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Abstract: This paper seeks to identify computationally efficient importance sampling (IS) algorithms
for estimating large deviation probabilities for the loss on a portfolio of loans. Related literature
typically assumes that realised losses on defaulted loans can be predicted with certainty, i.e., that loss
given default (LGD) is non-random. In practice, however, LGD is impossible to predict and tends to
be positively correlated with the default rate and the latter phenomenon is typically referred to as
PD-LGD correlation (here PD refers to probability of default, which is often used synonymously with
default rate). There is a large literature on modelling stochastic LGD and PD-LGD correlation, but
there is a dearth of literature on using importance sampling to estimate large deviation probabilities
in those models. Numerical evidence indicates that the proposed algorithms are extremely effective
at reducing the computational burden associated with obtaining accurate estimates of large deviation
probabilities across a wide variety of PD-LGD correlation models that have been proposed in
the literature.

Keywords: importance sampling; acceptance-rejection sampling; portfolio credit risk; tail
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1. Introduction

This paper seeks to identify computationally efficient importance sampling (IS) algorithms for
estimating large deviation probabilities for the loss on a portfolio of loans. Related literature assumes
that realised losses on defaulted loans can be predicted with certainty, i.e., that loss given default (LGD)
is non-random. In practice, however, LGD is impossible to predict and tends to be positively correlated
with the default rate and the latter phenomenon is typically referred to as PD-LGD correlation (here PD
refers to probability of default, which is often used synonymously with default rate). There is a large
literature on modelling stochastic LGD and PD-LGD correlation, but there is a paucity of literature
on using importance sampling to estimate large deviation probabilities in those models. This gap in
the literature was brought to our attention by a risk management professional at a large Canadian
financial institution, and filling that gap is the ultimate goal of this paper.

Problem Formulation and Related Literature

Consider a portfolio of N exposures of equal size. Let L1, L2, . . . , LN denote the losses on the
individual loans, expressed as a percentage of notional value. The percentage loss on the entire
portfolio is:

L̄N :=
1
N

N

∑
i=1

Li . (1)
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We are interested in using IS to estimate large deviation probabilities of the form:

px := P(L̄N ≥ x) , (2)

where x >> E[Li] = E[L̄N ] is some large, user-defined, threshold.
In practice the number of exposures is large (e.g., in the thousands) and prudent risk management

requires one to assume that the individual losses are correlated. In practice, then, L̄N is the average of
a large number of correlated variables. As such, its probability distribution is highly intractable and
Monte Carlo is the method of choice for approximating px. As the probability of interest is typically
small (e.g., on the order of 10−3 or 10−4), the computational burden required to obtain an accurate
estimate of px using Monte Carlo can be prohibitive. For instance if px is on the order of 10−3 and
N is on the order of 1000 then, in the absence of any variance reduction techniques, the sample size
required to reduce the estimator’s relative error1 to 10% is on the order of one hundred thousand.
Since each realisation of L̄N requires simulation of one thousand individual losses, a sample size of
100, 000 requires one to generate one hundred million variables. If the desired degree of accuracy is
reduced to 1%, the number of variables that must be generated increases to a staggering 10 billion.

Importance sampling (IS) is a variance reduction technique that has the potential to significantly
reduce the computational burden associated with obtaining accurate estimates of large deviation
probabilities. In the present context, effective IS algorithms have been identified for a variety of
popular risk management models, but most are limited to the special case that loss given default
(LGD) is non-random. The seminal paper in the area is (Glasserman and Li 2005), other papers include
(Chan and Kroese 2010) and (Scott and Metzler 2015). It is well documented empirically, however, that
portfolio-level LGD is not only stochastic, but positively correlated with the portfolio-level default
rate as seen, for instance, in any of the studies listed in (Kupiec 2008) or (Frye and Jacobs 2012). This
phenomenon is typically referred to as PD-LGD correlation. (Miu and Ozdemir 2006) show that
ignoring PD-LGD correlation when it is in fact present can lead to material underestimates of portfolio
risk measures.

There is a large literature on modelling PD-LGD correlation (Frye 2000); (Pykhtin 2003);
(Miu and Ozdemir 2006); (Kupiec 2008); (Sen 2008); (Witzany 2011); (de Wit 2016); (Eckert et al. 2016);
and others listed in (Frye and Jacobs 2012), but there is a much smaller literature on using IS to estimate
large deviation probabilities in such models. To the best of our knowledge only (Deng et al. 2012) and
(Jeon et al. 2017) have developed algorithms that allow for PD-LGD correlation (the former paper
considers a dynamic intensity-based framework, the latter considers a static model with asymmetric
and heavy-tailed risk factors). The present paper contributes to this nascent literature by developing
algorithms that can be applied in a wide variety of PD-LGD correlation models that have been proposed
in the literature, and are popular in practice.

The paper is structured as follows. Section 2 outlines important assumptions, notation, and
terminology. Section 3 theoretically motivates the proposed algorithm in a general setting, and
Section 4 discusses a few practical issues that arise when implementing the algorithm. Section 5
describes a general framework for PD-LGD correlation modelling that includes, as special cases, many
of the models that have been developed in the literature and Section 6 describes how to implement
the proposed algorithm in this general framework. Numerical results are presented and discussed
in Section 7 and demonstrate that the proposed algorithms are extremely effective at reducing the
computational burden required to obtain an accurate estimate of px.

1 Relative error is the preferred measure of accuracy for large deviation probabilities. If p̂x is an estimator of px , its relative
error is defined as SD( p̂x)/px , where SD denotes standard deviation.
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2. Assumptions, Notation and Terminology

We assume that individual losses are of the form Li = L(Z, Yi), where L is some deterministic
function, Z = (Z1, . . . , Zd) is a d-dimensional vector of systematic risk factors that affect all exposures,
and Yi is a vector of idiosyncratic risk factors that only affect exposure i. We assume that Z, Y1, Y2, . . .
are independent, and that the Yi are identically distributed. The primary role of the systematic risk
factors is to induce correlation among the individual exposures, and it is common to interpret the
realised values of the systematic risk factors as determining the overall macroeconomic environment.
It is worth noting that the we do not require the components of Z to be independent of one another,
etc. for the components of Yi.

2.1. Large Portfolios and the Region of Interest

In a large portfolio, the influence of the idiosyncratic risk factors is negligible. Indeed, since
individual losses are conditionally independent, given the realised values of the systematic risk factors,
we have the almost sure limit:

lim
N→∞

L̄N = µ(Z) , (3)

where
µ(z) := E[Li|Z = z] = E[L̄N |Z = z] . (4)

Since µ(Z) ≈ L̄N for large N by Equation (3), the random variable µ(Z) is often called the large
portfolio approximation (LPA) to L̄N . The LPA is often used to formalise the intuitive notion that, in a
large portfolio, all risk is systematic (i.e., idiosyncratic is “diversified away”). We define the region of
interest as the set:

{z ∈ Rd : µ(z) ≥ x} . (5)

The region of interest is “responsible” for large deviations in the sense that:

lim
N→∞

P(µ(Z) ≥ x|L̄N ≥ x) = 1 (6)

for most values2 of x. Together, Equations (3) and (6) suggest that for large portfolios, it is relatively
more important to identify an effective IS distribution for the systematic risk factors, as compared to
the idiosyncratic risk factors.

2.2. Systematic Risk Factors

We assume that Z is continuous and let f (z) denote its joint density. We assume that f is a member
of an exponential family (see Bickel and Doksum 2001 for definitions and important properties) with
natural sufficient statistic S : Rd 7→ Rp. Any other member of the family can be put in the form:

fλ(z) := exp(λTS(z)− K(λ)) · f (z) , (7)

where K(·) is the cumulant generating function (cgf) of S(Z) and λ ∈ Rp is such that K(λ) is
well-defined. The parameter λ is called the natural parameter of the family in Equation (7). Appendix B
embeds the Gaussian and multivariate t families into this general framework.

2 In light of the almost sure limit in Equation (3), we have that L̄N converges to µ(Z) in distribution, which implies that
Equation (6) is valid for all values of x such that P(µ(Z) = x) = 0. If µ(Z) is a continuous random variable (which it is in
most cases of practical interest) then Equation (6) is satisfied for every value of x.
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We will eventually be using densities of the form in Equation (7) as IS densities for the systematic
risk factors. The associated IS weight is:

f (Z)
fλ(Z)

= exp(−λTS(Z) + K(λ)) , (8)

and it will be important to know when the variance of the IS weight is finite. The following observation
is readily verified.

Remark 1. If Z ∼ fλ, then Equation (8) has finite variance if and only if both K(λ) and K(−λ) are well defined.

A standard result in the theory of exponential families is that:

∇K(λ) = Eλ[S(Z)] , (9)

where ∇ denotes gradient and Eλ denotes expectation with respect to the density fλ.

2.3. Individual Losses

We assume that Li takes values in the unit interval. In general Li will have a point mass at zero
(if it did not, the loan would not be prudent) and the conditional distribution of Li, given that Li > 0,
is called the (account-level) LGD distribution. We allow the LGD distribution to be arbitrary in the
sense that it could be either discrete or continuous, or a mixture of both. This contrasts with the case
of non-random LGD, where the LGD distribution is degenerate at a single point. We let `max ∈ (0, 1]
denote the supremum of the support of Li. Individual losses will therefore never exceed `max but could
take on values arbitrarily close (and possibly equal) to `max.

Remark 2. Despite the fact that Li is not a continuous variable, in what follows we will proceed as if it was and
make repeated reference to its “density." This is done without loss of generality, and in an interest of simplifying
the presentation and discussion. Nothing in the sequel requires Li to be a continuous variable, and everything
carries over to the case where it is either discrete or continuous, or has both a discrete and continuous component.

For z ∈ Rd we let g(`|z) denote the conditional density of Li, given that Z = z. We assume that
the support of g(·|z) is identical to the unconditional support, in particular it does not depend on the
value of z. Note that µ(z) is the mean of g(·|z).

In practice (i.e., for all of the PD-LGD correlation models listed in the introduction) g(·|z) is not
a member of an established parametric family, and direct simulation from g(·|z) using a standard
technique such as inverse transform or rejection sampling is not straightforward. Simulation from
g(·|z) is most easily accomplished by simulating the idiosyncratic risk factors, Yi, from their density,
say η(y), and then setting Li = L(z, Yi). In other words, in order to simulate from g(·|z) we make use
of the fact that Li = L(z, Yi) is a drawing from g(·|z) whenever Yi is a drawing from η(·).

For θ ∈ R and z ∈ Rd we let:

k(θ, z) := log(E[exp(θLi)|Z = z])

and
k′(θ, z) :=

∂k
∂θ

(θ, z) .

Then k(·, z) is the conditional cgf of Li, given that Z = z, and k′(·, z) is its first derivative. In practice,
neither k(·, z) nor k′(·, z) is available in closed form. In the examples we consider later in the paper
each can be expressed as a one-dimensional integral, but the numerical values of those integrals must
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be approximated using quadrature. This contrasts with the case of non-random LGD, where the
conditional cgf can be computed in closed form3.

For x ∈ (0, `max) and z ∈ Rd we let θ̂(x, z) denote the unique solution to the equation k′(θ, z) =
max(x, µ(z)). We often suppress dependence on x and z, and simply write θ̂ instead of θ̂(x, z). That θ̂

is well-defined follows immediately from the developments in Appendix A.1. Based on the discussion
there we find that θ̂ is zero whenever z lies in the region of interest, and is strictly positive otherwise.

Remark 3. In practice, the value of θ̂ cannot be computed in closed form and must be approximated using a
numerical root-finding algorithm. Since each evaluation of the function k′(·, z) requires quadrature, computing
θ̂ is straightforward but relatively time consuming. This contrasts with the case of non-random LGD, where θ̂

can be computed in closed form at essentially no cost.

For z ∈ Rd we let q(·, z) denote the Legendre transform of k(·, z) over [0, ∞). That is,

q(x, z) := max
θ≥0

(θx− k(θ, z)) = θ̂x− k(θ̂, z) . (10)

That θ̂ is the uniquely defined point at which the function θ 7→ θx− k(θ, z) attains its maximum on
[0, ∞) follows from the developments in Appendix A.2. Based on the discussion there, we find that
both θ̂ and q are equal to zero whenever z lies in the region of interest, and that both are strictly positive
otherwise.

2.4. Conditional Tail Probabilities

Given the realised values of the systematic risk factors, individual losses are independent. Large
deviations theory can therefore provide useful insights into the large-N behaviour of the tail probability
P(L̄N ≥ x|Z = z). For instance, Chernoff’s bound yields the estimate:

P(L̄N > x|Z = z) ≤ exp(−Nq(x, z)) , (11)

and Cramér’s (large deviation) theorem yields the limit:

lim
N→∞

log(P(L̄N > x|Z = z))
N

= −q(x, z) . (12)

Together these results are often used to justify the approximation:

P(L̄N > x|Z = z) ≈ exp(−Nq(x, z)) , (13)

which will be used repeatedly throughout the paper. The approximation in Equation (13) is often
called the large deviation approximation (LDA) to the tail probability P(L̄N > x|Z = z). Note that
since q(x, z) = 0 whenever µ(z) ≥ x, the LDA suggests that P(L̄N > x|Z = z) ≈ 1 whenever z lies in
the region of interest.

