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1. Introduction

Evaluating capital requirements in a proper way is of primary importance to construct an efficient
risk management system in life insurance business. In Europe, the Solvency II directive prescribes
that insurers must hold eligible own funds at least equal to their Solvency Capital Requirements (SCR)
defined as the value at risk (VaR) of the basic own funds with a confidence level of 99.5% over a
time horizon of one year. SCR may be computed according to the standard formula proposed by the
regulator or according to a partial or full internal model developed by the insurer to better take into
account specific aspects of the firm risk profile.

Evaluating VaR, defined in its most general form as the loss level that will not be exceeded
with a certain confidence level during a specified period of time, is complicated by the fact that it
must be computed at the risk horizon, implying that, if one tries to determine VaR according to a
straightforward application of the Monte Carlo method, a nested simulation problem arises which
is extremely time consuming. Instead of resorting to nested simulations, a possible alternative relies
upon the least-squares Monte Carlo method (LSMC). LSMC was introduced in finance as a regression
method to estimate optimal stopping times in American option pricing problems. The first contribution
in this direction is due to Tilley (1993), and then generalized and extended in several ways by many
authors, e.g., Carriere (1996) and Longstaff and Schwartz (2001), just to name a few.

In a life insurance context, LSMC was firstly applied by Andreatta and Corradin (2003) to evaluate
the option to surrender in a portfolio of guaranteed participating policies. Since then, this technique
has been applied extensively to evaluate complex riders embedded in life insurance contracts. We may
mention, among others, the contributions of Bacinello et al. (2009) and Bacinello et al. (2010).

The idea of applying LSMC to determine capital requirements of insurance companies was
proposed by Cathcart and Morrison (2009) and Bauer et al. (2010). Other contributions aiming at
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establishing the convergence of LSMC estimates together with a suitable choice of basis functions are
those of Benedetti (2017) and Bauer and Ha (2013). The papers of Floryszczack et al. (2016) and Krah et al.
(2018) shed light on practical implementation of LSMC to compute SCR.

In an evaluation framework described by one state variable evolving according to a geometric
Brownian motion, Feng et al. (2016) conducted extensive numerical experiments to test the performance
of nested simulations and LSMC techniques. To the best of the authors’ knowledge, no previous
research has been conducted in a multidimensional setting to assess the efficiency of LSMC to determine
capital requirements in a life insurance context. The present paper aims at filling this gap. For
illustrative purposes, we restrict our attention to the stylized case where an insurer sells just one
kind of policy: an equity-linked with a maturity guarantee. Moreover, we work in an extended
Black–Scholes framework where two risk factors, the rate of return of a reference portfolio made up
of equities of the same kind and the short interest rate, evolve according to a Gaussian model. This
choice allows us to work in a context where a closed-form formula is readily available for the policy
value and, as a consequence, a very accurate approximation of the insurer’s loss distribution at the risk
horizon and a solid benchmark of the capital requirement can be obtained.

In the evaluation framework just depicted, LSMC can be applied by generating at first a certain
number of outer simulations of the risk factors at the risk horizon. Then, a rough estimate of the
insurer’s liabilities corresponding to each outer scenario is obtained by means of a very limited
number of inner simulations along the remaining time horizon. Finally, by performing a least-squares
regression an estimate of the insurer’s loss function is obtained and an empirical loss distribution is
obtained by evaluating the estimated loss function in correspondence of the risk factors previously
simulated at the risk horizon.

To test the accuracy of capital requirement estimates generated by LSMC, we conducted extensive
numerical experiments by considering several combinations of the number of simulation runs
combined with the number and the type of basis functions used in the regression function. By
analyzing numerical results, it seems that, when policies with long duration are considered, the
variability of the estimates obtained is non-negligible. The remainder of the paper is organized as
follows. In Section 2 we illustrate the evaluation framework in which LSMC is applied to determine
SCR. In Section 3, we illustrate the results of numerical experiments conducted to asses the efficiency
of the model. In Section 4, we draw conclusions.

2. The Evaluation Framework

Preliminarily, for ease of exposition and without loss of generality, we declare that, since SCR
in Solvency II is based on VaR, from now on we consider VaR and SCR as synonyms. To test the
efficiency of LSMC to compute capital requirements in life insurance, we consider a simplified setting
in which there is an homogeneous cohort of insured persons who buy at time t = 0 a single premium
equity-linked policy with a maturity guarantee. We do not consider mortality, hence the policy is
treated as a pure financial contract.

