
0.3
0.1

0.04
0.06
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Figure 1. Graphical solution for the adjustment coefficient.

Table 1. Adjustment for hyper-exponential and Coxian distribution.

Distribution Mix-Exponential Coxian

γ 0.0087 0.0085

Table 1 shows that the adjustment coefficient is much higher for hyper-exponential than Coxian
distribution with the above assumptions regarding their parameters.

For Erlang distribution, increase the interest rate leads to the increase of adjustment coefficient
while the inverse is observed for the time to maturity and the loan size.

Table 2. Adjustment for Erlang, distribution, where L = 2500, T = 3 and λ = 0.5.

Distribution Erlang with r = 0.01 Erlang with r = 0.02 Erlang with r = 0.03

γ 0.0085 0.0089 0.0091

Table 3. Adjustment for Erlang, distribution, where L = 2500, r = 0.02 and λ = 0.5.

Distribution Erlang with T = 2.5 Erlang with T = 2.75 Erlang with T = 3

γ 0.0093 0.0089 0.0085

Table 4. Adjustment for Erlang, distribution, where T = 3, r = 0.02 and λ = 0.5.

Distribution Erlang with L = 2500 Erlang with L = 3000 Erlang with L = 3500

γ 0.0089 0.0074 0.0063

For the corresponding adjustment coefficient derived from Erlang distribution for the time to
default, the lower and upper constant bounds for the ruin probability are given in the following table.
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Table 5 shows that the increase of the adjustment coefficient (γ) leads to the increase of the upper
constant bound for the ruin probability.

Table 5. The lower and upper bounds constant for the ruin probability.

Adjustment Coefficient (γ) Lower Bound Constant b− Upper Bound Constant b+

0.0063 0.0002 0.36309
0.0074 0.0002 0.6039
0.0085 0.0003 0.9140
0.0089 0.0002 0.9142
0.0091 0.0001 0.9235
0.0093 0.0001 0.9565

6. Discussion

Under the Erlang distribution assumption for the default arrival process with parameter λ = 0.5,
and where L = 2500, T = 3, numerical simulations (Table 2 and Figure 2) show that the increase
of the risk premium rate leads to the increase of the adjustment coefficient which in turn decreases
the ruin probability. Conversely, when λ = 0.5, the increase of the loan size or the time to maturity
leads to the decrease of the adjustment coefficient which increases the ruin probability (Tables 3 and
4). These results suggest that for risky clients, one may use a higher risk premium rate to reduce
the risk of default. Table 1 shows that the choice of the distribution of the default arrival process
influences the adjustment coefficient since the main parameter of the Coxian distribution is 100 times
the parameter of the hyper-exponential (these coefficients are arbitrary chosen) distribution and the
adjustment coefficient changes to 0.0087. This proves that the exact distribution of the default arrival
process is crucial for the accuracy of the bounds.
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Figure 2. Graphical solution for the adjustment coefficient.
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7. Conclusions

In this paper we investigate the ruin probability in the banking sector by embedding the surplus
process within the Sparre Andersen model. A general expression for the adjustment coefficient as well
as the lower and upper bounds of the ruin probability are derived when the loan size is constant and
the time to default follows a phase-type distribution. Special case of phase-type distributions (Erlang,
Coxian and hyper-exponential) have also been investigated. Numerical results in Tables 3 and 4 show
on the one hand that the increase of the time to maturity or the loan seize leads to the decrease of
the coefficient and Table 2 shows the inverse impact for the interest rate. On the other hand, Table 5
shows that the increase of the adjustment coefficient implies the increase of the upper constant bound
for the ruin probability. In theory, the results of this paper can be applied to a bank. Unfortunately,
due to variety of reasons, acquiring the appropriate data is a challenge within the African banking
environment.

Further research still remains to be done on this subject, as: (i) on the Gerber–Shiu function which
depends not only on the ruin time but also the value immediately before and after the ruin, (ii) one
may consider the regime switching model to account for the risk level of the client; as a riskier client
would likely pay a higher premium than a normal client. A typical model that can account for this
scenario could be:

U(t) = u +
Nt

∑
k=1

{(
Lk
Tk

+ Lk × rεi

)
T
′
k − Lk

}
t ≥ 0,

where

εi =

{
1 with probability p for risky client

0 with probability 1− p for normal client,

and rε1 is the risk rate applied for the risky client and rε0 is risk rate applied for normal client.
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