2.5. Conditional Densities

Let L = (L1, . . . , LN), noting that L takes values in [0, `max]N . For z ∈ Rd and ` = (`1, . . . , `N) ∈
[0, `max]N , we let hx(z, `) denote the conditional density of (Z, L), given that L̄N > x. Then hx is
given by:

hx(z, `) =
f (z) ·∏N

i=1 g(`i|z)
px

· 1{`∈AN,x} , (14)

3 In the case of non-random LGD we have k(θ, z) = log(1 + (e(1−R)θ − 1) · P(Li > 0|Z = z)), where R is the known recovery
rate on the exposure.
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where AN,x is the set of points ` ∈ [0, `max]N for which N−1 ∑N
i=1 `i > x.

We let fx(z) denote the conditional density of the systematic risk factors, given that L̄N > x,
noting that:

fx(z) =
P(L̄N > x|Z = z)

P(L̄N ≥ x)
· f (z) . (15)

In the examples we consider the mean of fx tends to lie inside, but close to the boundary of, the region
of interest. And relative to the unconditional density f , the conditional density fx tends to be much
more concentrated about its mean.

Finally, we let gx(`|z) denote the conditional density of an individual loss, given that Z = z and
L̄N > x, noting that:

gx(`|z) =
P(L̄N−1 > x + x−`

N−1 |Z = z)
P(L̄N > x|Z = z)

· g(`|z) . (16)

If the realised value of z lies inside the region of interest, the conditional density gx(·|z) tends to
resemble the unconditional density g(·|z). Intuitively, for such values of z the LDA informs that the
event {L̄N > x} is very likely, and conditioning on its occurrence is not overly informative. If the
realised value of z does not lie in the region of interest then gx(·|z) tends to resemble the exponentially
tilted version of g(·|z) whose mean is exactly x. See Appendix A.3 for more details.

Neither hx, fx, nor gx are numerically tractable, but as we will soon see they do serve as useful
benchmarks against which to compare candidate IS densities. In addition, it is worth noting here that
the representations of Equations (15) and (16) lend themselves to numerical approximation via the
LDA in Equation (13).

3. Proposed Algorithm

In practice, the most common approach to estimating px via Monte Carlo simulation in this
framework is summarised in Algorithm 1 below.

Algorithm 1 Standard Monte Carlo Algorithm for Estimating px

1: Simulate M i.i.d. copies of the systematic risk factors. Think of these as different economic scenarios
and denote the simulated values by z1, . . . , zM.

2: For each scenario m:

(a) Simulate the idiosyncratic risk factors for each exposure. Denote the simulated values
y1,m, . . . , yN,m.

(b) Set `i,m = L(zm, yi,m) for each exposures i, and ¯̀m = 1
N ∑N

i=1 `i,m.

3: Return p̂x = 1
M ∑M

m=1 1{ ¯̀m>x}.

Algorithm 1 consists of two stages. In the first stage one simulates the systematic risk factors,
and in the second stage one simulates the idiosyncratic risk factors for each exposure. Mathematically,
the first stage induces independence among the individual exposures, so that the second stage amounts
to simulating a large number of i.i.d. variables. Intuitively, it is useful to think of the first stage as
determining the prevailing macroeconomic environment, which fixes economy-wide quantities such as
default and loss-given-default rates. The second stage of the algorithm overlays idiosyncratic noise on
top of economy-wide rates, to arrive at the default and loss-given-default rates for a particular portfolio.

Relative error is the preferred measure of accuracy for estimators of rare event probabilities. The
relative error of the estimator p̂x in Algorithm 1 is:

1√
M

√
1− px

px
,



Risks 2020, 8, 25 7 of 36

and the sample size required to ensure the relative error does not exceed some predetermined
threshold ε is:

M(ε) =
1
ε2

1− px

px
. (17)

The number of variables that must be generated in order to achieve the desired degree of accuracy
ε is therefore (N + d) · M(ε), which grows without bound as px → 0. For instance if px = 10−3,
N = 103, d = 2, and ε = 5 · 10−2 then the number of variables that must be generated is approximately
four hundred million, which is an enormous computational burden for a modest degree of accuracy.
In the next section we discuss general principles for selecting an IS algorithm that can reduce the
computational burden required to obtain an accurate estimate of px.

3.1. General Principles

For practical reasons, we insist that our IS procedure retains conditional independence of
individual losses, given the realised value of the systematic risk factors. This is important because it
allows us to reduce the problem of simulating a large number of dependent variables to the (much)
more computationally efficient problem of simulating a large number of independent variables.

In the first stage we simulate the systematic risk factors from the IS density f IS(z). The IS weight
associated with this first stage is therefore:

Λ1(z) :=
f (z)

f IS(z)
.

In the second stage we simulate the individual losses as i.i.d. drawings from the density gIS(`|z). The
IS weight associated with this second stage is:

Λ2(z, `) =
N

∏
i=1

g(`i|z)
gIS(`i|z)

,

and the IS density from which we sample (Z, L) is therefore of the form:

hIS(z, `) = f IS(z) ·
N

∏
i=1

gIS(`i|z) . (18)

The so-described algorithm, with as-yet unspecified IS densities, is summarised in Algorithm 2.

Algorithm 2 IS Algorithm for Estimating px

1: Simulate M i.i.d. copies of the systematic risk factors from the density f IS(z). Think of these as
different economic scenarios and denote the simulated values by z1, . . . , zM.

2: For each scenario m:

(a) Independently simulate `1,m, `2,m, . . . , `N,m from the density gIS(·|zm).

(b) Set ¯̀m = 1
N ∑N

i=1 `i,m.

3: Return p̂x = 1
M ∑M

m=1 Λ1(zm) ·Λ2(zm, `m) · 1{ ¯̀m>x}, where `m = (`1,m, . . . , `N,m).

It is important to note that in the second stage, we will not be simulating individual losses directly
from the (conditional) IS density gIS. Rather, we will simulate the idiosyncratic risk factors Yi in such
a way as to ensure that for a given value of z, the variable Li = L(z, Yi) has the desired density gIS.
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Focusing on the “indirect" IS density of Li, as opposed to “direct" IS density of Yi, allows us to identify
a much more effective second stage algorithm4.

The estimator p̂x produced by Algorithm 2 is demonstrably unbiased and its variance is:

EIS[(Λ(Z, L) · 1{L̄N>x} − px)
2] = p2

x ·EIS[(Λx(Z, L) · 1{L̄N>x} − 1)2] , (19)

where EIS denotes expectation under the IS distribution, Λ(z, `) := Λ1(z) ·Λ2(z, `) and

Λx(z, `) :=
Λ(z, `)

px
.

Note that Λx is the ratio of (i) the IS density in Equation (18) to (ii) the conditional density in
Equation (14). The estimator’s squared relative error can then be decomposed as:

EIS[(Λx(Z, L)− 1)2 · 1{L̄N>x}] + [1− PIS(L̄N > x)] , (20)

where PIS denotes probability under the IS distribution.
Inspecting Equation (20) we see that an effective IS density should (i) assign a high probability

to the event of interest and (ii) should resemble the conditional density in Equation (14) as closely
as possible, in the sense that the ratio Λx should deviate as little as possible from unity. Clearly, an
estimator that satisfies (ii) should also satisfy (i), since hx assigns probability one to the event that
L̄N > x. The task now is to identify a density of the form in Equation (18) that resembles the ideal
density in Equation (14), in some sense.

3.2. Identifying the Ideal IS Densities

Our measure of similarity is Kullback–Leibler divergence (KLD), or divergence for short. See
Chatterjee and Diaconis (2018) for a general discussion of the merits of minimum divergence as a
criteria for identifying effective IS distributions. We begin by writing:

hx(z, `)
hIS(z, `)

=
fx(z)
f IS(z)

· g̃x(`|z)
g̃IS(`|z)

, (21)

where for fixed z,

g̃x(`|z) =
∏N

i=1 g(`i|z)
P(L̄N > x|Z = z)

· 1{`∈AN,x}

is the joint density of N independent variables having marginal density g(·|z), conditioned on their
average value exceeding the threshold x, and

g̃IS(`|z) =
N

∏
i=1

gIS(`i|z) .

is the joint density of N independent variables having marginal density gIS(·|z).
Using Equation (21) it is straightforward to decompose the divergence of hIS from hx as:

D(hIS||hx) = D( f IS|| fx) +E [D(g̃IS(·|Z)||g̃x(·|Z))| L̄N > x] , (22)

where D(ξ||η) denotes the divergence of the density ξ from the density η. The first term in Equation (22)
is the divergence of f IS from fx, and is therefore minimised by setting f IS = fx. In other words, the best

4 In the earliest stages of this project we focused directly on an IS density for Yi and had difficulties identifying
effective candidates.
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possible IS density for the systematic risk factors (according to the criteria of minimum divergence)
is the conditional density fx. The second term in Equation (22) is the average divergence of g̃IS(·|z)
from g̃x(·|z), averaged over all possible realisations of the systematic risk factors and conditioned
on portfolio loss exceeding the threshold. Based on the developments in Appendix A.5, for fixed
z ∈ Rd the divergence of g̃IS(·|z) from g̃x(·|z) is minimised by setting gIS(·|z) = gx(·|z). The average
divergence in Equation (22) is, therefore, also minimised by setting gIS(·|z) = gx(·|z) for every z ∈ Rd.

Remark 4. Among all densities of the form in Equation (18), the one that most resembles the ideal density hx

(in the sense of minimum divergence) is the density:

ĥx(z, `) := fx(z) ·
N

∏
i=1

gx(`i|z) , z ∈ Rd, ` ∈ [0, `max]
N .

In other words, ĥx is the best possible IS density (among the class Equation (18) and according to the criteria of
minimum divergence) from which to simulate (Z, L).

It is worth noting that the IS density ĥx “gets marginal behaviour correct”, in the sense that the
marginal distribution of the systematic risk factors, as well as the marginal distribution of an individual
loss, is the same under ĥx as it is under the ideal density hx. The dependence structure of individual
losses is different under ĥx and hx—this is the price that we must pay for insisting on conditional
independence (i.e., computational efficiency).

3.3. Approximating the Ideal IS Densities

Simulating directly from ĥx requires an ability to simulate directly from fx and gx. Unfortunately,
neither fx nor gx is numerically tractable (witness the unknown quantities in Equations (15) and (16)),
and it does not appear that either is amenable to direct simulation. Our next task is to identify tractable
densities that resemble fx and gx.

3.3.1. Systematic Risk Factors

As a tractable approximation to fx, we suggest using that member of the parametric family in
Equation (7) that most resembles fx in the sense of minimum divergence. Using Equations (7) and (15)
we get that:

log
(

fx(z)
fλ(z)

)
= −λTS(z) + K(λ) + log (P(L̄N > x|Z = z))− log(px) ,

whence the divergence of fλ from fx is:

D( fλ|| fx) = −λTE[S(Z)|L̄N > x] + K(λ) +E[log (P(L̄N > x|Z = z)) |L̄N > x]− log(px) . (23)

As a cgf, K(·) is strictly convex. As such, Equation (23) attains its unique minimum at that value of λ

such that:
∇K(λ) = E[S(Z)|L̄N > x] , (24)

which, in light of Equation (9), is equivalent to:

Eλ[S(Z)] = E[S(Z)|L̄N > x] . (25)

Intuitively, we suggest using that value of the IS parameter λ for which the mean of S(Z) under the IS
density matches the conditional mean of S(Z), given that portfolio losses exceed the threshold. In what
follows we let λ̂x denote that suggested value of the IS parameter λ, i.e., that value of λ that solves
Equation (24).
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Remark 5. The first-stage IS weight associated with the so-described density is:

Λ1(Z) = exp(−λ̂T
x S(Z) + K(λ̂x)) . (26)

It is entirely possible—and quite common in the examples we consider in this paper—that K(−λ̂x) is not
well-defined, in which case Equation (26) has infinite variance under fλ̂x

(recall Remark 1). At first glance it
might seem absurd to consider IS densities whose associated weights have infinite variance, but as we discuss in
Section 4.2 it is straightforward to circumvent this issue by trimming large first-stage IS weights5.

It remains to develop a tractable approximation to the right hand side of Equation (24), so that
we can approximate the value of λ̂x. To this end we write the natural sufficient statistic as S(z) =

(S1(z), . . . , Sp(z)) and note that:

E[Si(Z)|L̄N > x] =
E[Si(Z) · 1{L̄N>x}]

P(L̄N > x)
=

E[Si(Z) · P(L̄N > x|Z)]
E[P(L̄N > x|Z)] .

Next, we use the LDA in Equation (13) to get:

E[Si(Z)|L̄N > x] ≈ E[Si(Z) · exp(−Nq(x, Z))]
E[exp(−Nq(x, Z))]

. (27)

As it only involves the systematic risk factors (and not the large number of idiosyncratic risk factors),
the expectation on the right hand side of Equation (27) is amenable to either quadrature or Monte
Carlo simulation.