An amount F0, deducted from the single premium, is invested in a reference portfolio made up of
equities of the same kind. At the maturity T, the insurer pays off the greater between the value of the
reference portfolio and a minimum guarantee. We consider two different risk factors, the reference
portfolio value and the short interest rate. Solvency II prescribes that SCR must be evaluated at the risk
horizon, τ, set equal to one year and a physical probability measure has to be used between the current
date and the risk horizon while a risk-neutral market consistent probability measure has to be taken
into account during the time interval from the risk horizon onward. We consider a Gaussian evaluation
framework with a finite time horizon T > 0, a probability space (Ω,F ,P), and a right-continuous
filtration IF = {Ft, 0 ≤ t ≤ T}We consider a Gaussian evaluation framework where the reference
portfolio value dynamics is described by

dF(t) = µF(t)dt + σFF(t)dZF(t), 0 ≤ t ≤ T, F(0) = F0,
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where µ and σF are positive constants representing the drift and the volatility of the reference fund rate
of return, and ZF(t) is a standard Brownian motion under the real-world probability measure. The
short rate dynamics is described by an Ornstein–Uhlenbeck process

dr(t) = k(θ − r(t))dt + σrdZr(t), 0 ≤ t ≤ T r(0) = r0,

where k, θ, and σr are positive constants representing the speed of mean reversion, the long-term
interest rate, and the interest rate volatility, respectively, while Zr(t) is a standard Brownian motion
under the real-world probability measure with correlation ρ with ZF(t). We assume a complete market
free of arbitrages that implies the existence of a unique risk-neutral probability measure under which
the discounted price processes of all traded securities are martingales. The dynamics of the short
interest rate is then described by the following stochastic differential equation

dr(t) = k(θ − r(t))dt + σrdZ̃r(t), 0 ≤ t ≤ T, r(0) = r0

where θ = θ − λσr/k, (λ is the market price of the interest rate risk) and Z̃r(t) is a standard Brownian
motion under the risk-neutral probability measure. Consequently, the dynamics of the reference fund
value is

dF(t) = r(t)F(t)dt + σFF(t)dZ̃F(t), 0 ≤ t ≤ T, F(0) = F0

where Z̃F(t) is a standard Brownian motion under the risk-neutral probability measure with correlation
ρ with Z̃r(t).

The policy payoff at maturity is represented by the maximum between the reference fund value
F(T) and the maturity guarantee G(T), and can be decomposed as the face value of a zero coupon
bond G(T) plus the payoff of a European call option written on the reference fund with strike price
G(T) and maturity T. As a consequence, the time t-value of the policy can be obtained as follows,

V(rt, Ft) = EQ[e−
∫ T

t r(u)du(G(T) + max(F(T)− G(T), 0))|Ft] =

= G(T)P(t, T) + C(T − t, Ft, G(T)), (1)

where P(t, T) is the time t-value of a pure discount bond with maturity T and C(T − t, Ft, G(T)) is
the value at time t of the European call above defined. The Gaussian evaluation setting allows us to
obtain a closed-form formula for the policy value which is very useful to obtain a highly accurate
estimate of SCR. In fact, in the extended Black–Scholes evaluation framework depicted above, we have
P(t, T) = exp( 1

2 Σ22 − B(T − t)) with

Σ22 =
σ2

r
k2

(
(T − t)− 3 + e−k(T−t)(e−k(T−t) − 4)

2k

)
,

B(T − t) = −1
k

[(
rt −

kθ − σrλ

k

)
(e−k(T−t) − 1)− (kθ − σrλ)(T − t)

]
.

Moreover, the value of the European call option written on the reference fund with strike G(T) is
equal to

C(T − t, Ft, G(T)) = FtΦ(d1)− G(T)P(t, T)Φ(d2),

where d1 = (Σ11 + Σ12 − H(T − t))/
√

D, H(T − t) = Σ11/2− B(T − t) + log(G(T)/Ft), D = Σ11 +

2Σ12 + Σ22, Σ11 = σF(T − t), and

Σ12 =
σFσrρ

k

(
e−k(T−t) − 1

k
+ (T − t)

)
.
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Finally, d2 = d1 −
√

D, and Φ(·) is the cumulative distribution function of a standard normal
random variable (see Kim (2002) for the details about the derivation of C(T − t, Ft, G(T))).

Recalling that the insurer VaR is the maximum potential loss that can be suffered at the level of
confidence α over the time interval τ, we introduce at first the loss function at the risk horizon, defined,
according to Solvency II, as the change in the insurer’s own fund along the risk horizon. For the sake
of simplicity, and considering that the main difficulty in estimating the loss function distribution is
relative to the liability side of the insurer’s own fund, we do not consider the change in the value of
the firm’s assets, and, as a consequence, we consider as loss function L = V(rτ , Fτ)P(0, τ)−V(r0, F0).
While V(r0, F0) and P(0, τ) are readily available through Equation (1), being the price of a pure
discount bond and the policy value at the contract inception, respectively, to determine V(rτ , Fτ)

requires great attention; indeed, it represents the policy value at the future date τ that is a random
variable conditional on the realized future values of the two risk factors under the physical probability
measure.

Then, VaR is defined as
VaRα = inf{z ∈ IR : FL(z) ≥ α},

where FL(z) = Prob[L ≤ z] is the cumulative distribution function of the loss. A possible way to
approximate its distribution is through the empirical distribution obtained by Monte Carlo simulations.
This is done, at first, by generating outer simulations of the short rate and of the reference fund at the
risk horizon under the physical probability measure. Then, associated with each simulated pairs of the
risk factors, the policy value under the risk-neutral probability measure has to be estimated. In this
particular setting, the policy value is available in closed form but, in general, it has to be computed
by resorting to inner simulations of the risk factors. With the inner simulations of the risk factors
at our disposal, it is possible to obtain an estimate of the policy value at the risk horizon and, as a
consequence, an approximation of the loss distribution.

The problem is that this approach, based on nested simulations, is extremely time consuming.
With the aim of reducing the computational complexity of the evaluation problem, the LSMC has been
proposed. It consists essentially on estimating each policy value at the risk horizon by a very limited
number of inner simulations. This implies that each resulting policy value can be consistently biased.
Nevertheless, the loss function may be estimated by means of a least-square regression based on a set
of suitably chosen basis functions.

In particular, after having generated N outer simulations of the risk factors at the risk horizon, each
pair (ri

τ , Fi
τ) i = 1, . . . , N, is associated with a rough estimate E(ri

τ , Fi
τ) of the policy value computed

through a limited number, m, of inner simulations through the time horizon (τ, T]. Hence, we have at
our disposal a set {E(ri

τ , Fi
τ)}i=1,...,N which can be used to derive an approximation of the policy value

V(rτ , Fτ). In fact, LSMC method assumes that the time τ-policy value can be approximated as

V(rτ , Fτ) ≈ VM(rτ , Fτ) =
M

∑
j=1

β jej(rτ , Fτ), (2)

where ej(rτ , Fτ) is the jth basis function in the regression function, the β js represent the coefficients to
be estimated, and M is the number of basis functions. The unknown coefficients β j can be estimated
by a least-squares regression as

(β̂1, . . . , β̂M) = argmin
β1,...,βM

 N

∑
i=1

(
E(ri

τ , Fi
τ)−

M

∑
j=1

β jej(ri
τ , Fi

τ)

)2
 .
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After having estimated the set (β̂1, . . . , β̂M), we put these values in Equation (2) and obtain the
approximation

V̂N
M(rτ , Fτ) =

M

∑
j=1

β̂ jej(rτ , Fτ),

which can be interpreted as a random variable taking on the N possible values ∑M
j=1 β̂ jej(ri

τ , Fi
τ), each

one with probability 1/N.
The empirical loss distribution can now be easily constructed and the requested VaR at confidence

level α is then determined as the corresponding αNth order statistic.

3. Numerical Results

In this section, we illustrate the results of extensive numerical experiments conducted to assess
the goodness of the LSMC method in evaluating VaR of the equity-linked contract within the bivariate
Gaussian model described in the previous section. All computations were performed on a custom-built
workstation equipped with an Intel(R) Xeon(R) Silver 4116CPU 2.10 GHz processor with 64 GB of RAM
and Windows 10 Pro for Workstation operating system. All source codes were written in R, version x64
3.6.0, R Development Core Team, Vienna, Austria.