3.3.2. Individual Losses

We encourage the reader unfamiliar with exponential tilts to consult Appendix A.3, before
reading the remainder of this section. Our approximation to gx(`|z) is obtained by using the
LDA of Equation (13) to approximate both conditional probabilities appearing in Equation (16) (see
Appendix A.4 for details). The resulting approximation is:

ĝx(`|z) := exp(θ̂`− k(θ̂, z)) · g(`|z) , (28)

where we recall that θ̂ is defined and discussed in Section 2.3. If the realised values of the systematic
risk factors obtained in the first stage lie in the region of interest then θ̂ = 0 and ĝx is identical to
g. Otherwise, θ̂ is strictly positive and ĝx is the exponentially tilted version of g whose mean is
x. Intuitively, we can interpret ĝx as that density that most resembles (in the sense of minimum
divergence) gx, among all densities whose mean is at least x, and the numerical value of θ̂ as the degree
to which the density g(·|z) must be deformed, in order to produce a density whose mean is at least x.

Remark 6. The mean of Equation (28) is max(µ(z), x). The implication is that the event of interest is not a
rare event under the proposed IS algorithm. Indeed,

EIS[Li] = EIS[EIS[Li|Z]] = E fλ̂
[Eĝx [Li|Z]] = E fλ̂

[max(x, µ(Z))] ≥ x ,

which implies that limN→∞ PIS(L̄N > x) = 1.

5 An alternative to trimming is truncation of large weights; see Ionides (2008) for a general and rigorous treatment of
truncated IS.
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The second-stage IS weight associated with Equation (28) is:

Λ2(Z, L) =
N

∏
i=1

exp(−θ̂Li + k(θ̂, z)) = exp(−N[θ̂ L̄N − k(θ̂, Z)]) .

Since the second stage weight depends only on Z and L̄N , we will often write Λ2(Z, L̄N) instead of
Λ2(Z, L). In order to assess the stability of the second-stage IS weight, we note that:

exp(−N[θ̂ L̄N − k(θ̂, Z)]) = exp(−θ̂N[L̄N − x]) · exp(−Nq(x, Z)) .

If Z lies in the region of interest then θ̂ = q = 0, whence Λ2(Z, L̄N) = 1 whatever the value of L̄N .
Otherwise, both θ̂ and q are strictly positive, which implies that Λ2(Z, L̄N) < 1 whenever L̄N > x. The
net result of this discussion is that:

Λ2(Z, L̄N) ≤ 1 whenever L̄N > x . (29)

The implication is that large, unstable, IS weights in the second stage will never be a problem.
If the realised value of z does lie in the region of interest then ĝx and g are identical, and simulation

from g is straightforward. Our final task is to determine how to sample from Equation (28) in the case
where z does not lie in the region of interest. One approach would be to identify a family of densities
{ηz(y) : z ∈ Rd} such that Li = L(z, Yi) is a draw from ĝx(·|z) whenever Yi is a draw from ηz(·), but
this approach appears to be overly complicated. A simpler approach is to sample from Equation (28)
using rejection sampling with g as the proposal density. To this end, we note that for fixed z, the ratio
of ĝx to g is exp(θ̂`− k(θ̂, z)), which is bounded and strictly increasing on [0, `max]. The best possible
(i.e., smallest) rejection constant is therefore:

ĉ = ĉ(x, z) := exp(θ̂`max − k(θ̂, z)) , (30)

and the algorithm for sampling from ĝx would proceed as follows. First, sample Yi from its actual
density and set L̂i = L(z, Yi). Then generate a random number U, uniformly distributed on [0, 1] and
independent of Yi. If,

U ≤ ĝx(L̂i|z)
ĉ · g(L̂i|z)

= exp(−θ̂(`max − L̂i)) ,

set Li = L̂i and proceed to the next exposure. Otherwise return to the first step and sample another
pair (Yi, U).

3.4. Summary and Intuition

The proposed algorithm is summarised in Algorithm 3 below. The initial step is to approximate
the value of the first-stage IS parameter, λ̂x. In our numerical examples we use a small pilot simulation
(10% of the sample size that we eventually use to estimate px) and the approximation of Equation (27)
in order to estimate λ̂x.

Having computed λ̂x, the first stage of the algorithm proceeds by simulating independent
realisations of the systematic risk factors from the density fλ̂x

, and computing the associated first-stage
weights of Equation (26). Recall that we can interpret these realisations as corresponding to different
economic scenarios. Intuitively, sampling from fλ̂x

instead of f increases the proportion of adverse
scenarios that are generated in the first stage. In the examples we consider, fλ̂x

concentrates most of its
mass near the boundary of the region of interest, and the effect is to concentrate the distribution of
µ(Z) near x.

In the second stage, one first checks whether or not the realised values of the systematic risk
factors lie inside the region of interest. If they do then the event of interest is no longer rare and there
is no need to apply further IS in the second stage. Otherwise, if we “miss” the region of interest in the
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first stage, we “correct” this mistake by applying an exponential tilt to the conditional distribution
of individual losses. Specifically, we transfer mass from the left tail of g to the right tail, in order to
produce a density whose mean is exactly x.

Algorithm 3 Proposed IS Algorithm for Estimating px

1: Compute λ̂ using a small pilot simulation.
2: Simulate M i.i.d. copies of the systematic risk factors from fλ̂(z) and compute the corresponding

first-stage IS weights. Denote the realised values of the factors by z1, . . . , zM and the associated IS
weights by Λ1(z1), . . . , Λ1(zM).

3: For each scenario m, determine whether or not zm lies in the region of interest (i.e., whether or not
µ(zm) ≥ x). If it does lie in the region, proceed as follows:

(a) Simulate the idiosyncratic risk factors for each exposure. Denote the simulated values by
y1,m, . . . , yN,m.

(b) Set `i,m = L(zm, yi,m), ¯̀m = 1
N ∑N

i=1 `i,m and Λ2(zm, ¯̀m) = 1.

Otherwise, proceed as follows:

(a) Compute θ̂ = θ̂(x, zm), k̂ = k(θ̂, zm) and ĉ = exp(θ̂`max − k̂). For each exposure i:

(i) Simulate the exposure’s idiosyncratic risk factor (denote the realised value by ŷi,m) and
set ˆ̀ i,m = L(zm, yi,m).

(ii) Simulate a random number drawn uniformly from the unit interval (denote the realised
value by u) and determine whether or not u ≤ exp(−θ̂(`max− ˆ̀ i,m)). If it is, set `i,m = ˆ̀ i,m
and proceed to the next exposure. Otherwise, return to step (i).

(b) Set ¯̀m = 1
N ∑N

i=1 `i,m and Λ2(zm, ¯̀m) = exp(−N[θ̂ ¯̀m − k̂])

4: Return p̂x = 1
M ∑M

m=1 Λ1(zm) ·Λ2(zm, ¯̀m) · 1{ ¯̀m>x}.

4. Practical Considerations

In this section we discuss some of the practical issues that arise when implementing the proposed
methodology.

4.1. One- and Two-Stage Estimators

The rejection sampling procedure employed in the second stage of the proposed algorithm
involves repeated evaluation of θ̂, which requires a non-trivial amount of computational time time.
In addition, rejection sampling in general requires relatively complicated code. As such, it is worth
considering a simpler algorithm that only applies importance sampling in the first stage, and is
therefore easier to implement and faster to run.

In what follows we will distinguish between one- and two-stage IS algorithms. A one-stage
algorithm only applies IS in the first stage and samples (Z, L) from the IS density:

h1S(z, `) := fλ̂x
(z) ·

N

∏
i=1

g(`i|z) . (31)

The associated IS weight is Λ1(z) and the one-stage algorithm is summarised in Algorithm 4 below.
Note the simplicity of Algorithm 4, relative to Algorithm 3. The two-stage algorithm applies IS in both
the first stage and the second stage, sampling (Z, L) from the IS density:

h2S(z, `) := fλ̂x
(z) ·

N

∏
i=1

ĝx(`i|z) . (32)
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The associated IS weight is Λ1(z) ·Λ2(z, ¯̀N), and the two-stage algorithm was summarised previously
in Algorithm 3.

Algorithm 4 Proposed One-Stage IS Algorithm for Estimating px

1: Compute λ̂x using a small pilot simulation.
2: Simulate M i.i.d. copies of the systematic risk factors from fλ̂(z) and compute the corresponding

first-stage IS weights. Denote the realised values of the factors by z1, . . . , zM and the associated IS
weights by Λ1(z1), . . . , Λ1(zM).

3: For each scenario m:

(a) Simulate the idiosyncratic risk factors for each exposure. Denote the simulated values by
y1,m, . . . , yN,m.

(b) Set `i,m = L(zm, yi,m) and ¯̀m = 1
N ∑N

i=1 `i,m.

4: Return p̂x = 1
M ∑M

m=1 Λ1(zm) · 1{ ¯̀m>x}.

Although it is simpler to implement and faster to run, the one-stage algorithm is less accurate
than the two-stage algorithm. More precisely, the two-stage estimator never has larger variance than
the one-stage estimator. To see this, first let E1S denote expectation under the one-stage IS density
h1S(z, `) given in Equation (31). Then the variance of the one-stage estimator is:

E1S[(Λ1(Z) · 1{L̄N≥x})
2]− p2

x

M
,

where M denotes sample size. And if we let E2S denote expectation under the two-stage IS density
h2S(z, `) given in Equation (32) then the variance of the two-stage estimator is:

E2S[(Λ1(Z) ·Λ2(Z, L̄N) · 1{L̄N≥x})
2]− p2

x

M
.

In order to compare variances it suffices to compare the second moments appearing above under the
actual density h(z, `), and we let E denote expectation with respect to this density. To this end we
note that:

E1S[(Λ1(Z) · 1{L̄N≥x})
2] = E[Λ1(Z) · 1{L̄N≥x}]

and
E2S[(Λ1(Z) ·Λ2(Z, L̄N) · 1{L̄N≥x})

2] = E[Λ1(Z) ·Λ2(Z, L̄N)] · 1{L̄N≥x}]

In light of Equation (29) we get that:

Λ2(Z, L̄N) · 1{L̄N>x} ≤ 1 · 1{L̄N>x} = 1{L̄N>x} , (33)

whence

E2S[(Λ1(Z) ·Λ2(Z, L̄N) · 1{L̄N≥x})
2] = E[Λ1(Z) ·Λ2(Z, L̄N) · 1{L̄N≥x}]

≤ E[Λ1(Z) · 1{L̄N≥x}]

= E1S[(Λ1(Z) · 1{L̄N≥x})
2] .

The two-stage estimator will therefore never have larger variance than the the one-stage estimator.

4.2. Large First-Stage Weights

In the examples that we consider in this paper, the systematic risk factors are Gaussian. When
selecting their IS density, one could either (i) shift their means and leave their variances (and
correlations) unchanged or (ii) shift their means and adjust their variances (and correlations). In general



Risks 2020, 8, 25 14 of 36

the latter approach will lead to a much better approximation to the ideal density fx, but could lead
to an IS weight that has infinite variance. By contrast, the former approach will always lead to an
IS weight with finite variance, but could lead to a poor approximation of the ideal density. At first
glance it might seem absurd to consider IS densities whose weights are so unstable as to have infinite
variance, but we have found that adjusting the variances of the systematic risk factors can lead to more
effective estimators, in terms of both statistical accuracy and run time (see Section 6.1 for more details),
provided one stabilises the resulting IS weights in some way. In the remainder of this section we
describe a simple stabilisation technique that leads to a computable upper bound on the associated bias
(an alternative would be to stabilize unruly IS weights via truncation, as discussed in Ionides (2008)).

Returning now to the general case, suppose that the first-stage IS parameter, λ̂x, is such that
the first-stage IS weight, Λ1(Z), has infinite variance. We trim large first-stage weights by fixing a
set A ⊂ Rd such that Λ1(·) is bounded over A, and discarding those simulations for which Z /∈ A.
Specifically, the last line of Algorithm 3 would be altered to return the trimmed estimate:

p̂x =
1
M

M

∑
m=1

Λ1(zm) ·Λ2(z, ¯̀m) · 1{ ¯̀m>x} · 1{zm∈A} ,

etc. for Algorithm 4. The variance of the so-trimmed estimator is necessarily finite (recall that
Λ2(z, ¯̀) ≤ 1 if ¯̀ > x), and its bias is:

E2S[Λ1(Z) ·Λ2(Z, L̄N) · 1{L̄N>x} · 1{Z/∈A}] = E[1{L̄N>x} · 1{Z/∈A}] = E[P(L̄N > x|Z) · 1{Z/∈A}] ,

where we have used the tower property (conditioning on Z) to obtain the last equality. Using Chernoff’s
bound in Equation (11) we get that:

E[P(L̄N > x|Z) · 1{Z/∈A}] ≤ E[exp(−Nq(x, Z)) · 1{Z/∈A}] . (34)

As it only depends on the small number of systematic risk factors, and not the large number of
idiosyncratic risk factors, the right-hand side of Equation (34) is a tractable upper bound on the bias
committed by trimming large (first-stage) IS weights. This upper bound can be used to assess whether
or not the bias associated with a given set A is acceptable.