The simulations were conducted under the physical probability measure from the contract
inception up to the risk horizon. After having obtained N couples (ri

τ , Fi
τ), (i = 1, . . . , N), we associated

with each couple a policy value computed by simulating, under the risk-neutral probability measure,
m = 2 paths of the risk factors from the risk horizon until the policy maturity, with the method of
antithetic variates. The next step in the evaluation process is relative to the choice of the number and
the type of basis functions needed to define the regression function. We considered at first an nth
(n = 2, 3, 4, 5) degree polynomial function made up of a constant term plus all the possible monomials
of order up to n that can be obtained from the two risk factors r and F. Hence, with n = 2, the regression
function is made up of six terms (1, r, r2, F, F2, rF); with n = 3 the regression function contains M = 10
terms, i.e., (1, r, r2, r3, F, F2, F3, rF, r2F, rF2); and so on. For each value of n, we considered N = 50,000,
500,000, and 1,000,000 simulation runs. For the policy with maturity T = 5 years, the corresponding
results are illustrated in Figure 1. Each box plot contains 100 VaRs estimated with N = 50,000, 500,000,
and 1,000,000 simulation runs, with M = 6, 10, 15 and 21 basis functions, respectively. The last
segment on the right, labeled B, represents the benchmark, equal to 56.9472. It has been obtained by
averaging 100 VaRs, each one computed with N = 10,000,000 simulations by associating with each
couple (ri

τ , Fi
τ) the closed-form formula of the policy value described in Equation (1), then ordering the

values from the smallest to the greatest and taking the 9,950,000th-order statistic. The parameters of
the stochastic processes describing the evolution of the risk factors were set equal to µ = 0.05, σF = 0.2,
F0 = 100, k = 0.1, θ = 0.02, σr = 0.02, and r0 = 0.04, while λ and ρ were set, for simplicity, equal to
0, but different values estimated on market data can be used and do not affect the precision of the
evaluation model.

By looking at Figure 1, it emerges that, if we consider in the proxy function monomials of degree
up to the second (M = 6), the resulting VaRs are consistently biased regardless of the number of
simulation runs considered. When we increase the number of basis functions by including monomials
of Degree 3, 4 and 5, the corresponding box plots are centered around the benchmark. Moreover, the
widths of the boxes reduce as the number of simulations increases. It is interesting to observe that,
given the number of simulation runs, an increment in the number of basis functions from 10 to 15 and
21 does not reduce further the variability of the estimates. This is confirmed also by looking at Table 1
where we report the mean absolute percentage error (MAPE) of VaRs contained in each box plot. With
N = 50,000, the MAPE remains above 1% while for N = 500,000 and N = 1,000,000 we observe an
MAPE around 0.5% and 0.35%, respectively. Moreover, instead of simple monomials of degree n,
we also considered alternative types of basis functions, such as Hermite or Legendre polynomials of
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the same degree, but we did not observe significant differences with respect to the results previously
obtained by using simple polynomials.

6 10 15 21 6 10 15 21 6 10 15 21 B

54

54.5

55

55.5

56

56.5

57

57.5

58

58.5

59

Maturity T=5 years

Figure 1. This figure presents the box plots relative to VaR estimates for the equity-linked policy with
maturity T = 5 years. Each box plot was generated by considering 100 estimates. Each estimate in the
first four plots was computed with N = 5× 104 simulations and a number of basis functions equal to
6, 10, 15 and 21. The second four plots were generated similarly except that each VaR were computed
with N = 5× 105 simulations. In the last four plots, each VaR was obtained with N = 106 simulations.
The segment labeled B represents the benchmark.

In Figures 2 and 3, we report the box plots of VaR estimates in the case of a policy with maturity
equal to T = 10 and T = 20 years, respectively. As before, the last segments represent the benchmarks
which are equal to 57.1002 and 58.3666, respectively. By looking at these figures, it emerges a similar
structure of the box plots already observed in the case of the five-year policy but with the obvious
difference regarding to the variability of the VaR estimates that increases with the policy maturity.
In fact, by considering again Table 1, we note that the MAPE increases to around 0.7% and 0.5% for
N = 500,000 and N = 1,000,000, respectively, for the policy with maturity T = 10 years and to 1.2%
and 1%, for N = 500,000 and N = 1,000,000, respectively, for the policy with maturity T = 20 years.
In addition, in this case, we observe no significant change in VaR estimates by considering polynomial
basis functions of degree greater than 3.