4.3. Large Rejection Constants

The smaller the ĉ, the more efficient is the rejection sampling algorithm employed in the second
stage. Indeed the average number of proposals that must be generated in order to obtain one realisation
from ĝx is 1/ĉ. In the examples we consider in this paper, ĉ is (essentially) a decreasing function µ(z),
such that ĉ → 1 as µ(z) → x and ĉ → ∞ as µ(z) → 0 (see Figure 1). The second-stage rejection
algorithm is therefore quite efficient when µ(z) ≈ x and quite inefficient when µ(z) ≈ 0. Now, the
IS density for the first-stage risk factors is such that the distribution of µ(Z) concentrates most of its
mass near x (where ĉ is a reasonable size), but it is still theoretically possible to obtain a realisation of
the systematic risk factors for which µ(z) is very small and ĉ is unacceptably large (e.g., 104). In such
situations the algorithm effectively grinds to a halt, as one endlessly generates proposed losses that
have no realistic chance of being accepted. It is extremely unlikely that one does obtain such a scenario
under the first-stage IS distribution, but it is still important to protect oneself against this unlikely
event. To this end we suggest fixing some maximum acceptable rejection constant cmax, and only
applying the second stage IS to those first-stage realizations for which µ(z) < x and ĉ ≤ cmax. In other
words, even if the realised values of the systematic risk factors lie outside the region of interest, we
avoid applying the second stage if the associated rejection constant exceeds the predefined threshold.
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4.4. Computing θ̂

Repeated evaluations of θ̂(x, ·) are necessary when computing λ̂x at the outset of the algorithm,
as well as during the second stage of the two-stage algorithm. Recall that in order to compute θ̂(x, z)
“exactly” one must numerically solve the equation k′(θ, z) = x, which requires a non-trivial amount of
CPU time. As each evaluation of θ̂ is relatively costly, repeated evaluation would, in the absence of
any further approximation (over and above that inherent in numerical root-finding), account for the
vast majority of the algorithm’s total run time.

In order to reduce the amount of time spent evaluating θ̂ we fit a low degree polynomial to
the function θ̂(x, ·) that can be evaluated extremely quickly, considerably reducing total run time.
Specifically, suppose that we must compute θ̂(x, zn) for each of n points z1, . . . , zn (either the sample
points from the pilot simulation, or the first-stage realisations that did not land in the region of
interest). We identify a small set C ⊂ Rd that contains each of the n points, construct a mesh of
m << n points in C, evaluate θ̂ exactly at each mesh point, and then fit a fifth degree polynomial to the
resulting data. Letting θ̄(x, ·) denote the resulting polynomial, we then evaluate θ̄(x, z1), . . . , θ̄(x, zn)

instead of θ̂(x, z1), . . . , θ̂(x, zn). If m is substantially smaller than n, then the reduction in CPU time
is considerable.

5. PD-LGD Correlation Framework

All of the PD-LGD correlation models listed in the introduction are special cases of the following
general framework—an observation that, to the best of our knowledge, has not been made in the
literature. The systematic risk factors take the form Z = (ZD, ZL), where ZD and ZL are bivariate
normal with standard normal margins and correlation ρS. Idiosyncratic risk factors take the form Yi =

(Yi,D, Yi,L), where Yi,D and Yi,L are bivariate normal with standard normal margins and correlation ρI .
Associated with each exposure is a default driver Xi,D and a loss driver Xi,L, defined as follows:

Xi,D = αDZD +
√

1− α2
DYi,D , (35)

Xi,L = αLZL +
√

1− α2
LYi,L . (36)

The factor loadings αD and αL are constants taking values in the unit interval, and dictate the relative
importance of systematic risk versus idiosyncratic risk. The correlation between default drivers of
distinct exposures is ρD := α2

D and the correlation between loss drivers of distinct exposures is ρL := α2
L.

The correlation between the default and potential loss drivers of a particular exposure is:

ρDL := αDαLρS +
√

1− α2
D

√
1− α2

LρI ,

which can be positive or negative (or zero). Note that if ρS and ρI have the same sign then, since both
factor loadings are positive, ρDL inherits this common sign.

The realised loss on exposure i is Li = Di · Li, where:

Di = 1{Xi,D≤Φ−1(P)}

is the default indicator associated with exposure i and

Li = h(Xi,L)

is called the potential loss (our terminology) associated with exposure i. Here P denotes the common
default probability of all exposures and h is some function from R to [0, `max]. It is useful (but not
necessary) to think of potential loss as Li = max(0, 1− Ci), where Ci is the value of the collateral
pledged to exposure i expressed as a fraction of the loan’s notional value.
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Models in this framework are characterised by (i) the correlation structure of the risk factors,
specifically restrictions on the values of ρI and ρS, and (ii) the marginal distribution of potential loss.
For instance:

• Frye (2000) assumes perfect systematic correlation (ρS = 1) and zero idiosyncratic correlation
(ρI = 0);

• Pykhtin (2003) assumes perfect systematic correlation (ρS = 1) but allows for arbitrary
idiosyncratic correlation (ρI unrestricted);

• Witzany (2011) allows for arbitrary systematic correlation (ρS unrestricted) but insists on zero
idiosyncratic correlation (ρI = 0);

• Miu and Ozdemir (2006) allow for arbitrary systematic correlation (ρS unrestricted) and arbitrary
idiosyncratic correlation (ρI unrestricted).

Note that if ρS = ±1 then the systematic risk factor is effectively one-dimensional. Indeed if
ρS = 1 then Z = (Z, Z) from some standard Gaussian variable Z, and if ρS = −1 then Z = (Z,−Z).
We refer to the case |ρS| = 1 as the one-factor case, and the case |ρS| < 1 as the two-factor case. In the
one-factor case we use Z, and not Z, to denote the systematic risk factor. The first two models listed
above are one-factor models, the last two are two-factor models.

The marginal distribution of potential loss is determined by the specification of the function h.
For instance:

• Frye (2000) specifies h(x) = max(0, 1− a(1 + bx)) for constants a ∈ R and b > 0. Potential loss
takes values in [0, ∞). Its density has a point mass at zero and is proportional to a Gaussian
density on (0, ∞). Since Li is not constrained to lie in the unit interval, this specification violates
the assumptions made in Section 2.3;

• Pykhtin (2003) specifies h(x) = max(0, 1 − ea+bx) for constants a ∈ R and b > 0. Potential
loss takes values in [0, 1). Its density has a point mass at zero, and is proportional to a shifted
lognormal density over (0, 1);

• Witzany (2011) and Miu and Ozdemir (2006) both specify h(x) = B−1
a,b (Φ(x)), where a, b > 0 and

Ba,b denotes the cdf of the beta distribution with parameters a and b. Potential loss takes values in
(0, 1). It is a continuous variable and follows a beta distribution.

The sign of ρDL and the nature of the function h (increasing or decreasing) will in general
determine the sign of the relationship between Di and Li. If ρDL > 0 then the relationship will be
positive [negative] provided h is decreasing [increasing], and vice versa if ρDL < 0.

5.1. Computing µ(z)

Here vectors z ∈ R2 take the form z = (zD, zL)
T . In order to obtain an expression for µ(z) =

E[Li|Z = z], we begin with the observation that:

E[Li|Z] = E[LiDi|Z] = E[LiE[Di|Xi,L, Z]|Z] = E[LiP(Di = 1|Xi,L, Z)|Z] .

Thus,
µ(z) =

∫
R

h(xL) ·Φ(d, m(xL, z), v) · φ(xL, αLzL, 1− α2
L) dxL , (37)

where

m(xL, z) := αDzD + ρI ·

√
1− α2

D
1− α2

L
· (xL − αLzL)

and
v = v(xL, z) := (1− α2

D)(1− ρ2
I )



Risks 2020, 8, 25 17 of 36

are the conditional mean and variance of Xi,D, respectively, given that (Xi,L, Z) = (xL, z). In general
µ(z) must be evaluated using quadrature, and doing so is straightforward6. On average (across
parameter values and points z ∈ R2) a single evaluation of µ(·) requires approximately one millisecond.
In the one-factor case with ρS = 1 [ρS = −1] the expression for µ(z) = E[Li|Z = z] is obtained by
plugging z = (z, z) [z = (z,−z)] into Equation (37).

5.2. Computing k(θ, z) and θ̂(x, z)

Here again, vectors z ∈ R2 take the form z = (zD, zL)
T . In order to derive an expression for k(θ, z)

we begin with the observation that:

eθLi = 1(Di = 0) + eθLi 1(Di > 0) = 1 + (eθLi − 1) · 1(Di > 0) ,

and since k(θ, z) = log(E[eθLi |Z = z]), we get that:

k(θ, z) = log
(

1 +
∫
R
(eθh(xL) − 1) ·Φ(d, m(xL, z), v) · φ(xL, αLzL, 1− α2

L) dxL

)
, (38)

where m(xL, z) and v are given in the previous section. In the one-factor case with ρS = 1 [ρS = −1]
the expression for k(θ, z) = log(E[exp(θLi)|Z = z]) is obtained by plugging z = (z, z) [z = (z,−z)]
into Equation (38). As with µ(z), k(θ, z) must in general be evaluated using quadrature, which is
straightforward. The time required for a single evaluation of k(θ, ·) is comparable to that required for a
single evaluation of µ(·).

In order to compute θ̂ we must solve the equation k′(θ, z) = x with respect to θ. Differentiating
Equation (38) we get:

k′(θ, z) =
∂k(θ, z)

∂θ
=

∫
R h(xL) · eθh(xL) ·Φ(d, m(xL, z), v) · φ(xL, αLzL, 1− α2

L) dxL

exp(k(θ, z))
, (39)

which is straightforward to compute using quadrature. A single evaluation of k′(θ, z) requires
approximately twice as much time as a single evaluation of k(θ, z). As the root of k′(θ, z) = x
must be evaluated numerically, evaluating θ̂ is much more time consuming than evaluating k or k′.
Across parameter values and points z ∈ R2, and using θ = 0 as an initial guess, the average time
required for a single evaluation7 of θ̂(x, ·) is slightly less than one tenth of one second.

The right panel of Figure 1 illustrates the relationship between expected losses and the rejection
constant employed in the second stage, ĉ = exp(θ̂ − k(θ̂, z)). We see that ĉ is essentially a decreasing
function of µ(z), such that ĉ → 1 as µ(z) → x and ĉ → ∞ as µ(z) → 0. The left panel of
Figure 1 illustrates the graph of the LDA approximation P(L̄N > x|Z = z) ≈ exp(−Nq(x, z)).
The approximation is identically equal to one inside the region of interest, and decays to zero very
rapidly outside the region. In other words, most of the variability in the function q(x, ·) occurs along,
and just outside, the boundary of the region of interest.

6 All calculations are carried out using Matlab 2018a on a 2015 MacBook Pro with 6.8 GHz Intel Core i7 processor and 16 GB
(1600 MHz) of memory. Numerical integration is performed using the built-in integral function.

7 We use the Matlab function fzero for the root-finding.
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Figure 1. The left panel of this figure illustrates the relationship between expected losses µ(z) and the
second-stage rejection constant ĉ = ĉ(x, z), in the two-factor model. The right panel illustrates the
graph of the LDA approximation of Equation (13). Parameters (randomly selected using the procedure
in Section 5.3) in both panels are (P, ρD, ρL, ρI , ρS, a, b, N) = (0.0063, 0.3964, 0.2794, −0.3356, −0.7599,
0.6497, 0.5033, 134) and the threshold is x = 0.1575. Mean losses are E[Li] = 0.0029, and the probability
that losses exceed the threshold x is on the order of 50 basis points. Points in the left panel were
obtained by generating 1000 realizations of the systematic risk factors from their actual distribution
(as opposed to the first-stage IS distribution) using the indicated parameter values.

5.3. Exploring the Parameter Space

The model contains five parameters, in addition to any parameters associated with the
transformation h. We are ultimately interested in how well the proposed algorithms perform across
a wide range of different parameter sets. As such, in our numerical experiments we will randomly
select a large number of parameter sets according to the procedure described below, and assess the
algorithms’ performance for each parameter set.

• Generate the default probability P uniformly between 0% and 10%, and generate each of the
correlations ρD = α2

D and ρL = α2
L uniformly between 0% and 50%;

• In the one-factor model, generate ρS uniformly on {−1, 1}, i.e., ρS takes on the value −1 or +1
with equal probability. If ρS = 1 we generate ρI uniformly between 0% and 100%, and if ρS = −1
we generate ρI uniformly between−100% and 0%. This allows us to control the sign of ρDL, which
we must do in order to ensure a positive relationship between default and potential loss. In the
two-factor model we randomly generated ρS uniformly on [−1, 1]. If ρS is positive, randomly
generate ρI uniformly on [0, 1], otherwise randomly generate ρI uniformly on [−1, 0];

• We choose the transformation h(·) to ensure that (i) potential loss is beta distributed and (ii) there
is a positive relationship between default and loss. The paramters a and b of the beta distribution
are generated independently from an exponential distribution with unit mean. If ρDL < 0 we
set h(x) = B−1

a,b (Φ(x)) and if ρDL > 0 we set h(x) = B−1
a,b (Φ(−x)), where Ba,b(·) is the cumulative

distribution function for the beta distribution with parameters a and b. Note that under these
restrictions, in the one-factor model the expected loss function µ(z) is monotone decreasing.