It is also interesting to observe that the maximum absolute percentage error (ME) of VaR estimates
in the most favorable case, i.e., when the number of simulation runs is equal to N = 1,000,000 and
the number of basis functions is M = 21, is 0.89% when the maturity is T = 5 years, 1.60% when the
maturity is T = 10 years, and 2.56% when the maturity is T = 20 years.

To give an idea of the computational cost of the LSMC method compared with nested simulations,
we also computed the 99.5% VaR for the same policy of Table 1 with maturity T = 20 years. As in
Floryszczack et al. (2016) we considered 10,000 outer runs and 2500 inners for each outer. In Table 2,
we report the MAPE obtained from 100 nested evaluations with the corresponding computation time
(in seconds) needed to compute each VaR and the corresponding computation times for each VaR
computed by LSMC with the combination of M and N of Table 1.
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6 10 15 21 6 10 15 21 6 10 15 21 B
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Figure 2. This figure presents the box plots relative to VaR estimates for the equity-linked policy with
maturity T = 10 years. Each box plot was generated by considering 100 estimates. Each estimate in the
first four plots was computed with N = 5× 104 simulations and a number of basis functions equal
to 6, 10, 15, and 21. The second four plots were computed similarly except that each VaR has been
computed with N = 5× 105 simulations. In the last four plots, each VaR was obtained with N = 106

simulations. The segment labeled B represents the benchmark.

6 10 15 21 6 10 15 21 6 10 15 21 B
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Maturity T=20 years

Figure 3. This figure presents the box plots relative to VaR estimates for the equity-linked policy with
maturity T = 20 years. Each box plot was generated by considering 100 estimates. Each estimate in the
first four plots was computed with N = 5× 104 simulations and a number of basis functions equal
to 6, 10, 15, and 21. The second four plots were computed similarly except that each VaR has been
computed with N = 5× 105 simulations. In the last four plots, each VaR was obtained with N = 106

simulations. The segment labeled B represents the benchmark.
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Table 1. This table illustrates the MAPE of VaRs computed with the LSMC method for the equity-linked
policy with maturity T = 5 years, T = 15 years, and T = 20 years. Each value was computed
by considering a sample of 100 estimated VaRs. Four possible choices for the number of basis
functions (M = 6, 10, 15, 21) and three possible choices of simulations runs (N = 5× 104, N = 5× 105,
and N = 106) were considered.

T = 5 Years T = 10 Years T = 20 Years

M\N 5 × 104 5 × 105 106 5 × 104 5 × 105 106 5 × 104 5 × 105 106

6 2.32% 2.37% 2.42% 2.74% 2.24% 2.58% 3.22% 2.35% 2.64%
10 1.21% 0.46% 0.36% 2.24% 0.70% 0.42% 4.19% 1.16% 0.93%
15 1.20% 0.48% 0.34% 2.43% 0.75% 0.47% 4.72% 1.32% 1.01%
21 1.25% 0.47% 0.35% 2.36% 0.74% 0.44% 4.22% 1.25% 0.98%

Table 2. This table reports the running times (in seconds) of the policy illustrated in Table 1 with
maturity T = 20 years. The MAPE of VaRs computed with nested simulations and the running time
needed to obtain each VaR are also reported.

T = 20 Years

M\N 5 × 104 5 × 105 106

6 3.54 s 34.45 s 63.76 s
10 3.83 s 34.21 s 66.17 s
15 3.68 s 33.25 s 71.84 s
21 3.60 s 31.38 s 76.89 s

Nested, MAPE = 1.09% (2123.37 s).

As shown in Table 2, the MAPE of VaRs estimated by nested simulations is similar to those
obtained by LSMC with N = 1,000,000 and M = 10, 15, 21. In contrast, running times of nested
simulations are much higher than those needed with LSMC. Of course, it must be observed that
alternative implementations of the nested simulation method are possible to obtain a better allocation
of the computational budget between outer and inner simulations, but exploring such alternatives is
beyond the scope of this work.