In order to ensure that we are considering cases of practical interest, we randomise the portfolio
size and loss threshold as follows.

• Generate the number of exposures randomly between 10 and 5000;
• In the one-factor model we generate the threshold x by setting x = µ(Φ−1(10−q)), where q is

uniformly distributed on [1, 5]. The LPA suggests that

px = P(L̄N > x) ≈ P(µ(Z) > x) = P(Z < µ−1(x)) = 10−q .
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This means that log(px), the order of magnitude of the probability of interested, is approximately
uniformly distributed on [−5,−1]. In the two-factor model we set x = µ(zq), where zq =

(Φ−1(q), ρSΦ−1(q)) and q is uniformly distributed on [−5,−1].

6. Implementation

In this section we discuss our implementation of the algorithm proposed in Section 3 in the
general framework outlined in Section 5. As the general framework encompasses many of the PD-LGD
correlations that have been proposed in the literature, this section effectively discusses implementation
of the proposed algorithm across a wide variety of models that are used in practice.

6.1. Selecting the IS Density for the Systematic Risk Factors

The systematic risk factors here are Gaussian. When constructing their IS density we could either
shift their means and leave their variances (and correlations) unchanged, or shift their means and
adjust their variances (and correlations). Recall that the ultimate goal is to choose an IS density that
closely resembles the ideal density fx given in Equation (15). As illustrated8 in Figure 2, the ideal
density fx tends to be very tightly concentrated about its mean, and adjusting the variance of the
systematic risk factors leads to a much better approximation to the ideal density for “typical values” of
the ideal density. The left tail of the ideal density is, however, heavier than the variance-adjusted IS
density, an issue that can be resolved by trimming large IS weights.
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Figure 2. This figure illustrates fx (in fact, the approximation of Equation (40)) for two randomly
generated sets of parameters. Each panel superimposes (i) a normal density with the same mean and
variance as fx (dashed blue line), and (ii) a normal density with the same mean as fx and unit variance
(dash-dot red line). The mean and variance of fx are computed via (computationally inefficient)
quadrature. The mean and variance of fx are computed using quadrature. Parameters in the right
panel are (P, ρD, ρL, ρI , ρS, a, b, N) = (0.02, 0.33, 0.27, 0.96, 1, 2.47, 4.32, 454), and for the left panel they
are (P, ρD, ρL, ρI , ρS, a, b, N) = (0.03, 0.13, 0.12, 0.85, 1, 1.81, 1.90, 271). In both cases, the transformation
h is taken to be h(x) = B−1

a,b (Φ(x)).

The downside to adjusting the variance of the systematic risk factors is that it can lead to first-stage
IS weights with infinite variance, but numerical evidence suggests that this issue can be mitigated by

8 In the one-factor model, a tractable approximation to the ideal density can be obtained by using the LDA of Equation (13) to
approximate both probabilities appearing in Equation (15). The result is:

fx(z) ≈
exp(−Nq(x, z)) · φ(z)∫

R exp(−Nq(x, w)) · φ(w) dw
, (40)

and the right-hand side of Equation (40) can be approximated via quadrature. As the integrand involves θ̂, the approximation
is computationally very slow.
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trimming large weights. Indeed, numerical experiments9 suggest that adjusting variance and trimming
large weights leads to substantially more accurate estimators of px. Intuitively, it is more important
for the IS density to mimic the behaviour of the ideal density over its “typical range”, as opposed
to faithfully representing its tail behaviour. In addition to improving statistical accuracy, adjusting
variance has the added benefit of making the second stage of the algorithm more computationally
efficient in terms of run time. Indeed, as discussed in more detail in Section 6.3, adjusting variance
tends to increase the proportion of first-stage simulations that land in the region of interest (thereby
reducing the number of times the rejection sampling algorithm must be employed in the second stage)
and reduces the average size of the rejection constants employed in the second stage (thereby making
the rejection algorithm more effective whenever it must be employed).

6.2. First Stage

In this section we explain how to efficiently approximate the parameters of the optimal IS density
for the systematic risk factors, in both the one- and two-factor models. We also explain how we trim
large IS weights, and demonstrate that the resulting bias is negligible.

6.2.1. Computing Parameters in the Two-Factor Model

In the two-factor model the systematic risk factors are bivariate Gaussian with zero mean vector
and covariance matrix:

Σ =

[
1 ρS
ρS 1

]
.

The mean vector and covariance matrix that satisfy the criteria of Equation (25) are:10

µIS := E[Z|L̄N > x] (41)

and
ΣIS := E[(Z− µIS)(Z− µIS)

T |L̄N > x] , (42)

respectively. In order to approximate the suggested mean vector and covariance matrix we use
Equation (27) to get:

µIS ≈
E[exp(−Nq(x, Z)) · Z]
E[exp(−Nq(x, Z))]

(43)

and

ΣIS ≈
E[exp(−Nq(x, Z)) · (Z− µIS)(Z− µIS)

T ]

E[exp(−Nq(x, Z))]
. (44)

The expected values appearing on the right-hand sides of Equations (43) and (44) are both amenable
to simulation, and we use a small pilot simulation of size Mp << M to approximate them. In our
numerical examples, the size of the pilot simulation is 10% of the sample size that is eventually used to
estimate px.

9 Whether or not we adjust the variance of the systematic risk factor, the standard error of the resulting estimator is of the form
ν/
√

M, where ν depends on the model parameters and is easily estimated via simulation. Using 100 randomly selected
parameter sets from the one-factor model, selected according to the procedure described in Section 5.3, we find that for
the one-stage estimator νMS/νVA ≈ 1.54p−0.03

x , where νMS denotes the value of ν assuming we only shift the mean of the
systematic risk factor and do not adjust its variance and νVA denotes the value when we do adjust variance. For probabilities
in the range of interest, then, adjusting the variance of the systematic risk factor leads to an estimator that is nearly four
times as efficient, in the sense that the sample size required to achieve a given degree of accuracy (as measured by standard
error) is nearly four times larger if we do not adjust variance.

10 As discussed in Appendix B, the natural sufficient statistic here consists of the components of Z plus the components of
ZZT . As such, in order to satisfy Equation (27) we must ensure that EIS[Z] = E[Z|L̄N > x] and EIS[ZZT ] = E[ZZT |L̄N > x],
where EIS denotes mean under the IS distribution. These conditions are clearly equivalent to Equations (41) and (42)..
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In order to implement the approximation we must first simulate the systematic risk factors and
then compute q(x, z) for each sample point z. The most natural way to proceed is to (i) sample the
systematic risk factors from their actual distribution (bivariate Gaussian with zero mean vector and
covariance matrix Σ) and (ii) numerically solve the equation k′(θ, z) = x in order to compute compute
θ̂(x, z) for each pilot sample point z that lies outside the region of interest. In our experience this leads
to unacceptably inefficient estimators, in terms of both (i) statistical accuracy and (ii) computational
time. We deal with each issue in turn.

As most of the variation in q(x, ·) occurs just outside the boundary of the region of interest
(recall the right panel of Figure 1), we suggest using an IS distribution for the pilot simulation that is
centered on the boundary of the region. Specifically, we suggest using that point on the boundary at
which the density of the systematic risk factors attains its maximum value (i.e., the most likely point
on the boundary):

zx := arg min{zTΣ−1z : µ(z) = x} . (45)

The non-linear minimisation problem appearing above is easily and rapidly solved using standard
techniques. We used fmincon function in Matlab.

As zx lies on the boundary of the region of interest, roughly half the pilot sample will lie outside
the region. In Section 5.2 we noted that it takes nearly one tenth of one second to numerically solve
the equation k′(θ, z) = x. As such, if we are to compute θ̂ exactly (i.e., by numerically solving
the indicated equation) for each sample point that lies outside the region of interest, the total time
required (in seconds) to estimate the first-stage IS parameters will be at least Mp/20. In our numerical
examples we use a pilot sample size of Mp = 1000, which means that it would take nearly one full
minute to compute the first-stage IS parameters. This discussion suggests that reducing the number
of times we must numerically solve the equation k′(θ, z) = x could lead to a dramatic reduction in
computational time.

We suggest fitting a low degree polynomial to the function θ̂(x, ·), over a small region in R2 that
contains all of the pilot sample points that lie outside the region of interest. Specifically, we determine
the smallest rectangle that contains all of the pilot sample points, and discretize the rectangle using
a mesh of n2

g points, equally spaced in each direction. Next, we identify those mesh points that lie
outside the region of interest and compute θ̂(x, z) exactly (i.e., by solving k′(θ, z) = x numerically) for
each such point. Finally, we fit a polynomial to the resulting (z, θ̂(x, z)) pairs and call the resulting
function θ̄(x, ·). Numerical evidence indicates at using a fifth-degree polynomial and a mesh with
152 = 225 points leads to a sufficiently accurate approximation to θ̂(x, ·) over the indicated range
(the intersection of (i) the smallest rectangle that contains all sample points and (ii) the complement of
the region of interest). Note that θ̄ could be an extremely inaccurate approximation to θ̂ outside this
range, but that is not a concern because we will never need to evaluate it there.

It remains to compute q(x, z) for each of the pilot points z. For those points z that lie inside
the region of interest, we set q(x, z) = 0. For those points that lie inside the region, we set q(x, z) =
θ̄x − k(θ̄, z), where θ̄ = θ̄(x, z). Evaluating θ̄(x, ·) requires essentially no computational time (it is
a polynomial), and if the mesh size and degree are chosen appropriately the difference between θ̂

and θ̄ is very small. In total, the suggested procedure reduces the number of evaluations of θ̂ from
Mp/2 to ng/2, for a percentage reduction of n2

g/Mp. In our numerical examples we use ng = 15 and
Mp = 1000, which corresponds to a reduction of 75% in computational time.

To summarise, we estimate the optimal first-stage IS parameters as follows. First, we compute zx.
Second, we draw a random sample of size Mp from the Gaussian distribution with mean vector zx and
covariance matrix Σ. Third, we construct θ̄(x, ·), the polynomial approximation to θ̂(x, ·), as described



Risks 2020, 8, 25 22 of 36

in the previous paragraph. Fourth, for those sample points z that lie outside the region of interest we
compute q(x, z) using θ̄ instead θ̂. The estimates of the optimal first-stage IS parameters are then:

µ̂IS =
∑

Mp
m=1 w(Zm) exp(−Nq(x, Zm))Zm

∑
Mp
m=1 w(Zm) exp(−Nq(x, Zm))

and

Σ̂IS =
∑

Mp
m=1 w(Zm) exp(−Nq(x, Zm))(Zm − µ̂IS)(Zm − µ̂IS)

T

∑
Mp
m=1 w(Zm) exp(−Nq(x, Zm))

,

where Z1, . . . , ZMp is the random sample and

w(z) =
φ(z; 0, Σ)
φ(z; zx, Σ)

is the IS weight associated with shifting the mean of the systematic risk factors from 0 to zx. The upper
left panel of Figure 3 illustrates a typical situation where the mean of the IS distribution lies “just
inside” the region of interest.
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Figure 3. This figure illustrates the locations of (i) the importance sampling (IS) mean used for
the pilot simulation and (ii) the IS mean used for the actual simulation, relative to the region of
interest. Parameters (randomly selected using the procedure in Section 5.3) in both panels are
(P, ρD, ρL, ρI , ρS, a, b, N) = (0.0063, 0.3964, 0.2794, -0.3356, -0.7599, 0.6497, 0.5033, 134) and the threshold
is x = 0.1575. Mean losses are E[Li] = 0.0029.

6.2.2. Computing Parameters in the One-Factor Model

The procedure described in the previous section specialises in the one-factor case as follows. First,
under the parameter restrictions outlined in Section 5.3, the expected loss function µ(z) is a strictly
decreasing function of z. As such, the region of interest is the semi-infinite interval (−∞, zx), where
zx := µ−1(x), and its boundary is the single point zx. In general zx must be computed numerically,
which is straightforward. Second, we draw a random sample of size Mp from the Gaussian distribution
with mean zx and unit variance. Third, the polynomial approximation to θ̂ is constructed by evaluating
θ̂ exactly (i.e., by numerically solving the equation k′(θ, z) = x) at each of ng equally-spaced points
z in the interval [z−, z+], where z− and z+ are the largest and smallest values obtained in the pilot
simulation, respectively, and then fitting a polynomial to the resulting (z, θ̂(x, z)) pairs. Fourth, we



Risks 2020, 8, 25 23 of 36

evaluate q(x, z) for each pilot sample point z as follows—if z lies inside the region of interest we set
q(x, z) = 0, otherwise we compute q(x, z) by replacing the exact value θ̂(x, z) with the approximate
value θ̄(x, z), where θ̄ is the polynomial constructed in the previous step. Note that a single evaluation
of θ̄ requires far less computational time than a single evaluation of θ̂. Finally, the approximations to
the first-stage IS parameters are:

µ̂IS =
∑

Mp
m=1 w(Zm) exp(−Nq(x, Zm))Zm

∑
Mp
m=1 w(Zm) exp(−Nq(x, Zm))

and

σ̂2
IS =

∑
Mp
m=1 w(Zm) exp(−Nq(x, Zm))(Zm − µ̂IS)

2

∑
Mp
m=1 w(Zm) exp(−Nq(x, Zm))

,

where Z1, . . . , ZMp is the random sample and

w(z) =
φ(z; 0, 1)
φ(z; zx, 1)

.

is the IS weight associated with shifting the mean of the systematic risk factor from 0 to zx.

6.2.3. Trimming Large Weights

In the one-factor model the first-stage IS weight will have infinite variance whenever σ2
IS < 0.5

(see Remark A1 in Appendix B). In a sample of 100 parameter sets, randomly selected according to the
procedure in Section 5.3, the largest realised value of σ2

IS was 0.38, and the mean and median were 0.11
and 0.09, respectively. It appears, then, that the first-stage IS weight in the one-factor model will have
infinite variance in all cases of practical interest. We trim large weights as described in Section 4.2,
using the set:

A = {z ∈ R : |z− µ̂IS| ≤ Cσ̂IS}

for some constant C. In the numerical examples that follow we use C = 4, in which case we expect to
trim less than 0.01% of the entire sample. Specialising Equation (34) to the present context, we get that
an upper bound on the associated bias is given by:∫

AC
exp(−Nq(x, z))φ(z) dz , (46)

which is straightforward (albeit slow) to compute using quadrature. Figure 4 illustrates the relationship
between the probability of interest px and the upper bound of Equation (46) for the 100 randomly
generated parameter sets, and clearly demonstrates that the bias associated with our trimming
procedure is negligible. For instance, for probabilities on the order of 10−3 the bias is no larger
than 10−5, or 1% of the quantity of interest.

In the two-factor model the first-stage IS weight will have infinite variance whenever det(2Σ−1 −
Σ−1

IS ) < 0. In a random sample of 100 parameter sets, this condition occurred 96 times. As in the
one-factor model, then, the first-stage IS weight in the two-factor model can be expected to have
infinite variance in most cases of practical interest. We trim large weights using the set:

A =
{

z ∈ R2 : (z− µ̂IS)
TΣ̂−1

IS (z− µ̂IS)| ≤ C2
}

for some constant C, and use C = 4 in the numerical examples that follow.
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Figure 4. This figure illustrates the bias introduced by trimming large weights (vertical axis) as
a function of the probability of interest (horizontal axis), for 100 randomly generated parameter
sets in the one-factor case. For each set, we compute bias (in fact, an upper bound on the bias) by
using quadrature to approximate Equation (46) and estimate the probability of interest using the full
two-stage algorithm.

6.3. Second Stage

The first stage of the algorithm consists of (i) computing the first-stage IS parameters,
(ii) simulating a random sample of size M from the systematic risk factors’ IS distribution, and
(iii) computing the associated IS weights, trimming large weights appropriately. Having completed
these tasks, the next step is to simulate individual losses in the second stage. In the remainder of this
section we let z = (zD, zL) denote a generic realisation of the systematic risk factors obtained in the
first stage.

6.3.1. Approximating θ̂

Before generating any individual losses first construct the polynomial approximation to θ̂, using
the same procedure described in Section 6.2.1. The basic idea is to fit a relatively low degree polynomial
to the surface of θ̂(x, ·), over a small region that contains all of the first-stage sample points. The values
of z obtained in the pilot sample are invariably different from those obtained in the first stage, so it is
essential that the polynomial is refit to account for this fact. In what follows we use θ̄ to approximate θ̂

whenever the numerical value of θ̂ is required, but since the difference between the two is small we do
not distinguish between the two (i.e., we write θ̂ in this document, but use θ̄ in our code).

6.3.2. Sampling Individual Losses

In this section we describe how to sample individual losses in the two-factor model. The procedure
carries over in an obvious way to the one-factor model, so we do not discuss that case explicitly.

If z lies inside the region of interest then the second stage is straightforward. For a given exposure
i, we first simulate the exposure’s idiosyncratic risk factors Yi = (Yi,D, Yi,L), from the bivariate normal
distribution with standard normal margins and correlation ρI . Next, we set:

(Xi,D, Xi,L) = (αDzD +
√

1− α2
DYi,D, αLzL +

√
1− α2

LYi,L) .
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If Xi,D > Φ−1(P) then the exposure did not default and we set Li = 0 and proceed to the next exposure.
Otherwise the exposure did default, in which case we must compute h(Xi,L), set `i = h(xi,L) and
then proceed to the next exposure. Note that we only evaluate h for defaulted exposures—this is
important since evaluating h requires numerical inversion of the beta cdf, which is relatively slow.
Having computed the individual losses associated with each exposure, we then compute the average
loss ¯̀ = N−1 ∑N

i=1 `i and set Λ2(z, ¯̀) = 1.
If z lies outside the region of interest we must compute θ̂, k(θ̂) and ĉ, which we do approximately

using the polynomial approximation θ̄. We then sample from ĝx(·|z) as follows. First simulate the
idiosyncratic risk factors Yi = (Yi,D, Yi,L) from the bivariate normal distribution with standard normal
margins and correlation ρI . Also generate a random number U, independent of Yi. Then set:

(Xi,D, Xi,L) = (αDzD +
√

1− α2
DYi,D, αLzL +

√
1− α2

LYi,L) .

If the exposure did not default we set L̂i = 0, otherwise we compute h and set L̂i = h(Xi,L). Next we
check whether or not

U ≤ 1
ĉ
· ĝx(L̂i|z)

g(L̂i|z)
= exp(−θ̂(`max − L̂i)) (47)

then accept L̂i as a drawing from ĝx, that is, set Li = L̂i and proceed to exposure i. Otherwise, draw
another random number U and set of idiosyncratic factors. Once we have sampled the individual
losses associated with each exposure we compute the average loss ¯̀ = N−1 ∑N

i=1 `i and set Λ2(z, ¯̀) =
exp(−N[θ̂ ¯̀ − k(θ̂, z)]), using the polynomial approximation to estimate the value of θ̂.

6.3.3. Efficiency of the Second Stage

The frequency with which the rejection sampling algorithm must be applied in the second stage
is governed by PIS(µ(Z) > x). The left panel of Figure 5 illustrates the empirical distribution of this
probability across 100 randomly selected parameter sets. The distribution is concentrated towards
small values (the median fraction is 27%) but does have a relatively thick right tail (the mean fraction
is 35%). In some cases—particularly when the value of the parameter ρD is close to zero, in which
case individual losses are very nearly independent and systematic risk is largely irrelevant—the vast
majority of first-stage simulations require further IS in the second stage.

The efficiency of the rejection sampling algorithm, when it must be applied, is governed by the
conditional distribution of ĉ = ĉ(x, Z) given that µ(Z) < x. For each of the 100 parameter sets we
estimate EIS[ĉ(x, Z)|µ(Z) < x], which determines the average size of the rejection constant for a given
set of parameters, by computing the associated value of ĉ for each first-stage realisation that lies
outside the region of interest and then averaging the resulting values. The right panel of Figure 5
illustrates the results, and we note that the mean and median of the data presented there are 1.09 and
1.17, respectively. The figure clearly indicates that the rejection sampling algorithm can be expected to
be quite efficient, whenever it must be applied.

The distributions of PIS(µ(Z) < x) and EIS[ĉ(x, Z)|µ(Z) < x] across parameters depend heavily
on whether or not we adjust the variance of the systematic risk factors in the first stage. When we do
not adjust variance, the mean and median of PIS(µ(Z) < x) (across 100 randomly selected parameter
sets) rise to 49% and 45% (as compared to 35% and 27% when we do adjust variance), and the mean
and median of EIS[ĉ(x, Z)|µ(Z) < x] rise to 18.6 and 1.8, respectively (as compared to 1.17 and 1.09
when we do adjust variance).

Remark 7. If we do not adjust the variance of the systematic risk factors in the first stage, then (i) the rejection
sampling algorithm must be applied more frequently and (ii) is less efficient whenever it must be applied.
As such, adjusting the variance of the systematic risk factors reduces the total time required to implement the
two-stage algorithm.
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Figure 5. This figure illustrates the variation of PIS(µ(Z) < x) (left panel) and EIS[ĉ(x, Z)|µ(Z) < x]
(right panel) across model parameters. Recall that the former quantity determines the frequency
with which the second-stage rejection sampling algorithm must be applied and the latter quantity
determines the efficiency of the algorithm when it must be applied. For each of 100 parameter sets,
randomly selected according to the procedure described in Section 5.3, we compute the first-stage IS
parameters and then draw 10,000 realisations of the systematic risk factors from the variance adjusted
first-stage IS density.

The intuition behind this fact is as follows. First recall that the mean of the systematic risk factors
tends to lie just inside the region of interest (recall Figure 3). In such cases the effect of reducing the
variance of the systematic risk factors is to concentrate the distribution of Z just inside the boundary of
the region of interest. Not only will this ensure that more first-stage realisations lie inside the region of
interest (thereby reducing the fraction of points that require further IS in the second stage), it will also
ensure that those realisations that lie outside the region (i.e., for which µ(z) < x) do not lie “that far”
outside the region (i.e., that µ(z) is not “that much less” than x), which in turn ensures that the typical
size of ĉ is relatively close to one (recall the left panel of Figure 1).

7. Performance Evaluation

In this section we investigate the proposed algorithms’ performance in terms of statistical accuracy,
computational time, and overall. Unless otherwise mentioned, we use a pilot sample size of Mp = 1000
to estimate the first-stage IS parameters and a sample size of M = 10,000 to estimate the probability of
interest (px). We use the value C = 4 to trim large first-stage IS weights, and a value of cmax = 10 to
trim large rejection constants.

7.1. Statistical Accuracy

The standard error of any estimator that we consider is of the form νx/
√

M for some constant
νx that depends on the algorithm used and the model parameters. For instance, for the one-stage
estimator in the two-factor case we have νx = SD1S(Λ1(Z) · 1{L̄N>x}), where SD1S denotes standard
deviation under the one-stage IS density of Equation (31). Note that in the absence of IS we have
νx =

√
px(1− px) ∼ p0.5

x as px → 0.
Figure 6 illustrates the relationship between νx and px using 100 randomly selected parameters

sets, for the two-stage algorithm and in the two-factor case. Importantly, we see that (i) νx seems to be
a function of px (i.e., it only depends on model parameters through px) and (ii) for small probabilities
the functional relationship appears to be of the form νx = apb

x for constants a and b. These features
are also present in the case of the one-stage estimator, as well as for both estimators in the one-factor
model. The numerical values of a and b are easily estimated using the line of best fit (on the logarithmic
scale), and the estimated values for both the one- and two-factor cases are summarised in Table 1.
Of particular note is the fact that the value of b is extremely close to one in every case.
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Figure 6. This figure illustrates the relationship between νx and px, where νx is the standard deviation
of Λ1(Z)Λ2(L̄N , Z)1{L̄N≥x} under the two-stage IS density of Equation (32), in the two-factor case.
The numerical values of px and νx are estimated for each of 100 randomly generated parameters sets,
according to the procedure described in Section 5.3.

Table 1. This table reports fitted values of the relationship νx ≈ apb
x for each estimator (one- and

two-stage) and each model (one- and two-factor). Values of a and b are obtained by determining the
line of best fit on the logarithmic scale (i.e., the line appearing in Figure 6). Note that in the absence of
IS we would have νx =

√
px(1− px) ≈ p0.5

x .

One-Stage Algorithm Two-Stage Algorithm

One-Factor Model 0.91p0.98
x 0.81p0.99

x
Two-Factor Model 0.98p0.98

x 0.81p0.98
x

Of particular interest in the rare event context is an estimator’s relative error, defined as the ratio
of its standard error to the true value of the quantity being estimated. For any of the estimators that we
consider, the component of relative error that does not depend on sample size is νx/px ≈ apb−1

x . In the
absence of IS we have b− 1 = −0.5, in which case relative error grows rapidly as px → 0 (i.e., νx → 0
but νx/px → ∞ as px → 0). By contrast, b ≈ 1 for any of our IS estimators, in which case there is weak
dependence of relative error on px. The minimum sample size required to ensure that an estimator’s
relative error does not exceed the threshold ε is v2

x/(pxε)2 ≈ a2 p2(b−1)
x ε−2. In the absence of IS we

have b ≈ 0.5, in which case the sample size (and therefore computational burden) required to achieve
a given degree of accuracy increases rapidly as px → 0. By contrast, for all of our IS estimators we have
b ≈ 1, in which case the minimum sample size (and computational burden) is nearly independent of px.