As a second experiment, we computed SCR with LSMC for the same policy considered before,
but with basis functions chosen according to a different criterion. In fact, instead of using proxy
functions made up of all monomials up to degree n, we considered the optimal basis functions proposed
in Bauer and Ha (2013), which are those giving the best approximation of the valuation operator that
maps future cash flows into the conditional expectations needed to compute capital requirements. It is
shown that such optimal basis functions are represented by left singular functions of this operator,
which, in the case of Gaussian transition densities, are represented by Hermite polynomials of suitably
transformed state variables.1 An alternative choice of basis functions obtained according to a different
optimal criterion is proposed in Feng et al. (2016). It is based, essentially, on the Hankel matrix
approximation to determine optimal exponential functions. It has the advantage that the error bound
can be easily controlled but it is less accurate when there is an unbounded functional relationship
between response variables and dependent variables.

Following the approach proposed by Bauer and Ha (2013), we determined VaRs for the same
policy described before but by considering optimal basis functions and we compared the results with
those computed by LSMC with standard polynomials as proxy functions. In Figure 4, we report the
box plots of VaR estimates computed considering different number of optimal basis functions (ox with
x = 6, 10, 15, 21). Beside each box plot obtained through optimal basis functions the one containing
VaRs obtained with simple polynomials of degree x is inserted (mx with x = 6, 10, 15, 21), where m6

1 In Appendix A we give a sketch of how such optimal basis functions are derived.
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means that the proxy function contains all the monomials up to second degree, m10 means that the
proxy function contains all monomials up to third degree, and so on. The eight box plots on the left
were obtained by considering N = 50,000 simulation runs, the eight box plots in the middle were
generated by considering N = 500,000 simulations, and the eight box plots on the right were generated
with N = 1,000,000 simulations. The last segment on the right represents the benchmark.

o6 m6 o10 m10 o15 m15 o21 m21 o6 m6 o10 m10 o15 m15 o21 m21 o6 m6 o10 m10 o15 m15 o21 m21 B

52

54

56

58

60

62

64

66
Maturity T=5 years

Figure 4. This graph presents the box plots of VaR estimates for the policy with maturity T = 5 years,
computed considering different number of optimal basis functions (ox with x = 6, 10, 15, 21). Beside
each plot obtained through optimal basis functions a plot with the VaRs obtained with monomials in
the proxy function is inserted (mx with x = 6, 10, 15, 21). The eight boxes on the left were obtained by
considering N = 5× 104 simulation runs, the eight boxes in the middle were generated by considering
N = 5× 105 simulations, and the eight boxes on the were been generated with N = 106 simulations.
The last segment on the right, B, represents the benchmark.

The remaining parameters are the same as those previously considered. In all cases, each box plot
was generated from 100 VaR estimates and the last segment on the right represents the benchmark.
By looking at this graph, it emerges that, if we consider a number of optimal basis functions equal
to six (o6), the resulting VaRs are biased for all the considered number of simulation runs. Similar
results are obtained by considering as basis functions the six monomials up to the second degree (m6
in the graph). This is also confirmed by by the results in Table 3 where we report the MAPE of VaR
estimates obtained by considering optimal basis functions and the corresponding MAPE (in brackets)
obtained by using standard polynomials as proxy functions. Moreover, in Table 3, we can see that,
when we increase the number of optimal basis functions, the resulting estimates are centered around
the benchmark with the variability that becomes smaller and smaller as the number of simulation
runs is increased. It is worth noticing that MAPE does not reduce further by increasing the number of
optimal basis functions to 15 and 21. This is also true when we use standard polynomials as proxy
functions.

In Figure 5, we report the box plots of VaR estimates in the case of a policy maturity of 10 years,
while, in Figure 6, the box plots when the maturity is 20 years are illustrated. By looking at these
figures, it seems evident that the considerations already made for the policy with maturity equal to
five years can be extended straightforwardly also to the cases characterized by longer maturity with
the obvious caveat that the variability of VaR estimates in the different box plots increases with the
policy maturity, as evidenced also in Table 1.

For what concerns the maximum absolute percentage error, we underline that the case with
M = 21 optimal basis functions and N = 1,000,000 simulations is characterized by a ME equal to 2.38%
for T = 5 years, 3.94% for T = 10 years, and 5.39% for T = 20 years. If we use the same number of
monomials as basis functions and the same number of simulations, we obtain a ME equal to 2.26%
when T = 5 years, 4.13% when T = 10 years, and 5.11% when T = 20 years.
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Table 3. This table illustrates the MAPE of VaRs computed by the LSMC method with optimal basis
functions in the sense of Bauer and Ha (2013) (in brackets are reported the corresponding values
obtained with monomials as basis functions). Four possible choices for the number of basis functions
(M = 6, 10, 15, 21) and three possible choices of simulations runs (N = 5× 104, 5× 105, and N = 106)
were considered. Three different maturities, T = 5, 10, and 20, years were considered. Each value was
computed by considering a sample of 100 estimated VaRs.