Our ultimate goal is to reduce the computational burden associated with estimating px,
in situations where px is small. To see how effective the proposed algorithms are in this regard,
note that the sample size required to achieve a given degree of accuracy using the proposed algorithm,
relative to that required to achieve the same degree of accuracy in the absence of IS, is approximately

a2 p2(b−1)
x ε−2

p−1
x ε−2

= a2 p2b−1
x ,

which does not depend on ε. Since a < 1 and b > 0.5 (recall Table 1), we have that a2 p2b−1
x < px.
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Remark 8. The relative sample size required to achieve a given degree of accuracy using the proposed algorithm,
relative to that required in the absence of IS, is not larger than the probability of interest. For example, if the
probability of interest is approximately 1%, then the proposed algorithm requires a sample size that is less than
1% of what would be required in the absence of IS (regardless of the desired degree of accuracy). And if the
probability of interest is 0.1%, then the proposed algorithm requires a sample size that is less than 0.1% of what
would be required in the absence of IS. In other words, the proposed algorithm is extremely effective at reducing
the sample size required to achieve a given degree of accuracy.

It is also insightful to compare the efficiency of the two-stage estimator, relative to the one-stage
estimator. In the one-factor case, the minimum sample size required using the two-stage algorithm,
relative to that required using the one-stage algorithm, is approximately:

0.66p−0.02
x ε−2

0.83p−0.04
x ε−2

= 0.80p0.02
x .

As px ranges from 1% to 0.01% the estimated relative sample size ranges from 0.73 to 0.67. In the
two-factor case, the relative sample size is approximately 0.69, regardless of the value of px.

Remark 9. In both the one- and two-factor models, the two-stage algorithm is more efficient than the one-stage
algorithm, in the sense that it requires a smaller sample size in order to achieve a given degree of accuracy. Indeed,
in cases of practical interest (probabilities in the range of 1% to 0.01%) the minimum sample size required to
achieve a given degree of accuracy using the two-stage algorithm is roughly 70% of what would be required
using the one-stage algorithm.

7.2. Computational Time

Figure 7 illustrates the relationship between sample size (M) and run time (total time required to
estimate px using a particular algorithm), for one randomly selected set of parameters. Across both
models and algorithms, the relationship is almost perfectly linear. In the absence of IS the intercept
is zero (i.e., run time is directly proportional to sample size), whereas the intercepts are non-zero for
the IS algorithms. The non-zero intercepts are due to the overhead associated with (i) computing the
first-stage IS parameters, which accounts for almost all of the difference between the intercepts of the
solid (no IS) and dashed (one-stage IS) intercepts, and (ii) computing the second-stage polynomial
approximation to θ̂, which accounts for almost all of the difference between the intercepts of the the
dashed (one-stage IS) and dash-dot (two-stage IS) lines. It is also worth noting that a given increase
in sample size will have a greater impact on the run times for the IS algorithms than it will on the
standard algorithm. This is because we only calculate h(Xi,L) for defaulted exposures (evaluating h(·)
is slow because it requires numerical inversion of the beta distribution function), and the default rate
is higher under the IS distribution.

Across 100 randomly generated parameter sets, portfolio size (N) is most highly correlated with
run time and the relationship is roughly linear. Table 2 reports summary statistics on run times, across
algorithms and models.

Table 2. This table reports summary statistics—in seconds, and across 100 randomly selected parameter
sets—for total run time (first three columns), time required to estimate the first-stage IS parameters
(fourth column) and time required to fit the second-stage polynomial approximation to θ̂ (final column).

Average Run Times

No IS One-Stage IS Two-Stage IS µIS, ΣIS θ̂

One Factor 7.3 25.6 33.7 1.5 0.8
Two Factor 7.4 39.0 55.5 14.3 8.9
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Figure 7. This figure illustrates the relationship between sample size (M) and run time (total CPU
time required to estimate px by a particular algorithm), using a set of parameters randomly selected
according to the procedure described in Section 5.3. For each value of M we use a pilot sample that is
10% as large as the sample that is eventually used to estimate px (i.e., we set Mp = 0.1M). The left panel
corresponds to the one-factor model and parameter values are (P, ρD, ρL, ρI , ρS, a, b) = (0.0827, 0.1000,
0.3629, −0.0180, −1, 0.6676, 0.8751) and N = 2334. The right panel corresponds to the two-factor model
and parameter values are (P, ρD, ρL, ρI , ρS, a, b) = (0.0241, 0.2322, 0.0343, 0.1650, 0.4135, 0.4056, 0.4942)
and N = 3278.

7.3. Overall Performance

Recall that the ultimate goal of this paper is to reduce the computational burden associated with
estimating px, when px is small. The computational burden associated with a particular algorithm is a
function of both its statistical accuracy and total run time. We have seen that the proposed algorithms
are substantially more accurate, but require considerably more run time. In this section we demonstrate
that the benefit of increased accuracy is well worth the cost of additional run time, by considering
the amount of time required by a particular algorithm in order to achieve a given degree of accuracy
(as measured by relative error).

To begin, let t(M) denote the total run time required by a particular algorithm to estimate px

using a sample of size M. As illustrated in Figure 7 we have t(M) ≈ c + dM for constants c and d that
depend on the underlying model parameters (particularly portfolio size, N) as well as the algorithm
being used. In Section 7.1 we saw that the minimum sample size required to ensure that the estimator’s
relative error does not exceed the threshold ε isL

M(ε) ≈ a2 p2(b−1)
x ε−2 ,

for constants a and b depending on the underlying model (one- or two-factor) and algorithm being
used. Thus, if T(ε) denotes the total CPU time required to ensure that the estimator’s relative error
does not exceed ε, we have:

T(ε) ≈ c + da2 p2(b−1)
x ε−2 . (48)

Table 3 contains sample calculations for several different values of px and ε, using the data appearing
in the left panel of Figure 7 to estimate c and d and the values of a and b implicitly reported in Table 1.
The results reported in the table are representative of those obtained using different parameter sets.
It is clear that the proposed algorithms can substantially reduce the computational burden associated
with accurate estimation of small probabilities. For instance, if the probability of interest is on the order
of 0.1% then either of the proposed algorithms can achieve 5% accuracy within 2–3 s, as compared to
4 min (80 times longer) in the absence of IS.



Risks 2020, 8, 25 30 of 36

Table 3. This table reports the time (in seconds) required to achieve a given degree of accuracy
(computed using Equation (48)) for several values of px and ε, for the parameter values corresponding
to the left panel of Figure 7. Note that this is for the one-factor model. Values of c and d are obtained from
the lines of best fit appearing in the left panel of Figure 7, values of a and b are obtained from Table 1.

No IS

ε
px 1% 0.1% 0.01%

10% 6 60 600
5% 24 240 2400
1% 600 6000 60,000

One-Stage IS (Two-Stage IS)

ε
px 1% 0.1% 0.01%

10% 1.2 (2.3) 1.2 (2.3) 1.3 (2.4)
5% 1.8 (2.8) 1.9 (2.9) 1.9 (2.9)
1% 20.0 (18.8) 21.8 (19.6) 23.8 (20.4)

The two-stage estimator is statistically more accurate (Section 7.1) but computationally more
expensive (Section 7.2) than the one-stage estimator. It is important to determine whether or not the
benefit of increased accuracy outweighs the cost of increased computational time. Table 3 suggests
that, in some cases at least, implementing the second stage is indeed worth the effort, in the sense that
it can achieve the same degree of accuracy in less time.

Figure 8 illustrates the overall efficiency of the proposed algorithms, as a function of the desired
degree of accuracy. Specifically, the left panel illustrates the ratio of (i) the total CPU time required to
ensure the standard estimator’s relative error does not exceed a given threshold to (ii) the total time
required by the proposed algorithms, for a randomly selected set of parameter values in the one-factor
model. The right panel illustrates the same ratio for a randomly selected set of parameters in the
two-factor model.
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Figure 8. This figure illustrates the overall efficiency of the proposed algorithms. Specifically, the solid
[dashed] line in the left panel illustrates the ratio of (i) the total run time (in seconds) required to ensure
that the standard estimate’s relative error does not exceed a given threshold to (ii) the run time required
by the one-stage [two-stage] algorithm, in the one-factor model. The right panel corresponds to the
two-factor model. Parameter values are the same as in Figure 7 and Table 3.

In the one-factor model, it would take hundreds of times longer to obtain an estimate of px whose
relative error is less than 10%, and thousands of times longer to obtain an estimate whose relative error
is less than 1%. The figure also suggests that, since it requires less run time to obtain very accurate
estimates, the two-stage algorithm is preferable to the one-stage algorithm in the one-factor model.
In the two-factor model—where estimating IS parameters and fitting the second-stage polynomial
approximation to θ̂ is more time consuming—the proposed algorithms are hundreds of times more
efficient than the standard algorithm. In addition, it appears that the one-stage algorithm is preferable
to the two-stage algorithm in this case. Although the numerical values discussed here are specific to
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the parameter set used to produce the figure, they are representative of other parameter sets. In other
words, the behaviour illustrated in Figure 8 is representative of the general framework overall.

8. Concluding Remarks

This paper developed an importance sampling (IS) algorithm for estimating large deviation
probabilities for the loss on a portfolio of loans. In contrast to existing literature, we allowed loss given
default to be stochastic and correlate with the default rate. The proposed algorithm proceeded in two
stages. In the first stage one generates systematic risk factors from an IS distribution that is designed
to increase the rate at which adverse macroeconomic scenarios are generated. In the second stage
one checks whether or not the simulated macro environment is sufficiently adverse—if it is then no
further IS is applied and idiosyncratic risk factors are drawn from their actual (conditional) probability
distribution, if it is not then one indirectly applies IS to the conditional distribution of the idiosyncratic
risk factors. Numerical evidence indicated that the proposed algorithm could be thousands of times
more efficient than algorithms that did not employ any variance reduction techniques, across a wide
variety of PD-LGD correlation models that are used in practice.
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Appendix A. Exponential Tilts and Large Deviations

Let X1, X2, . . . , be independent and identically distributed random variable with common density
f (x), having bounded support [xmin, xmax], and common mean µ = E[Xi]. For θ ∈ R we let
m(θ) = E[exp(θXi)] and k(θ) = log(m(θ)) denote the common moment generating function (mgf)
and cumulant generating function (cgf) of the Xi, respectively. Note that µ = m′(0) = k′(0).

Appendix A.1. Properties of k(θ)

Elementary properties of cgfs ensure that k′(·) is a strictly increasing function that maps R onto
(xmin, xmax). One implication is that, for fixed t ∈ (xmin, xmax), the graph of the function θ 7→ θt− k(θ)
is ∩-shaped. The graph also passes through the origin, and its derivative at zero is t − µ. If this
derivative is positive (i.e., if µ < t) then the unique maximum is strictly positive and occurs to the
right of the origin. If it is negative (i.e., if µ > t) then the unique maximum is strictly positive and
occurs to the left of the origin. If it is zero (i.e., if µ = t) then the unique maximum of zero is attained at
the origin.

For a given t ∈ (xmin, xmax), there is a unique value of θ for which k′(θ) = t. We let θ̃ = θ̃(t) denote
this value of θ. Note that θ̃(t) is a strictly increasing function of t and that θ̃(µ) = 0. Thus θ̃ is positive
[negative] whenever t > µ [t < µ]. An important quantity in what follows is θ̂ = θ̂(t) := max(0, θ̃(t)),
which can be interpreted as the unique value of θ for which k′(θ) = max(µ, t). Note that if t ≤ µ then
θ̂ = 0, and if t > µ then θ̂(t) > 0.

Appendix A.2. Legendre Transform of k(θ)

We let q(·) denote the Legendre transform of k(·) over [0, ∞). That is,

q(t) := max
θ≥0

(θt− k(θ)) = θ̂t− k(θ̂) , (A1)

where θ̂ = θ̂(t) was defined in the previous section, and is the (uniquely defined) point at which
the function θ 7→ θt− k(θ) attains its maximum on [0, ∞). Based on the discussion in the preceding
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paragraph, we see that θ̂(t) = q(t) = 0 whenever µ ≥ t, whereas both θ̂(t) and q(t) are strictly positive
whenever µ < t.

The derivative of the transform q is demonstrably equal to:

q′(t) = θ̂(t) + θ̂′(t) · [t− k′(θ̂(t))] .

Since θ̂ = 0 whenever t ≤ µ and k′(θ̂) = t whenever t > µ, the second term above vanishes for all t,
and we find that:

q′(t) = θ̂(t) . (A2)

Appendix A.3. Exponential Tilts

For θ ∈ R we define:
fθ(x) := exp(θx− k(θ)) · f (x) . (A3)

The density fθ is called an exponential tilt of f . As the value of the tilt parameter θ varies, we obtain an
exponential family of densities (exponential families have lots of very useful properties, and this is
an easy way of constructing them). If θ is positive then the right and left tails of fθ are heavier and
thinner, respectively, than those of f . The opposite is true if θ is negative. The larger in magnitude is θ,
the greater the discrepancy between f and fθ ; indeed the Kullback–Leibler divergence from fθ to f is
−θµ + k(θ), which is a strictly convex function of θ that attains its minimum value (of zero) at θ = 0.

It is readily verified that k′(θ) = Eθ [Xi], where Eθ denotes expectation with respect to fθ . This
observation, in combination with the developments in Section A.1, implies that it is always possible to
find a density of the form (A3) whose mean is t, whatever the t ∈ (xmin, xmax). Indeed fθ̃ is precisely
such a density. Under mild conditions, fθ̃(·) can be characterised as that density that most resembles
f (in the sense of minimum divergence), among all densities whose mean is x (and are absolutely
continuous with respect to f ).