T = 5 Years T = 10 Years T = 20 Years

M\N 5 × 104 5 × 105 106 5 × 104 5 × 105 106 5 × 104 5 × 105 106

6 3.21% 2.41% 2.43% 4.30% 3.36% 3.35% 7.14% 6.69% 6.88%
(3.21%) (2.41%) (2.43%) (3.58%) (2.64%) (2.58%) (5.92%) (2.92%) (2.67%)

10 2.93% 0.89% 0.69% 4.54% 1.38% 1.19% 6.88% 2.43% 1.65%
(2.81%) (0.85%) (0.67%) (4.53%) (1.32%) (1.14%) (4.56%) (2.62%) (1.67%)

15 3.02% 0.88% 0.70% 4.77% 1.41% 1.20% 7.87% 2.68% 1.75%
(3.13%) (0.91%) (0.70%) (4.98%) (1.48%) (1.23%) (8.42%) (2.83%) (1.77%)

21 3.42% 0.87% 0.78% 4.83% 1.49% 1.18% 8.96% 2.84% 1.93%
(3.08%) (0.90%) (0.70%) (4.77%) (1.38%) (1.18%) (8.51%) (2.74%) (1.88%)
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Figure 5. This graph presents the box plots of VaR estimates for the policy with maturity T = 10 years,
computed considering different number of optimal basis functions (ox with x = 6, 10, 15, 21). Beside
each plot obtained through optimal basis functions a plot with the VaRs obtained with monomials in
the proxy function is inserted (mx with x = 6, 10, 15, 21). The eight boxes on the left were obtained by
considering N = 5× 104 simulation runs, the eight boxes in the middle were generated by considering
N = 5× 105 simulations, and the eight boxes on the right were generated with N = 106 simulations.
The last segment on the right, B, represents the benchmark.

Another aspect to be considered is that VaR estimates obtained in this second experiment seem
to be affected by a greater variability than those computed in the first experiment. This is probably
due to the fact that, in the first experiment, VaRs were obtained by considering policy values at the
risk horizon computed with two antithetic inner simulations, while, in the second case, VaRs were
obtained, as in Bauer and Ha (2013), by considering policy values at the risk horizon computed with
just one inner simulation. In general, the lack of improvement of VaR estimates when using optimal
basis functions may be due to the fact that, when the dimension of the evaluation problem is low,
optimal basis functions and standard polynomials may generate the same span and in this case the
results are equivalent.

Moreover, based on the numerical results illustrated before, it seems that the choice of the type
and of the number of basis functions is not an issue in a low-dimensional setting. In fact, with a
number of simulation runs up to N = 1,000,000 a simple polynomial of degree n = 3 gives the highest
explanatory power. Since the number of basis functions represents also the rank of the matrix to be
inverted in the least-squares regression, the inverse matrix can be computed almost instantaneously
in these cases. Of course, given the results in Benedetti (2017), LSMC converges when the number of
simulations and the number of basis functions are sent jointly to infinity; hence, increasing further
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the number of simulations implies that a polynomial of higher degree is needed and M will increase
further too. Nevertheless, it is unlikely that in practical cases with path-dependent features a further
increment in the number of simulation runs is possible, given the available computational budget,
and even if this could be possible, it should be considered with great attention the possibility of
devoting part of the computational budget to obtain better estimates of the insurer’s liabilities at
the risk horizon eventually by increasing the number of inner simulations. This could produce a
consistent improvement in the efficiency of the evaluation process. Things could be different when
the number of risk factors increases considerably and it should be explored if polynomials including
all possible monomials of up to a relatively low degree fit well the insurer’s loss distribution. When
the dimension of the evaluation problem increases, selecting basis functions according to a certain
optimal criterion will, arguably, be more useful if standard polynomials of relatively low degree will not
produce accurate results. This aspect deserves further research, but, when the number of risk factors is
high, numerical analyses are complicated by the fact that obtaining solid benchmarks is difficult, due
to large computational burden of the evaluation problem.