Recall that θ̂ is the unique value of θ for which k′(θ) = max(t, µ). We can therefore interpret fθ̂ as
that density that most resembles f , among all densities whose mean is at least t (and that are absolutely
continuous with respect to f ). Note in particular hat the mean of fθ̂ is max(µ, t). The numerical value
of θ̂ can therefore be interpreted as the degree to which we must deform the density f , in order to
produce a density whose mean is at least t. If µ ≥ t then θ̂ = 0 and no adjustment is necessary. If µ < t
then θ̂ > 0 and mass must be transferred from the left tail to the right; the larger the discrepancy
between µ (the mean of f ) and t (the desired mean), the larger is θ̂.

Appendix A.4. Behaviour of Xi, Conditioned on a Large Deviation

Let ft(x) denote the conditional density of Xi, given that XN > t, where XN = 1
N ∑N

i=1 Xi.
We suppress the dependence of ft on N for simplicity. Using Bayes’ rule we get

ft(x) =
P(X̄N > t|Xi = x)

P(X̄N > t)
· f (x) ,

and since the Xi are independent, we get

P(X̄N > t|Xi = x) = P(X̄N−1 > t + t−x
N−1 ) .

Now, using the large deviation approximation P(XN ≥ t) ≈ exp(−N · q(t)), we get that

P(X̄N > t|Xi = x)
P(X̄N > t)

≈ exp(−(N − 1)q(t + t−x
N−1 ) + Nq(t)) .
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Now if N is large then

q(t + t−x
N−1 ) ≈ q(t) + q′(t) · t−x

N−1 = q(t) + θ̂ · t−x
N−1 ,

where we have used the fact that q′(t) = θ̂(t). Putting everything together we arrive at
the approximation

P(XN > t|Xi = x)
P(XN > t)

≈ exp(θ̂x− k(θ̂)) ,

which leads to the approximation

ft(x) ≈ exp(θ̂x− k(θ̂)) · f (x) . (A4)

We may thus interpret the conditional density ft as that density which most resembles the unconditional
density f , but whose mean is at least t.

Appendix A.5. Approximate Behaviour of (X1, X2, . . . , XN), Conditioned on a Large Deviation

Let f̂t(x) = f̂t(x1, . . . , xN) denote the conditional density of (X1, . . . , XN), given that XN > t. Then

f̂t(x) =
∏N

i=1 f (xi)

pt
, x ∈ AN,t ,

where pt = P(XN > t) and AN,t is the set of those points x ∈ [xmin, xmax]N whose average value
exceeds t.

We seek a density h(x), supported on [xmin, xmax], which minimizes the Kullback-Leibler
divergence (KLD) of

ĥ(x) :=
N

∏
i=1

h(xi)

from f̂t. In other words, we seek an independent sequence Y1, Y2, . . . , YN (whose density is ĥ) whose
behaviour most resembles (in a certain sense) the behaviour of X1, X2, . . . , XN , conditioned on the
large deviation XN > t.

Now let Eg denote expectation with respect to the density g. Then the divergence of ĥ from f̂t is

E f̂t
[log( f̂t(X)/ĥ(X))] =

N

∑
i=1

E f̂t
[log ( f (Xi)/h(Xi))]− log(pt)

= N ·E f̂t
[log ( f (X1)/h(X1))]− log(pt)

= N ·E ft [log ( f (X1)/h(X1))]− log(pt)

= N ·E ft [log ( f (X1)/ ft(X1))] + N ·E ft [log ( ft(X1)/h(X1))]− log(pt)

Now, the middle term in the above display is the KLD of h from ft. As such it is non-negative, and is
equal to zero if and only if h = ft. It follows immediately that the divergence of ĥ from f̂t is minimised
by setting h = ft.

Appendix B. Important Exponential Families

This appendix considers two important special cases—the Gaussian and t families—of the general
setting discussed in Section 2.2.
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Appendix B.1. Gaussian

Suppose first that the Z is Gaussian with mean vector µ0 ∈ Rd and positive definite covariance
matrix Σ0. When specifying the IS distribution, one can either (i) shift the mean of Z but leaves its
covariance structure unchanged or (ii) shift its mean and adjust its covariance structure. In general the
latter approach will lead to a better approximation of the ideal IS density but more volatile IS weights.

If we take the former approach (shifting mean, leaving covariance structure unchanged),
the implicit family in which we are embedding f is the Gaussian family with arbitrary mean vector
µ ∈ Rd and fixed covariance matrix Σ0. To this end, let f (z) = φ(z; µ0, Σ0) denote the Gaussian density
with mean vector µ0 and covariance matrix Σ0 and let fλ(z) = φ(z; µ, Σ0). It remains to identify the
natural sufficient statistic and write the natural parameter λ in terms of the mean vector µ. To this end,
note that

fλ(z)
f (z)

= exp
(
(µT − µT

0 )Σ
−1
0 z− 1

2
µTΣ−1µ +

1
2

µT
0 Σ−1µ0

)
.

The natural sufficient statistic is therefore

S(z) = (z1, . . . , zd) ,

the natural parameter is
λ(µ) = Σ−1

0 (µ− µ0) .

Note that we can write µ(λ) = µ0 + Σ0λ, so that the natural parameter represents a sort of normalized
deviation from the actual mean µ0 to the IS mean µ. Lastly, we see that the cgf of S(Z) is

K(λ) =
1
2

[
µT

λΣ−1
0 µλ − µT

0 Σ−1
0 µT

0

]
= λTµ0 +

1
2

λTΣ0λ ,

where we have written µλ instead of µ(λ) in the above display. Clearly, we have that both K(λ) and
K(−λ) are well-defined for all λ ∈ Rd. The implication is that if we shift the mean of Z but leave its
covariance structure unchanged, the IS weight will have finite variance regardless of what IS mean
we choose.

If we take the former approach (shifting mean, adjusting covariance) the implicit family in which
we are embedding f is the Gaussian family with arbitrary mean vector µ and arbitrary positive definite
covariance matrix Σ. In this case we have fλ(z) = φ(z; µ, Σ) and the ratio of fλ(z) to f (z) is

exp((µTΣ−1 − µT
0 Σ−1

0 )z +
1
2

zT(Σ−1
0 − Σ−1)z− K̂(µ, Σ)) ,

where
K̂(µ, Σ) =

1
2

[
µTΣ−1µ− µT

0 Σ−1
0 µ0 + log(det(Σ)− log(det(Σ0)

]
.

The natural sufficient statistic therefore consists of the d elements of the vector z plus the d2 elements
of the vector zzT . The natural parameter λ consists of the elements of the vector

λ1 := λ1(µ, Σ) = Σ−1µ− Σ−1
0 µ0

plus the elements of the matrix

λ2 := λ2(Σ) =
1
2
(Σ−1

0 − Σ−1) .

Note that since we have assumed Σ is positive definite, we are implicitly assuming that the matrix λ2

is such that the determinant of 1
2 Σ−1

0 − λ2 is strictly positive. The natural parameter space is therefore
unrestricted for λ1, but restricted (to matrices such that the indicated determinant is strictly positive)
for λ2.



Risks 2020, 8, 25 35 of 36

The above relations can be inverted to write µ and Σ in terms of λ1 and λ2, indeed

Σ = Σ(λ2) = (Σ−1
0 − 2λ2)

−1

and
µ = µ(λ1, λ2) = (Σ−1

0 − 2λ2)
−1(λ1 + Σ−1

0 µ0) .

The cgf of the natural sufficient statistic is

K(λ) = K(λ1, λ2) = K̂(µλ1,λ2 , Σλ2 ) =
1
2

µT
λ1,λ2

Σ−1
λ2

µλ1,λ2 −
1
2

µT
0 Σ−1

0 µ0 +
1
2

log(det(Σλ2 ))−
1
2

log(det(Σ0))

It is now clear that K(λ) is well defined if and only if the determinant of Σ(λ2) is strictly positive,
which we have implicitly assumed to be the case since we have insisted Σ be positive definite. It is also
clear that K(−λ) is well-defined if and only if the determinants Σ(−λ2) is strictly positive, which will
occur if and only if the determinant of (2Σ−1

0 − Σ−1) is strictly positive.

Remark A1. Suppose that f and fλ are Gaussian densities with respective positive definite covariance matrices
Σ0 and Σ. Further suppose that Z ∼ fλ. Then the variance of f (Z)/ fλ(Z) is finite if and only if det(2Σ−1

0 −
Σ−1) > 0.

In the one-dimensional case d = 1 we write Z = Z. The condition in Remark A1 is satisfied
whenever σ2 > σ2

0 /2. In other words, if the variance of the IS distribution is too small, relative to
actual variance of Z, then the IS weight will have infinite variance.

Appendix B.2. Chi-Square Family

In preparation for the multivariate t family, we first consider the chi-square family. Suppose
that Z follows a chi-square distribution with ν0 degrees of freedom, and that the goal is to allow Z
to have arbitrary degrees of freedom ν > 0 under the IS density. In order to identify the natural
sufficient statistic S(z) and natural parameter λ = λ(ν), we let f (z) denote the chi-square density with
ν0 degrees of freedom and fλ(z) the chi-square density with ν degrees of freedom. Then

fλ(z)
f (z)

= exp
((

ν− ν0

2

)
log(z)−

[
ν− ν0

2
log(2) + log

(
Γ
(ν

2

))
− log

(
Γ
(ν0

2

))])
from which we see that S(z) = log(z) and λ = λ(ν) = (ν− ν0)/2. In addition we see that the cgf of
S(z) is

K(λ) = λ log(2) + log (Γ (λ + ν0/2))− log(Γ(ν0/2)) .

In order that K(λ) be will defined, we require ν > 0, which is obvious. In order that K(−λ) is
well-defined we require −λ + ν0

2 be positive, which in turn requires ν < 2ν0. In other words, if the IS
degrees of freedom are more than twice the actual degrees of freedom, then the IS weight will have
infinite variance.

Appendix B.3. t Family

The t family is not a regular exponential family, so it does not fit directly into the framework
discussed in Section 2.2. That being said, a multivariate t vector can be constructed from a Gaussian
vector and an independent chi-square variable. Indeed if Ẑ is Gaussian with mean zero and covariance
matrix Σ0, and R is chi-square with ν0 degrees of freedom (independent of Ẑ), then

Z = µ0 +

√
ν0

R
· Ẑ , (A5)

is multivariate t with ν0 degrees of freedom, mean µ0 and covariance matrix ν0
ν0−2 Σ0.
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In the case that Z is multivariate t, then, we can take our systematic risk factors to be the
components of (Ẑ, R). In this case the joint density of the systematic risk factors can be embedded into
the parametric family

fλ,η(ẑ, r) := exp(λTS(ẑ)− K(λ)) · exp(ηTT(r)− L(η)) · f (ẑ) · g(r) , (A6)

where λ is and S are the natural parameter and sufficient statistic for the Gaussian family, η and L are
those for the chi-square family, and f and g are the Gaussian and chi-square densities.
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Witzany, Jiří. 2011. A Two-Factor Model for PD and LGD Correlation. Working Paper. Available online:

http://dx.doi.org/10.2139/ssrn.1476305 (accessed on 9 March 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1214/17-AAP1326
http://dx.doi.org/10.1287/opre.1110.1008
http://dx.doi.org/10.21314/JCR.2016.202
http://dx.doi.org/10.21314/JCR.2012.138
http://dx.doi.org/10.1287/mnsc.1050.0415
http://dx.doi.org/10.1198/106186008X320456
http://dx.doi.org/10.21314/JCR.2017.222
http://dx.doi.org/10.3905/jod.2008.702504
http://dx.doi.org/10.21314/JCR.2006.037
http://dx.doi.org/10.2139/ssrn.1476305
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Assumptions, Notation and Terminology
	Large Portfolios and the Region of Interest
	Systematic Risk Factors
	Individual Losses
	Conditional Tail Probabilities
	Conditional Densities

	Proposed Algorithm
	General Principles
	Identifying the Ideal IS Densities
	Approximating the Ideal IS Densities
	Systematic Risk Factors
	Individual Losses

	Summary and Intuition

	Practical Considerations
	One- and Two-Stage Estimators
	Large First-Stage Weights
	Large Rejection Constants
	Computing 

	PD-LGD Correlation Framework
	Computing (z)
	Computing k(,z) and (x,z)
	Exploring the Parameter Space

	Implementation
	Selecting the IS Density for the Systematic Risk Factors
	First Stage
	Computing Parameters in the Two-Factor Model
	Computing Parameters in the One-Factor Model
	Trimming Large Weights

	Second Stage
	Approximating 
	Sampling Individual Losses
	Efficiency of the Second Stage


	Performance Evaluation
	Statistical Accuracy
	Computational Time
	Overall Performance

	Concluding Remarks
	Exponential Tilts and Large Deviations
	Properties of k()
	Legendre Transform of k()
	Exponential Tilts
	Behaviour of Xi, Conditioned on a Large Deviation
	Approximate Behaviour of (X1,X2,…,XN), Conditioned on a Large Deviation

	Important Exponential Families
	Gaussian
	Chi-Square Family
	t Family

	References