o6 m6 o10 m10 o15 m15 o21 m21 o6 m6 o10 m10 o15 m15 o21 m21 o6 m6 o10 m10 o15 m15 o21 m21 B

45

50

55

60

65

70

75

80

85

90

Maturity T=20 years

Figure 6. This graph presents the box plots of VaR estimates for the policy with maturity T = 20 years,
computed considering different number of optimal basis functions (ox with x = 6, 10, 15, 21). Beside
each plot obtained through optimal basis functions a plot with the VaRs obtained with monomials in
the proxy function is inserted (mx with x = 6, 10, 15, 21). The eight boxes on the left were obtained by
considering N = 5× 104 simulation runs, the eight boxes in the middle were generated by considering
N = 5× 105 simulations, and the eight boxes on the right were generated with N = 106 simulations.
The last segment on the right, B, represents the benchmark.

4. Conclusions

We conducted extensive numerical experiments to test the efficiency of LSMC in computing
capital requirements in life insurance. We considered a simple Gaussian evaluation framework where
an insurer sells an equity-linked policy with maturity guarantee. This allows applying closed-form
formulas to compute the policy value and, as a consequence, very accurate benchmarks were obtained.
In a first stage, we considered simple monomials as basis functions. Then, we applied optimal basis
functions (in the sense of Bauer and Ha (2013)) and we compared the resulting estimates with those
obtained by considering standard monomials as basis functions. In the authors’ opinion, the following
conclusions can be drawn:

• In the case of policy with long maturity, VaR estimates are biased even when a relevant number
of simulation runs and several basis functions are used.

• The choice of the number and the type of basis functions seems not to be an issue in a
low-dimensional framework as standard polynomials of degree 3 give the highest explanatory
power and increasing the degree of the polynomials or using different types of basis functions do
not improve the accuracy of VaR estimates.
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• Further research is needed to understand if also in a high-dimensional setting polynomials of
relatively low degree are able to fit well the insurer’s loss distribution. If not, basis functions
obtained according to a certain optimal criterion will, arguably, be of great importance.
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to the published version of the manuscript.
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Appendix A

In the current setting, the two-dimensional state process Y = (Yt)t∈[0,T] = (qt, rt)t∈[0,T] is
introduced (qt ≡ log(F(t))). The derivation of optimal basis functions proposed in Bauer and Ha (2013)
starts from the introduction of the probability measure P̃ through its Radon–Nikodym derivative:

∂P̃
∂P =

∂Q
∂P

EP
[

∂Q
∂P |F�

] .

This new probability measure is such that:

• P̃(A) = P(A), A ∈ Ft, 0 ≤ t ≤ τ; and
• EP̃ [X|Ft] = EQ[X|Ft], ∀X ∈ Ft.

Yτ and YT are jointly normally distributed under P̃ , i.e.,(
Yτ

YT

)
∼ N

[(
µτ

µT

)
,

(
Στ Γ
Γ′ ΣT

)]
,

where the expressions of µτ , µT , Στ , etc. are explicitly illustrated in Bauer and Ha (2013). The next step
consists in determining the eigenvalue decomposition, PΛP′, of

Σ−1/2
τ AΣ1/2

τ ,

where A = ΓΣ−1
T Γ′Σ−1

τ , PP′ = I and Λ is the diagonal matrix whose entries are the eigenvalues,
λ1 ≥ λ2, of A. For y ∈ IR2, define the transformation

zP(y) = P′Σ−1/2
τ (y− µτ).

Now, denote the Hermite polynomial of degree j by hj(x),

h0(x) = 1, h1(x) = x, hj(x) =
1√

j

(
xhj−1(x)−

√
j− 1hj−2(x)

)
, j = 2, 3, . . . ,

and define
ωm = λk1/2

1 λk2/2
2 , m = (k1, k2) ∈ N2

0,

where N2
0 is the set of two-dimensional non-negative integers. Then, consider a reordering (mk)k∈N of

{m} = (k1, k2) ∈ N2
0 such that

ωm1 ≥ ωm2 ≥ ωm3 ≥ . . . .

Optimal basis functions are defined as

ϕk = ϕmk = hk1(z
P
1 (y))hk2(z

P
2 (y)), k = 1, 2, 3, . . .
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